
D4.3
Runtime Risk Assessment, Resilience and

Mitigation Planning First Release
Project number: 779391

Project acronym: FutureTPM

Project title: Future Proofing the Connected World: A Quantum-Resistant
Trusted Platform Module

Project Start Date: 1st January, 2018
Duration: 36 months

Programme: H2020-DS-LEIT-2017

Deliverable Type: Other
Reference Number: DS-LEIT-779391 / D4.3 / v0.1

Workpackage: WP 4
Due Date: 30d June, 2019

Actual Submission Date: 27th August, 2019

Responsible Organisation: DTU
Editor: Thanassis Giannetsos

Dissemination Level: PU
Revision: v0.1

Abstract:

Deliverable D4.3 describes the complementary functionality
of the risk assessment framework delivered in D4.2. More
specifically, it describes the run-time mode of operation, and
how it handles the cases of devices with “failed” attestation
reports towards the re-calculation of the entire risk and threat
vector taking into consideration the newly identified vulnera-
bilities. For the latter, a semi-automatic way for performing
complementary system tracing is provided.

Keywords: Run-time Risk Assessment, Resilience, Mitigation

The project FutureTPM has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 779391.

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Editor

Thanassis Giannetsos (DTU)

Contributors (ordered according to beneficiary numbers)

Sofianna Menesidou, Panagiotis Gouvas (UBITECH)
Christos Xenakis, Christoforos Ntantogian, Eleni Veroni, Nikolaos Koutroumpouchos (UPRC)

Disclaimer

The information in this document is provided as is, and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The content of this document reflects only the author‘s view the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

FutureTPM D4.3 PU Page I

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Executive Summary

Risk management is a key aspect for the efficient operation of the entire ecosystem of as-
sets/devices considered in the context of FutureTPM. As described in Deliverable D4.1 [8], risk
analysis methods are used to evaluate the effectiveness of mitigation actions (modeled as control-
flow attestation policies) that are associated with a given risk/incident. The implemented OLISTIC-
based FutureTPM Risk Assessment framework [7] is tailored to the security, trust and op-
erational assurance requirements of TPM-enabled devices and is capable of providing a risk
quantification methodology, during design-time, which is model-driven.
Deliverable D4.3 provides the first release of the Run-time Risk Assessment, Resilience and
Mitigation Planning as a complementary service of the overall FutureTPM RA. More specifically,
it presents the functionalities that are executed during run-time, in the case of, policy changing
facts that are likely to occur within the lifetime of the envisioned ecosystem of deployed devices.
Such facts can be (indicatively) the disclosure of a zero-day vulnerability or a detected anomaly
based on the output of the Control-Flow Property-based Attestation (CFPA) toolkit. If any
of the enforced security policies fail, from malicious intent or faulty behaviour, the next logical
step is to identify what was the cause of this event. This will enable better situation awareness
adaptation for re-calculating the overall risks and threats of the entire ecosystem (considering
the newly identied vulnerability) allowing policy adjustments and the compilation of updated
mitigation strategies and control-flow attestation policies.
The Risk Quantification Engine is based on the OLISTIC platform and handles the unacceptable
calculated risks by inferring (using backward-chaining techniques) the optimal defense strate-
gies (i.e., properties that have to be re-actively attested) that have to be applied. The risk is
calculated based on a number of input constraints such as the: a) asset listing of all infrastruc-
ture/edge devices and systems, b) assets relationships modeled as interdependecy graphs, c)
achievement of specific risk levels, e.g., . we require the security policy that would minimize
the risk of exploiting Assetx to 0.1, and d) preferred, high-level security, privacy and trust require-
ments. Based on the identified vulnerabilities and risk the Security Configuration Policies will be
created and interpreted to both a) low-level security attestation policies and/or b) specific system
calls to be monitored for providing guarantees against specific vulnerabilities.
During run-time, the low-level properties, that will be attested by the CFPA, and the Attestation
Report will contain the final verdict. In case of failure, a more in-depth investigation of the sys-
tems behaviour is needed in order to to identify the exact attack vector and for the re-configuration
of the security policies. Towards this direction, we propose a novel solution for multi-level de-
tailed tracing, in order to upkeep the desired assurance and the required details for post-attack
investigation. In a nutshell, the FutureTPM Run-time Risk Assessment framework will consider
both a) the Backwards Chaining to resolve the constraints and b) the Cascading Effect Analysis
in order to perform a re-calculation of the overall risk and threat vector.
The current implementation instance of the FutureTPM Run-time Risk Assessment framework
consists of three main components. The eBPF Runtime Tracer, where we deploy the necessary
eBPF execution hooks during design time, the FutureTPM Secure Tracing Trust Evidence
Collection, which is responsible for providing the functionalities of multi-level detailed tracing
enabling the collection of the necessary information/evidence, in the case of a failed attestation
report, and the Backward Chaining Process towards the re-calculation of the ecosystem’s
risk and threat vector.

FutureTPM D4.3 PU Page II

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Contents

List of Figures IV

List of Tables V

1 Introduction 1
1.1 Scope and Purpose . 1
1.2 Relation to other WPs and Deliverables . 1
1.3 Deliverable Structure . 2

2 Run-time Risk Assessment 3
2.1 OLISTIC-based Run-time Re-Calculation of Risks 3
2.2 Implementation Aspects . 6

2.2.1 Core Components & Building Blocks . 6
2.2.2 Run-time Risk Assessment APIs . 8

3 Evidence Collection 10
3.1 Adaptive Policy-driven Attestation and Trust Evidence Collection 10

3.1.1 Runtime Monitoring and eBPF-based Tracing 11
3.2 Attacks and Vulnerabilities Detection & Investigation 12
3.3 FutureTPM Methodology . 13

3.3.1 Multi-Level Detailed Tracing . 13
3.3.2 Automatic Deployment of eBPF hooks . 16

4 Mitigation Strategies 18

5 Conclusions 20

6 List of Abbreviations 21

References 24

FutureTPM D4.3 PU Page III

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

List of Figures

1.1 Deliverable D4.3 relationship within the FutureTPM project 2

2.1 Risk Assessment Conceptual Flow . 4
2.2 Reverse Chaining [16] . 5
2.3 FutureTPM Run-time Risk Assessment Framework APIs 9

3.1 FutureTPM Methodology and Advancement wrt to Remote Attestation 13
3.2 Conceptual Work-flow of Multi-level Detailed Tracing & Trust Evidence Collection . 15
3.3 Execution hooks as part of the Defense Strategies in OLISTIC-based Risk Assess-

ment . 16

FutureTPM D4.3 PU Page IV

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

List of Tables

2.1 Implemented TPM2 commands on the eBPF Run-time Tracer 7
2.2 Runtime Risk Assessment output information . 8

FutureTPM D4.3 PU Page V

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Chapter 1

Introduction

The main goal of this deliverable is to present the first release of the Runtime Risk Assessment,
Resilience and Mitigation Planning in combination with the FutureTPM Risk Assessment Frame-
work delivered in D4.2 [7]. The high-level overview is that the Runtime Risk Assessment takes
as an input the initial risk and threat vector as identified and quantified, by the OLISTIC-based
Risk Quantification Engine and checks whether it is lower than an acceptable threshold or not.
The risk is calculated based on a number of input constraints such as the: a) asset listing of all
infrastructure/edge devices and systems, b) assets relationships modeled as interdependecy
graphs, c) achievement of specific risk levels, and d) preferred, high-level security, privacy and
trust requirements.. If this risk is not acceptable, it is analyzed further offline in order to create
and enforce a new configuration policy. By configuration policy we mean a high-level access
control policy or new interpreted low-level execution properties that needs to be attested. During
run time, the low-level properties will be attested by the CFPA and the Attestation Report will
contain the final binary result. In addition, if there is a need to enforce a new policy, there is also
a possibility to update the tracer with new information needed to be traced and, thus, to deploy
new Extended Berkeley Packet Filter (eBPF) hooks.

1.1 Scope and Purpose

The main purpose of this deliverable is to document the complementary functionality of the Run-
time Risk Assessment and to provide information on the current implementation status. The goal
will be to identify the minimal number of properties need to be attested for achieving a high level
of assurance (based on the produced quantifiable risks) while, at the same time, safeguarding
the privacy of the attested device.

1.2 Relation to other WPs and Deliverables

In what follows, Figure 1.1 depicts the relationships of the deliverable to the other Work Pack-
ages (WPs). As already described, D4.3 is complementary to the Risk Assessment Framework
described in Deliverable D4.2 [7].

FutureTPM D4.3 PU Page 1 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Figure 1.1: Deliverable D4.3 relationship within the FutureTPM project

1.3 Deliverable Structure

This deliverable is structured as follows. In Chapter 2, we describe the mode of operation of
the run-time risk assessment including the design and implementation details of the core com-
ponents. In Chapter 3, the process that takes place in the case of a “failed” attestation report
towards a more in-depth investigation of the systems behaviour for post-attack identification. The
provision of the semi-automatic way for performing complementary system tracing is described
based on the deployment of enriched eBPF execution hooks. Chapter 4 outlines some of the mit-
igation strategies that are currently been investigate focusing on the memory and control safety
of a device’s execution. Finally, Chapter 5 concludes the deliverable.

FutureTPM D4.3 PU Page 2 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Chapter 2

Run-time Risk Assessment

2.1 OLISTIC-based Run-time Re-Calculation of Risks

Risk management is a key aspect for the efficient operation of the entire ecosystem of as-
sets/devices considered in the context of FutureTPM. As described in Deliverable D4.1 [8], risk
analysis methods are used to evaluate the effectiveness of mitigation actions (modeled as control-
flow attestation policies) that are associated with a given risk/incident. The implemented OLISTIC-
based FutureTPM Risk Assessment framework [7] is tailored to the security, trust and opera-
tional assurance requirements of TPM-enabled devices and is capable of providing a risk quan-
tification methodology, during design-time, which is model-driven. This risk quantification
leverages the Drools Experts system in order to assess the threat level of all listed assets, in-
cluding also their relationships and interdependecies, (forward chaining mode) and to generate
risk and threat impact models based on threat level goals (reverse chaining mode).
Figure 2.1 showcases the high-level overview of the Risk Assessment execution and data flow,
which is separated into two phases: design- and run-time. As aforementioned, the Risk Quantifi-
cation Engine is based on the OLISTIC platform and will be used to calculate the overall risk graph
of the FutureTPM ecosystem during design-time. This risk quantification, calculates the entire
risk and threat vector considering all possible attacks, threats and vulnerabilities. Based on
this output, security policies can be compiled which constitute the optimal defense strategy (Mit-
igation Strategy) tailored to the caclculated cyber-risks. These are modelled as: a) low-level
control-flow attestation policies, and b) specific system calls to be monitored for providing
guarantees against specific remote exploitation vulnerabilities (Section 3.3).
This combination allows us to express fine-grained trust assumptions in a “top-down” manner
starting from the description of the applications trust domain, and iteratively refining it to model
internal interactions between the entities involved, and the specific operations performed by each
device. Such fine-grained trust assumptionsonce expressedcan be used to precisely delimit the
contextual interactions under which the TPMs security guarantees are proved to hold, and can
be monitored, or even partially enforced, through the Control-Flow Attestation Toolkit. These low-
level policies will be received by the Policy Decision Point, to be deployed and enforced by the
Policy Enforcement Point to the host devices ecosystem.
Overall,such security policies represent a view of a security conguration which is considered
optimal within a time frame and that satisfy a set of specific constraints. The constraints,
which are taken into consideration in the risk quantification process, are the: a) asset listing of
all infrastructure/edge devices and systems, b) assets relationships modeled as interdependecy
graphs, c) achievement of specific risk levels, e.g., . we require the security policy that would
minimize the risk of exploiting Assetx to 0.1, and d) preferred, high-level security, privacy and trust

FutureTPM D4.3 PU Page 3 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Figure 2.1: Risk Assessment Conceptual Flow

requirements (as modeled in Chapter 3 of Deliverable D4.2 [7]). Therefore, the policy generation
is a linear optimization problem which is tackled by a near-optimal constraint satisfaction solver.
However, policy changing facts are likely to occur within the lifetime of the envisioned ecosystem
of deployed devices: Such facts can be (indicatively) the disclosure of a zero-day vulnerability or a
detected anomaly based on the output of the Control-Flow Property-based Attestation (CFPA)
toolkit. If any of the enforced security policies fail, from malicious intent or faulty behaviour, the
next logical step is to identify what was the cause of this event. This will enable better situation
awareness adaptation for re-calculating the overall risks and threats of the entire ecosystem
(considering the newly identied vulnerability) allowing policy adjustments and the compilation
of updated mitigation strategies and control-flow attestation policies. This is the main func-
tionality performed by the risk assessment framework during run-time.
Recall that the output of the CFPA will provide a Boolean decision regarding a systems congu-
ration and execution integrity with respect to the properties that were attested. If the output is
“YES”, then this reflects the appropriate statements on the correct and trustworthy execution of
the deployed devices (Operational Correctness); otherwise, a “NO” attestation report reflects
that a deviation from the normal device behavior was detected and the Attestation Toolkit in-
forms the FutureTPM Secure Tracing & Trust Evidence Collection (Chapter 3) engine to start
a more detailed monitoring and tracing of the devices execution so as to collect more information
that can be used for an offline investigation on the exact attack details and point of intrusion. This
in turn will be fed to the Risk Quantification for the re-calculation of the overall risk and threat
vector and for the re-configuration of the security policies.
Towards this direction, the FutureTPM Run-time Risk Assessment enhancement, of the overall
RA framework, will be responsible for performing this re-caclculation based on the following tech-
niques: a) the Backwards Chaining to resolve the given set of constraints and b) the Cascading
Effect Analysis.
Reverse Chaining: It uses the same basic approach as forward chaining but in reverse order. In
the backward chaining mode the engine will be provided with a specific goal regarding a risk

FutureTPM D4.3 PU Page 4 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Figure 2.2: Reverse Chaining [16]

level and then it will propose a set of control elements that can satisfy this goal. This controls
mainly constitute the control-flow attestation policies: the set of properties that if attested can

FutureTPM D4.3 PU Page 5 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

achieve the desired level of assurance. Therefore, the first mode is rule-driven (e.g. signature-
based vulnerabilities) while the second one is goal-driven (e.g. the properties attestation). Goal-
driven, meaning that we start with a conclusion which the engine tries to satisfy. If this cannot be
achieved, then it searches for conclusions that can be satisfied; these are known as sub goals
(e.g. operational and safety assurance, etc.), that will help satisfy some unknown part of the
current goal. It continues this process until either the initial conclusion is proven or there are
no more sub goals. The report that is generated, in both cases, can be interpreted in concrete
policies. This will enable to see which sub-goal is responsible for a failed attestation report,
thus, allowing for a more targeted evidence collection.
The output of the Risk Quantification Engine will be assessed in order to evaluate if a set of
specific risks are below acceptable thresholds. The thresholds will be set based on the three
reference scenarios. Drools has been integrated for performing this backward chaining
process, which we refer to as derivation queries. Figure 2.2 presents the activity diagram
Backward chaining questionnaire [16].
Cascading Effect Analysis: The detection of possible device abnormal behaviour entail clearly
pro-active nature. However, efficient reactiveness is a key aspect in cyber-security. Part of the
actions that have to be accomplished upon an incident is the evaluation of the level of penetra-
tion within the target ecosystem. In most of the cases this is a manual task which is performed
by an emergency response team in a rather intuitive way. FutureTPM will rely on a dependency
model which will track the functional interdependencies among the various assets in order
to infer the cascading effects in case of an asset compromise. This feature would radically
increase the efficiency of mitigation actions.

In the case of run-time risk assessment, near real-time risk quantification of newly identified
attacks will also be performed. In particular, new target values will be set as input to the Quan-
tification Engine which will be invoked in the mode of goal-driven inference engine. This means
that it will propose several new control elements, i.e., mitigation controls that map to exist-
ing properties that have to be attested. These properties may be a subset of the configuration
properties that are already defined or can be other newly-identified that can further enable seman-
tic, behavioural remote attestation, i.e., attestation of dynamic, arbitrary and system properties
as well as behavior of executable code in an attempt to mitigate the newly discovered run-time
vulnerabilities. This process may lead to a dynamic update of the already defined policies
as a response to these newly identified attacks.

2.2 Implementation Aspects

2.2.1 Core Components & Building Blocks

The implementation of the run-time risk assessment (which is highly interdependent with the
FutureTPM CFPA toolkit and Risk Quantification Engine) includes three main components,
as listed below:

• eBPF Runtime Tracer This is one of the core building blocks of the CFPA and run-time
risk assessment [7] for dynamic tracing: the implemented eBPF Runtime Tracer performs
a detailed dynamic tracing of the kernel shared libraries, low-level code, etc., and an in-
depth investigation of the systems behaviour and execution ow. More specically, it provides
the trusted anchor with the compiled CFGs that represent the run-time state of a remote
device, against only those properties of interest included in the deployed control-ow attes-
tation policies, that need to be attested (Section 3.1.1). The tracing takes place through

FutureTPM D4.3 PU Page 6 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

TPM2 Commands and Timing (' ms)
TPM2 CreatePrimary 11000 TPM2 FlushContext 60

TPM2 Create 40 TPM2 Commit 45

TPM2 ContextSave 50 TPM2 PCR Extend 55

TPM2 ContextLoad 50 TPM2 GetRandom 15

TPM2 Load 45 TPM2 Hash 15

TPM2 RSA Encrypt 420 TPM2 Sign 70

TPM2 RSA Decrypt 450 TPM2 MakeCredential 150

TPM2 EncryptDecrypt 500 TPM2 ActivateCredential 50

TPM2 EncryptDecrypt2 500 TPM2 PolicySecret 20

TPM2 ReadPublic 65 TPM2 Certify 20

TPM2 GetCapability 75 TPM2 VerifySignature 200

TPM2 StartAuthSession 20 TPM2 ECDH KeyGen 150

TPM2 PCR Read 55 TPM2 ECDH ZGen 380

TPM2 PolicyPCR 60 TPM2 ECC Parameters 90

TPM2 PolicyGetDigest 60 TPM2 EC Ephemeral 90

TPM2 EvictControl 15 TPM2 ZGen 2Phase 85

TPM2 Unseal 120 TPM2 CertifyCreation 25

Table 2.1: Implemented TPM2 commands on the eBPF Run-time Tracer

the deployment of already defined eBPF hooks, initially identified as low-level behavioural
properties, during design-time.

• FutureTPM Secure Tracing & Trust Evidence Collection: This component as described
in Chapter 3, is responsible for providing the functionalities of multi-level detailed trac-
ing enabling the collection of the necessary information/evidence, in the case of a “failed”
attestation report, for post-attack investigation. This enhanced tracing is implemented
in a semi-automatic manner based on two possible approaches (currently under investi-
gation) (Section 3.3.1): a) automatic deployment of new, more rich, programmable
eBPF hooks, and b) deployment, during design-time, of eBPF hooks already capable
of enhanced monitoring and tracing of mode of the operational system calls (to be
activated only upon a failed attestation process).

• Backward Chaining Process: Functionality towards the re-calculcation of the ecosys-
tem’s risk and threat vector taking also into consideration the newly identified and inves-
tigate vulnerabilities, based on the output of the evidence collection phase.

In the context of the eBPF Runtime Tracer, the goal of this initial tracing is to monitor system
calls, produce the necessary CFGs so that they can be fed to the CFPA Verification Engine
for acquiring the attestation report (more information on the workflow of the CFPA can be found
in Chapter 4 of D4.2 [7]. For instance, in the context of the TSS attestation, information of interest
will include: execution time, process name of invoked libraries, process id, time of internal
operations, parsed TPM commands, etc. This information is the output of the eBPF tracing
process.

FutureTPM D4.3 PU Page 7 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

As was also described in Deliverable D4.1 [8], the first implementation instance of the eBPF Run-
time Tracer focused on how to trace all the needed TPM commands (per use case) and identify
possible object, sequence leakage and possible exploitation attempts; by either manipulat-
ing the parameters expected during the invocation of these TPM commands (through the TSS) or
by exploiting the insecure nature of the leveraged crypto primitives against quantum adversaries
(e.g., ECC has been proven broken and needs to be updated with a different algorithms in the
TPM2 Commit that performs the rst part of an ECC anonymous signing operation)1.
To this end, we evaluate the timing requirements in order to trace the entire TSS. Table 2.1 lists
the implemented traces, of the TPM commands, and the corresponding timings per command (of
our parser) and Table 2.2 provides the output information of the run-time tracer including example
snippets.

TPM2 Output Information
Kernel Space total time passed in seconds (e.g. 2193.54)

process name (e.g. tpm2 create)
process id (pid) (e.g. 8094)
Virtual File System (VFS) function hooked (e.g. W)
number of bytes read (e.g. 938 of 938)
time of the operation to complete in milliseconds (e.g. 37.89)
type of files (e.g. CHAR DEVICE)
device / file name (e.g. tpmrm0)
parsed data from kernel with eBPF

User Space parsed TPM commands

Table 2.2: Runtime Risk Assessment output information

2.2.2 Run-time Risk Assessment APIs

As described before, the run-time risk assessment mainly revolves around the re-calculation of
risks, for the entire ecosystem of devices (assets, assets listing, and assets interdependency

1In the current implementation version of the FutureTPM Risk Assessment, all TSS-related vulnerabilities have
already been modeled.

FutureTPM D4.3 PU Page 8 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

graphs), taking also into consideration the newly identified threats and vulnerabilities. This pro-
cess is performed by the OLISTIC-based Risk Quantification Engine and, thus, is based on
the same APIs as were described in Chapter 2 of Deliverable D4.2 [7].
In this context, the Backward Inference API is based on the Risk Assessment API, as depicted
in Figure 2.3. The “create” method creates an instance of the Risk Assessment Entity. Each asset
may be associated with a set of Vulnerabilities, Threats and Controls. In order to attach the
new collected information from the Evidence Control, in the Risk Quantification Engine, the first
three functions (e.g. “attachRiskassessmentAssetControl”, “attachRiskassessmentAssetThreat”
and “attachRiskassessmentAssetVulnerability”) are used.
The calculation of the risk per se is performed by invoking the “execute” method. After the calcu-
lation of the risk, someone can traverse through the calculated risks using two helper functions.
The first is “getRraaset” and the second is the “getRrassetPerIRL”. The former is returning an
aggregate view of the calculated risks while the latter is returning the Individual Risk Level
(a.k.a. IRL), per asset individually.

Figure 2.3: FutureTPM Run-time Risk Assessment Framework APIs

FutureTPM D4.3 PU Page 9 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Chapter 3

Evidence Collection

3.1 Adaptive Policy-driven Attestation and Trust Evidence Col-
lection

As described before, in FutureTPM there will be certain enforced policies tailored to maintain a
certain level of assurance in the form of memory safety, control-flow safety and type safety.
These policies, classified as Control Elements by the FutureTPM Risk Assessment frame-
work [7], mainly constitute the optimal defense strategy (Mitigation Strategy) tailored to the
calculated cyber-risks. As it can be easily inferred, such policy making is strongly dependent on
the outcome of the Risk Quantification engine. They are modelled as Controls that reflect the
control-flow attestation policies (including the low-level configuration and behavioural proper-
ties) to be deployed and enforced during run-time.
Overall, such security policies represent a view of a security configuration which is considered op-
timal within a time frame. However, policy changing facts are likely to occur within the lifetime
of the envisioned ecosystem of deployed devices: Such facts can be (indicatively) the disclo-
sure of a zero-day vulnerability or a detected anomaly based on the output of the Control-Flow
Property-based Attestation (CFPA) toolkit.
If any of the enforced security policies fail, from malicious intent or faulty behaviour, the next logi-
cal step is to identify what was the cause of this event. Towards this direction, what is needed, is
the capability to be able to collect more information for answering security-critical questions re-
garding the policy failure and get more insights of what, why, how and by whom this problem-
atic operation occured. This will enable better situation awareness adaptation for re-calculating
the overall risks and threats of the entire ecosystem (considering the newly identified vulnerabil-
ity) allowing policy adjustments and the compilation of updated mitigation strategies and
control-flow attestation policies.
However, recall that the output of the CFPA will provide a Boolean decision regarding a system’s
configuration and execution integrity with respect to the properties that were attested. Such a
decision is usually not sufficient to understand a device’s behaviour when the attestation out-
put is negative; especially when a more complex control-flow graph (CFG) is the reason of the
attestation failure (in the case of specific system calls being exploited, mitigation measures are
more easily constructed (Chapter 4)). Thus, in this case, a more in-depth investigation of the
system’s behaviour is needed to detect any cheating attempts or if any type of (non-previously
identified) malware is resident to the program and data memory.
In the context of FutureTPM, we are solving this issue by providing a semi-automatic way of
performing complementary system tracing that will be able to provide more information on any

FutureTPM D4.3 PU Page 10 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

cheating attempts. This is the goal of the Trust Evidence Collection component that provides the
functionality of data collection (in the case of a “Fail” attestation report) regarding the execution
behaviour of a system that can be subsequently used for the analysis and classification of
potential runtime vulnerabilities and attacks to be fed in the Risk Assessment framework for
the re-calculation of the overall system risk vector. The exact nature of evidence to be collected is
defined through an offline investigation, once the failed attestation report is received, by security
analysts and can vary depending on the type of properties that were attested. For instance, this
evidence may include access patterns to different memory regions, libraries, ports and network
interfaces, stack frames, etc. The service will provide run-time monitoring functionalities for
collecting this evidence over some period of time (in the case of a negative attestation outcome),
according to specified policies for attack detection and identification of the point of intrusion
(Section 3.2).

3.1.1 Runtime Monitoring and eBPF-based Tracing

Run-time monitoring and trust evidence collection will be based on the use of eBPF execution
hooks. As described in Deliverables D4.1 [8] and D4.2 [7], eBPFs are one of the core building
blocks of the CFPA for dynamic tracing: the implemented eBPF Runtime Tracer performs a
detailed dynamic tracing of the kernel shared libraries, low-level code, etc., and an in-depth in-
vestigation of the systems behaviour and execution flow. More specifically, it provides the trusted
anchor with the compiled CFGs that represent the runtime state of a remote device, against only
those properties of interest included in the deployed control-flow attestation policies, that need to
be attested. The intuition behind the use of eBPFS is that they are lightweight enough for such
a detailed tracing and can provide near real-time low-level code inspection, thus, capturing the
requirements of the envisioned applications.
Following the same approach, the same type of eBPF-based tracing enablers are implemented
for multi-level detailed tracing (Section 3.3.1). These will be triggered upon an attestation
failure and will be either deployed or activated for providing more insights on the state of running
system resources. As aforementioned, the primary interest is the analysis of the execution flow
of a device which represents one of the main threat vectors in FutureTPM [6]. In this respect
and in contrast to other state-of-the-art tracers (see below), eBPFs provide the uncommon
characteristic that it can be linked to any kernel function, including system calls and I/O.
The eBPF is fully programmable and this represents another priority requisite for dynamic
adaptation of tracing and inspection tasks.
There are several open-source tracers that exist in the literature. Examples include the Unix-
based ftrace tool that provides static and dynamic tracing. SystemTap tracing tool provides dy-
namic tracing through the use of Kprobes, Jprobes and Uprobes [23]. These have traditionally
been TRAP-based tracing methods. However, it has been shown that leveraging such tech-
niques consumes a significant amount of resources in the host device for large software runs,
thus, making their integration in feasible for the resource-constrained edge devices envisioned
in our scenario. Another example of dynamic tracing is DTrace but a visual survey of its code
reveals that it offers very limited optimizations compared with the eBPF bytecode.
Linux Trace Toolkit Next Generation (LTTng) tracing adds up considerably the collective tracing
impact on the target software for long runs, in resource constrained and high throughput envi-
ronments, such as embedded network nodes and production servers [27]. An other example of
dynamic tracing is DTrace. However, a visual survey of the DTrace code reveals that the DTrace
compiler offers very limited optimizations compared with the eBPF bytecode [27]. An important
aspect regarding tracing is the need for filtering due to the large number of generated data [27],

FutureTPM D4.3 PU Page 11 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

DTrace, LTTng and eBPF has been addressed such a need.

3.2 Attacks and Vulnerabilities Detection & Investigation

There is much research on the topic of attack and threat detection that theoretically aligns with the
system tracing of FutureTPM. Most of these bibliographic entries propose novel methodologies
of how the attack detection will take place but do not elaborate on how this threat detection will
escalate when an attack happens in order to capture any additional trust evidence. A common
method of attack detection is tracing system calls and identifying any abnormal behavior which
will then be classified as an attempted attack. In [18] the researchers propose the collection of
system calls in the form of audit trails, that is, collected sequences of system calls during run-
time. These sequences can be used either during run-time to immediately detect any threats or
offline to detect attacks after the fact that can be thought as trust evidence collection. In the ideal
case,the system can analyze the trail online as it is created, flag any unusual, anomalous, or
prohibited behavior immediately, and then initiate a response. If it must examine the trail off line,
this can take place routinely during off-peak hours or when unusual behavior has been detected
by some other means. There is a chance, in this case, that a particularly successful intruder could
corrupt the trail and hide the intrusion. For this reason, a computationally fast on-line method is
useful.
Furthermore, in [22] there is a similar approach in terms of system call sequencing but there
is the addition of clustering and machine learning mechanisms for the automatic detection of
abnormal behavior. The research describes a clustering methodology for the distinction between
normal and malicious system behavior as well as a marokovian model for analyzing each system
call sequence and classifying it accordingly. This approach, although automated, it is much more
resource heavy and poses the risk of possible false positives and more importantly false negatives
that could lead to undetected attacks. Finally an interesting case in [24] where the researchers
propose the utilization of hardware acceleration to improve the performance of attack detection
in embedded devices.
Another more advanced methodology despite system call tracing is attack detection through con-
trol flow monitoring. There is a wide range of research on this area due to the nature and size
of the system control flow graph. Mapping the entire control flow graph of an application can be
tedious since there can be many branches and the control flow tree can go uncontrollably. That is
why, when it comes to checking and attesting the integrity of a service control-flow, the overhead
on both the device and the network might exceed the functional limits and become cumbersome
to the system. One of the first solutions that demonstrated the feasibility of control-flow attesta-
tion was C-FLAT [2]. C-FLAT is an attestation scheme that measures the valid execution paths
undertaken by embedded devices. However, it requires instrumentation of all control-flow instruc-
tions thereby violating legacy compliance. What is more, C-FLAT incurs significant performance
overhead; thus, it is suitable only for small size binaries. Subsequent works such as LO-FAT [11],
LiteHAX [10], SCAPI [17], SCARR [29], hardware-based attestation [31] and CFIMon [30] aim
to reduce this overhead by proposing attestation protocols that are either optimized (control-flow
graph shortened) or utilize commonly installed hardware components (hardware accelerators) to
ease the strain for low-powered devices.
Most of the aforementioned control-flow attestation mechanisms support single-device attestation
where a trusted party, the verifier, is able to check the integrity of a remote device, the prover.
However, as aforementioned, applying such techniques results in a huge overhead. Towards this
direction, collective attestation protocols like SANA [3], SEDA [4], DARPA [15] and CAMIE [20]

FutureTPM D4.3 PU Page 12 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Figure 3.1: FutureTPM Methodology and Advancement wrt to Remote Attestation

have also been proposed that decongest the network by distributing the computational and com-
munication burden to all provers, thus, reducing the traffic introduced by the large number of edge
devices trying to attest to their integrity. This is achieved by securely aggregating the attestations
of multiple devices in a single cryptographic token through which the verifier will be able to confirm
that each of the involved devices proved correctly that their execution flow is as expected.

3.3 FutureTPM Methodology

Leveraging any of the previously described mechanisms, as a standalone component, is not
enough in the case of FutureTPM as there is no definition for an escalation plan; just detecting
an attack is not enough for a complete, holistic security system managing the complex security
and operational assurance properties as the ones revolving around the use of TPMs. Thus, as
has been elaborated, we prompted to use both techniques: a) the tracing system calls, and b)
a newly designed control-flow property-based monitoring.
As described in the previous section and also depicted in Figure 3.1, there does not yet exist a
comprehensive design nor an effective as well as efficient implementation for enabling dynamic
attestation. Moreover, existing attestation approaches are limited to single device attestation,
whereas in FutureTPM we target attestation of systems-of-systems to address the emerging
class of interconnected embedded devices in the Internet-of-Things. To provide strong security
assurance in this context, we bridge this gap within FutureTPM and developed novel dynamic at-
testation mechanisms, particularly focusing on behavioural-based attestation dynamic prop-
erties of software and hardware for systems-of-systems, through the deployment of eBPF
execution hooks.

3.3.1 Multi-Level Detailed Tracing

These kernel hooks, initially, are identified as low-level behavioural properties and are deployed
to trace system calls. The goal of this initial tracing is to monitor system calls, produce the
necessary CFGs and finally acquire the attestation report. In the case of a failed attestation
report, FutureTPM has defined a methodology for increasing the level of monitoring in order
to collect additional evidence and information on the incident for the assistance in finding the
province of the attack as well as in the development of new enforceable policies that should be
able to catch this newly identified threat that caused the attack in the first place. Effectively, we
propose a novel solution for multi-level detailed tracing that, depending on the situation, mon-

FutureTPM D4.3 PU Page 13 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

itors the security-critical components of each system in different levels in order to upkeep
the desired assurance while also providing the required details for post-attack investigation.
This multi-level detailed tracing is implemented in a semi-automatic manner. Towards this direc-
tion, there are two possibilities explored within FutureTPM. The first is the automatic deploy-
ment of new, more rich, programmable eBPF hooks after the reception of a failed attestation
report. In this case, the security analyst(s) (performing the offline investigation) assess the at-
testation report and determines whether more information is needed for identifying the cause
and type of attack - in which case she also defines the set of policies describing the type of
information/evidence to be collected. After this process, new programmable ebPF kernel hooks
are seamlessly and automatically deployed (Section 3.3.2) to the target device for fulfilling these
policies. As previously noted, the eBPF is implemented in the kernel, thus, needs a userland
control agent for remote control and exportation of the data. Such agents are going to be
implemented as part of the FutureTPM RA framework. Overall, this approach enable us to get the
necessary evidence without affecting the performance of the target system since these rich
eBPF hooks (that will incur a higher penalty in the system execution as more system calls need
to be monitored in near real-time) will be deployed. However, there is the inherent limitation of a
large attack time window: Since the detailed tracing commences after the attestation process
has failed, this means that the attack is already in place which in turn results to the additional
requirement of “letting” the attack to run further (for a larger amount of time) in the device until the
detailed tracing has finished. Depending on the application at hand, such an approach (which will
of course require the isolation of the attacked device during the evidence collection so as other
adjacent assets are not affected) might not be feasible.
Compounding this issue, another approach that is currently been investigated is the deployment,
during design-time, of eBPF hooks already capable of enhanced monitoring and tracing
of most of the operational system calls. In this case, only those execution hooks that are
necessary for tracing the CFGs to be attested will be active during the run-time risk assessment
phase (i.e., including the execution of the CFPA mechanism) and the enriched eBPFs will be
activated only if the evidence collection is triggered; thus, resulting to the transmission of the
necessary information about the device that got compromised, vulnerabilities found in any of the
internal system components or their configurations, configuration changes, etc. This approach
while less efficient, as the penalty of increased tracing is incurred from the beginning, doesn’t
necessitate a large attack time window. Further investigation on the feasibility and usability of
these two mechanisms will be done during the first testing phase of the FutureTPM demonstrators
and will be documented in the second version of this deliverable (D4.5).
Summarizing the process of the FutureTPM tracing hooks deployment, multi-level detailed
tracing and trust evidence collection mechanisms, the conceptual work-flow is depicted in
Figure 3.2.The process of this deployment is as follows:

1. An attack or malfunction occurs causing an enforced policy to fail as detected by the
output of the Control-Flow Property-based Attestation mechanism;

2. The security analyst(s) asseses if she needs additional information related to the attack
incident. If she can directly deduce what was the cause of the attack then the process
ends here;

3. The security analyst(s) defines the required information (through adequate policies) and
directly deploys (Case 1 in Figure 3.2) or activates (Case 2 in Figure 3.2) the enriched
eBPF execution hooks for collecting the necessary additional information;

FutureTPM D4.3 PU Page 14 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Figure 3.2: Conceptual Work-flow of Multi-level Detailed Tracing & Trust Evidence Collection

4. All the information collected is fed to the FutureTPM Run-time Risk Assessment frame-
work for performing a re-calculation of the overall risk and threat vector (considering Back-
wards Chaining and Cascading Effect Analysis (Chapter 2)). Compilation and enforce-
ment of new attestation policies that should be able to cover it in the future.

The two main key points of this method is that the security analyst will either require or not any
additional tracing. The standard tracing kit will be running on the end device (prover) generating
attestations of its control-flow graphs and sending them to the verifier. When a policy fails, then
the security analyst will read the attestations generated by the prover and will assess if she
needs additional tracing to identify the source of the event. Depending on her choice she will
either end the evidence collection process or deploy/activate any additional tracing required
to gather the required data. For example, when a buffer overflow attack occurs that will alter the
control flow graph (and thus, failing the corresponding behavioral property policy) of the monitored
application, then there might be the need for additional information such as what memory regions
where overwritten, what memory regions where over-read or which entity started the malfunction.
On the other hand when an unidentified application is found to run on a restricted device (thus

FutureTPM D4.3 PU Page 15 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Figure 3.3: Execution hooks as part of the Defense Strategies in OLISTIC-based Risk Assess-
ment

failing the corresponding configuration property policy), then from the already existing attestation
the security analyst can black-list this application without any additional information. In both
cases, new policies will be compiled that will be able to catch this attack before it happens
and prevent it from breaching the security of the end device.

3.3.2 Automatic Deployment of eBPF hooks

As already aforementioned, if the calculated risk (based on the output of the Risk Quantification
Engine) is not acceptable or the result of an attestation report has failed (based on the output of
the CFPA), then a new configuration and security policy needs to be enforced. More specifically,
the configuration policy includes a high-level access control policy or new interpreted low-level
execution properties that needs to be attested. In the case there is a need to enforce a new policy,
there is also a possibility to update the tracer and deploy new eBPF hooks automatically
(Case 1 of Figure 3.2). This subsection focuses on the automatic deployment of such eBPF
hooks.
This process will work according to an Event-Condition-Action pattern, where deployment
events are trigerred by the failure of an attestation report or a calculated risk with high Impact,
being above a threshold, and actions entail the deployment and/or modification of the eBPF
execution hooks (monitored data, frequency, granularity, filtering, etc.), re-configuration of the
control-flow attestation policies, etc. The description of data to be monitored and collected and
the automatic deployment of the kernel hooks are expressed by policies, which also represent the
“smartness” of the FutureTPM Secure Tracing component and encompasses both reaction and
prevention actions as well as defensive policies.
This Secure Tracer instantiates and configures these programmable execution hooks to be de-
ployed to the envisioned ecosystem of devices. For instance, if the focus is mainly against remote
memory and data exploitation attacks, the tracer will instantiate the hooks for monitoring sys-
tem calls that try to access the data variable of interest (in the device’s memory) and also are
capable of compiling in real-time the necessary Control-Flow and Data-Flow Graphs (CFGs
and DFGs, respectively) to be then attested by the CFPA. This controller is also capable of re-
programming the execution environment of existing eBPF hooks, leveraging various means
of abstraction. The main technical challenge here is the translation of the evidence-related poli-

FutureTPM D4.3 PU Page 16 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

cies (definition of evidence to be collected) into configurations and code for the heterogeneous set
of security hooks. In the current architecture, this is realized by selecting pre-defined programs
and configuration files from an internal library, but the long-term ambition would be the definition
of dynamic code generation and run-time compiling.
All these control elements and tracing components are part of the Security Policy Enforcement
mechanism that is highly interdependent with the FutureTPM RA framework. In the current im-
plementation, eBPF hooks that are instantiated during design-time to capture the requirements
of the extrcted control-flow attestation policies can be deployed as part of the defense strategies
of the OLISTIC-based risk assessment toolkit (Figure 3.3).
Recall that the Security Policy Enforcement strategy [9], [12], [13] implements a policy-driven
approach for allowing proofs of a system’s integrity based on the attested properties. This
architecture specifies how composition of large scale “Systems-of-Systems” is to be con-
trolled via layered and cross-domain attestation decisions. The outputs of the FutureTPM RA
framework dictate the control-flow attestation policies required to mitigate the identified risks.
Such policies are expressive, deployable and enforceable within the Security Policy Enforce-
ment architecture and may be dynamically updated if the attack graph (produced and maintained
by the RA framework) is amended with new types of vulnerabilities.

FutureTPM D4.3 PU Page 17 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Chapter 4

Mitigation Strategies

As stated above, this multi-level tracing aims to alleviate any restrictions that comes with classic
static monitoring techniques, while maintaining a small overhead, towards the compilation of
optimal mitigation strategies reflected through appropriate control-flow attestation policies. In
the context of FutureTPM, as described in Deliverable D4.2 [7], the main focus is on mitigation
measures against attacks that target the memory and control safety of a device’s execution. In
what follows, we list some interesting, state-of-the-art lines of research that are currently being
investigated, in the context of FutureTPM, so as to be taken into consideration when constructing
the eBPF tracing hooks to be deployed.
Currently, as described in Deliverable D4.2 [7], FutureTPM designed and implemented a novel
control-flow property-based attestation scheme for attesting specific execution properties in the
target device. This enables the verifier to detect run-time attacks based on code reuse. En-
forcement techniques for control-flow correctness, such as control-flow integrity (CFI) [1], do not
provide information about the executed control-flow path on collaborating devices. Control-flow
attestation, however, gives the verifier information about the executed control flow, which enables
the verifier to detect not only attacks that do not conform to a software programs control-flow
graph, like return-oriented programming (ROP) [26], but also a subset of attacks that lead to a
valid but unintended program execution, i.e., non-control data attacks [5], [14]. Moreover, control-
flow attestation enables the verifier to determine the appropriate reaction, in case of an attack.
With CFI, a violating device would be stopped and possibly crashed, which is particularly danger-
ous in safety critical applications. With control-flow attestation, in contrast, contextual reactions
can be implemented, e.g., excluding a compromised device from the collaboration and the entire
communication.
In [25], the authors have created new instructions for the OpenRISC and RISC-V architectures
in order to be used as countermeasures against memory integrity attacks. These instructions
are divided in two categories; one for return address protection and one for the security of
the security-sensitive memcpy() instruction. Additionally, the researchers have proposed a
hardware stack that should be more difficult to exploit than the traditional software stack. Fur-
thermore, in [19] there is a similar approach, where the researchers propose a Built-in Secure
Register Bank (BSRB) which is a hardware based register that will store the return address of
each sub-routine with the purpose of defending against control-flow attacks.
The researchers of [28] have proposed a framework for current ARM mobile devices that can
detect application control-flow manipulation attempts by looking at the history of executed
control-flow altering instructions on the processor. This history examination provides enough in-
formation to implement the state-of-the-art fine-grained control policies, without additional binary
instrumentation. Moreover, this framework is designed to work with existing hardware and have

FutureTPM D4.3 PU Page 18 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

a minimal impact on performance. This solution is dependant on the ARM TrustZone technology
as a trust anchor for integrity of the monitoring process.
The closest research to the FutureTPM multi-level tracing is found in [21], where the researchers
implement a monitoring solution for distributed systems. This research identifies the problem of
static solutions that employ only pre-defined monitoring that targets specific security-sensitive
system attributes and proposes a novel scheme that has two basic contributions. First of all the
security analyst is able to filter and analyze the results of the entire system even when crossing
components or machine boundaries of the distributed system. The second and most meaningful
contribution is that the security analyst can deploy new monitoring on the running system seam-
lessly in order to investigate anything he might require. FutureTPM proposes a more complete
technique that also supports dynamic policies derived from any additional monitoring.
Another advanced line of research, in the context of remote attestation, is the enrichment of the
threat model to also include data oriented attacks for verifying data trustworthiness. More
specifically, for the correct operation of complex systems, each device must be able to verify that
the data coming from other devices is correct and has not been maliciously altered. Towards this
direction, the FutureTPM CFPA toolkit will be enhanced to also include the attestation of Data-
Flow Graphs (DFGs) - on top of the already considered control-flow graphs - towards enhanced
data-flow integrity. This will also require the construction of data-flow monitoring eBPF hooks
for accessing and monitoring the data of interest. In the context of data-flow integrity, the term
data integrity is used to describe that all operations on data and variables obey a program’s DFG.
Such DFGs will also be expressed as data-flow attestation policies focusing solely on data that
has been explicitly selected to be controlled. This data inherits its integrity from the integrity of
the software modules that processed it.
This will be achieved by decomposing the underlying embedded software (in the target device)
into small interacting software modules and attest the control-flow of those modules that are
relevant for data exchanged in a given interaction. The control-flow attestation guarantees that the
data is only processed in a benign execution path. Overall, the main goal of the enhanced CFPA
variant would be to enable efficient and secure interaction/collaboration of embedded devices in
an autonomous system achieving:

• Code integrity on devices. Unintentional/malicious alternation of the code running on a
device can be detected based on the compiled control-flow attestation policies.

• Data integrity on devices. Unintentional/malicious alternation of the data on a device
(before being sent out to other devices) can be detected. This means data can only be
modified in a non-malicious way. This is necessary as devices do not only exchange raw
data but mostly processed data.

• Data integrity and authenticity during transportation. Malicious alternation of the data
when traversing from one device to another must be detected.

FutureTPM D4.3 PU Page 19 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Chapter 5

Conclusions

This final section will act as a synopsis of this deliverable and summarize its findings. The scope
of this deliverable was to document the Run-time Risk Assessment. More specifically, Deliverable
D4.3 highlighted the conceptual work-flow of Run-time Risk Assessment including the Implemen-
tation components and APIs, the detailed Evidence Collection and the Mitigation Strategies.
During design-time, the Risk Quantification Engine quantifies all possible risks based on a
number of input constraints. The produced security configuration policies are interpreted to
low-level control-flow attestation policies and/or specific system calls to be monitored for provid-
ing guarantees against specific vulnerabilities. During run-time, these low-level properties will
be attested by the CFPA and the Attestation Report will result in a binary verdict. A more in-
depth investigation of the system’s behaviour is necessary in case of a “failed” attestation
report.
During this in-depth Evidence Collection, a novel multi-level tracing and the mitigation measures
for post-attack investigation is described including the automatic deployment of enriched eBPFs
hooks. This multi-level tracing aims to alleviate any restrictions that comes with classic
static monitoring techniques, while maintaining a small overhead.

FutureTPM D4.3 PU Page 20 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

Chapter 6

List of Abbreviations

Abbreviation Translation

APT Advanced Persistent Threat

BSRB Built-in Secure Register Bank

CFPA Control-Flow Properties-based Attestation

CFG Control-Flow Graph

CFI Control-Flow Integrity

CPS Cyber-Physical Systems

CRL Cumulative Risk Level

CVSS Common Vulnerability Scoring System

DFG Data-Flow Graph

eBPF Extended Berkeley Packet Filter

FAIR Factor Analysis of Information Risk

IRL Individual Risk Level

PBAC Policy-based Access Control

PID Process ID

PRL Propagated Risk Level

RA Risk Assessment

RMF Risk Management Framework

RM Resource Manager

TEF Threat Event Frequency

TPM Trusted Platform Module

VFS Virtual File System

WP Work Package

FutureTPM D4.3 PU Page 21 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

References

[1] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur., 13(1):4:1–4:40, November
2009.

[2] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew Paverd,
Ahmad-Reza Sadeghi, and Gene Tsudik. C-flat: Control-flow attestation for embedded sys-
tems software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 743–754, 2016.

[3] Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Gregory Neven, Ahmad-Reza Sadeghi,
and Matthias Schunter. Sana: Secure and scalable aggregate network attestation. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 731–742, 2016.

[4] N. Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi, Matthias Schunter,
Gene Tsudik, and Christian Wachsmann. Seda: Scalable embedded device attestation.
In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, pages 964–975, 2015.

[5] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-control-
data attacks are realistic threats. In Proceedings of the 14th Conference on USENIX Security
Symposium - Volume 14, SSYM’05, pages 12–12, 2005.

[6] The FutureTPM Consortium. FutureTPM use cases and system requirements. Deliverable
D1.1, 2018.

[7] The FutureTPM Consortium. Futuretpm risk assessment framework - first release. Deliver-
able D4.2, 2019.

[8] The FutureTPM Consortium. Threat modelling & risk assessment methodology. Deliverable
D4.1, February 2019.

[9] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification language.
In Proceedings of the on Great Lakes Symposium on VLSI 2017, pages 483–486. ACM,
2017.

[10] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi. Litehax:
Lightweight hardware-assisted attestation of program execution. In Proceedings of the In-
ternational Conference on Computer-Aided Design, pages 106:1–106:8, 2018.

FutureTPM D4.3 PU Page 22 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

[11] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas Davi, Patrick
Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. Lo-fat: Low-overhead control flow attesta-
tion in hardware. In Proceedings of the 54th Annual Design Automation Conference, pages
24:1–24:6, 2017.

[12] Trusted Computing Group. Tcg trusted network communications, federated tnc. Deliverable,
2009.

[13] Trusted Computing Group. Trusted network connect (tnc). Deliverable, 2011.

[14] H. Hu, S. Shinde, S. Adrian, Z. Chua, P. Saxena, and Z. Liang. Data-oriented programming:
On the expressiveness of non-control data attacks. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 969–986, may 2016.

[15] Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik, and Shaza Zeitouni. Darpa: Device
attestation resilient to physical attacks. In Proceedings of the 9th ACM Conference on Se-
curity Privacy in Wireless and Mobile Networks, pages 171–182, 2016.

[16] jBoss. In Drools Expert User Guide, 2011.

[17] Florian Kohnhäuser, Niklas Büscher, Sebastian Gabmeyer, and Stefan Katzenbeisser.
Scapi: A scalable attestation protocol to detect software and physical attacks. In Proceed-
ings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
pages 75–86, 2017.

[18] Andrew P Kosoresow and SA Hofmeyer. Intrusion detection via system call traces. IEEE
software, 14(5):35–42, 1997.

[19] Sean Kramer, Zhiming Zhang, Jaya Dofe, and Qiaoyan Yu. Mitigating control flow attacks in
embedded systems with novel built-in secure register bank. In Proceedings of the on Great
Lakes Symposium on VLSI 2017, pages 483–486. ACM, 2017.

[20] JongHyup Lee. Collective attestation for manageable iot environments. Applied Sciences,
8(12), 2018.

[21] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot tracing: Dynamic causal moni-
toring for distributed systems. ACM Transactions on Computer Systems (TOCS), 35(4):11,
2018.

[22] Federico Maggi, Matteo Matteucci, and Stefano Zanero. Detecting intrusions through sys-
tem call sequence and argument analysis. IEEE Transactions on Dependable and Secure
Computing, 7(4):381–395, 2008.

[23] Vara Prasad and Jim Keniston. Locating system problems using dynamic instrumentation.
2010.

[24] Mehryar Rahmatian, Hessam Kooti, Ian G Harris, and Elaheh Bozorgzadeh. Hardware-
assisted detection of malicious software in embedded systems. IEEE Embedded Systems
Letters, 4(4):94–97, 2012.

[25] Debapriya Basu Roy, Manaar Alam, Sarani Bhattacharya, Vidya Govindan, Francesco
Regazzoni, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. Customized instruc-
tions for protection against memory integrity attacks. IEEE Embedded Systems Letters,
10(3):91–94, 2018.

FutureTPM D4.3 PU Page 23 of 24

D4.3 - Runtime RA, Resilience and Mitigation Planning - First Release

[26] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, pages 552–561. ACM, 2007.

[27] Suchakrapani Datt Sharma and Michel Dagenais. Enhanced userspace and in-kernel trace
filtering for production systems. Journal of Computer Science and Technology, 31(6):1161–
1178, 2016.

[28] Darius-Andrei Suciu and Radu Sion. Droidsentry: Efficient code integrity and control flow
verification on trustzone devices. In 2017 21st International Conference on Control Systems
and Computer Science (CSCS), pages 156–158. IEEE, 2017.

[29] Flavio Toffalini, Andrea Biondo, Eleonora Losiuouk, Jianying Zhou, and Mauro Conti. Scarr:
A novel scalable runtime remote attestation. 2018.

[30] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. Cfimon: Detecting violation of con-
trol flow integrity using performance counters. In IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012), pages 1–12, 2012.

[31] Tao Zhang, Xiaotong Zhuang, Santosh Pande, and Wenke Lee. Anomalous path detection
with hardware support. In Proceedings of the Int. Conf. on Compilers, architectures and
synthesis for embedded systems, 2005.

FutureTPM D4.3 PU Page 24 of 24

	List of Figures
	List of Tables
	Introduction
	Scope and Purpose
	Relation to other WPs and Deliverables
	Deliverable Structure

	Run-time Risk Assessment
	OLISTIC-based Run-time Re-Calculation of Risks
	Implementation Aspects
	Core Components & Building Blocks
	Run-time Risk Assessment APIs

	Evidence Collection
	Adaptive Policy-driven Attestation and Trust Evidence Collection
	Runtime Monitoring and eBPF-based Tracing

	Attacks and Vulnerabilities Detection & Investigation
	FutureTPM Methodology
	Multi-Level Detailed Tracing
	Automatic Deployment of eBPF hooks

	Mitigation Strategies
	Conclusions
	List of Abbreviations
	References

