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Executive Summary 

With the definition of the technical and use case requirements in Deliverable D1.1 [1], the FutureTPM 
Consortium has been able to better identify the challenges that arise from making use of Trusted 
Computing technologies in industry products that currently do not support them, and to determine 
which ones are more relevant for the project. Understanding which functionalities are required is 
crucial for the definition of the overall FutureTPM framework architecture, including the interfaces 
exposed by the different components of the framework, which is the focus of this deliverable. 

FutureTPM Deliverable D1.2 moves one step closer to the fulfilment of the project’s vision which is 
the development of QR-based TPM environments for enhancing the security and privacy posture of 
cyber-physical systems. The starting point is an overview of the state-of-the art of the relevant key 
technology axes considered for the FutureTPM reference architecture: the TPM 2.0 Specification, 
released by the Trusted Computing Group (TCG), and also technologies related to Risk 
Management and Security Policy Enforcement aspects. A general understanding of the current TPM 
2.0 Specification will, on one hand, help the Reference Scenarios’ partners to adapt their applications 
to use the TPM platform, and on the other hand serve for the technical partners as a basis for adding 
support for the Quantum Resistant (QR) primitives selected in the context of WP2.  

Based on this comprehensive analysis, in this deliverable, we define the overall architecture of the 
FutureTPM and the components that comprise it, in complete alignment with the derived functional 
and non-functional requirements. It consists of three main components: the QR TPM, the Risk 
Assessment and the Security Enforcement components.  

• The QR TPM is a modified version of TPM 2.0 with support for QR algorithms. Applications 
will interact with it through a modified version of the TSS which will expose new API calls for 
stateful operations, and support longer key and output sizes respectively for symmetric and 
hash algorithms. Whereas the particular selection of QR algorithms to be implemented are 
still under discussion in WP2, there is some agreements, e.g., the NewHope and gTesla QR 
algorithms will be provided for the hardware-based QR TPM. Moreover, given that no TCG 
specification currently exists for QR algorithms, the Reference Scenarios will initially be 
based on the TPM 2.0 API, and will adapt their applications when the first version of the QR 
TPM API is released (in M18). Technical partners will ensure, for the entire development 
lifecycle that the platform still meets the functional requirements already introduced in 
Deliverable D1.1 [1].  

• The Risk Assessment component quantifies, based on API calls tracked with techniques 
such as eBPF, the risk that an attacker with a quantum computer is able to steal information 
managed by use case demonstrators. It will be conceptually separated in two parts: a design-
time component, and a run-time component, which will be implemented as a client application 
within the host device, and it will be in charge of updating the initial risk assessment provided 
during design-time.  

• Finally, the Security Enforcement component will block unsafe usage of API depending on 
the provided policies, which will be elaborated to tailor the requirements of the three 
envisioned Reference Scenarios. 

This document also defines the development methodology for ensuring that tasks are executed with 
the right priority. Development consists of three phases: during the Design Phase the QR algorithms 
are selected and a formal, holistic analysis of the QR TPM will be performed; during the Risk 
Assessment Phase, risks associated to the design of the platform are identified and an initial set of 
policies will be defined; during the Implementation Phase, the QR TPM, the Risk Assessment and 
the Security Policy Enforcement components will be implemented. The whole cycle of 
implementation activities will be iterative and based on two stages for better capturing any updates 
the need to be performed after the initial testing of the framework in the context of the envisioned 
demonstrators. Finally, the current deliverable elaborates on the approach that will be followed in 
order to realize the described functionalities during the implementation and integration phases of the 
FutureTPM framework.
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Chapter 1 Introduction 

Within the context of information security, the term “trust” has as many interpretations as people are 
talking about it. The Trusted Computing Group (TCG) is a not-for-profit industry consortium that aims 
to provide standards for Trusted Computing technologies and to promote their usage. Under the 
TCG view, Trusted Computing has a different meaning from what we understand as secure 
computing. “Trust” is formalized as “predictable behaviour,” even if this behaviour is far away from 
being worth of trust, in the social sense of the term. E.g., we trust that a banking server behaves 
securely (we trust that it does not have any security vulnerability that will pose a risk to our accounts), 
but we also trust that a laptop full of viruses stop working properly when we use it. Under this view, 
clearly, a trusted system is not the same as a secure system. However, a mechanism to determine 
the predictability of a component gives us a foundation to build secure systems. 

Trusted Computing provides confidence in a system, especially if the system’s behaviour isn’t fully 
secure or might become insecure. It establishes whether a system is the intended system, i.e., 
whether it is doing what it is designed to do, and provides controlled access to keys and secrets that 
depend on the system’s current behaviour. It also allows a compromised system to be restored by 
installing and replacing software. 

The TCG-defined methodology relies on the concept of Root of Trust. A Root of Trust is a component 
of a system on which all other trust is based, and which must be blindly trusted. It is worth to note 
that a Root of Trust is inherently unverifiable: if a system has a proposed Root of Trust and relies on 
another component to verify it, then this second component becomes, implicitly, the actual Root of 
Trust. While it is not possible to determine if a Root of Trust is behaving properly, there are defined 
certification procedures that allow manufacturers to provide assurance that a root has been 
implemented in a way that renders it trustworthily. 

The TCG designates three Roots of Trust for a trusted platform [2], [3]: 

• Root of Trust for Measurement (RTM): a component that makes the initial integrity 
measurements on certain system components, and stores that measurement in a secure 
location. 

• Root of Trust for Storage (RTS): a component that provides confidentiality and integrity of 
data. 

• Root of Trust for Reporting (RTR): a component that honestly and verifiably reports 
designated contents of the RTS. 

A chain of trust is a sequence of measurements, initiated by the RTM, where each component 
measures the next component, and only transfers the control to that component if it produces an 
expected measurement. RTMs can be either static (SRTM) when the chain of trust is started at 
system boot, or dynamic (DRTM) when a chain of trust is started at some point after system boot. 
SRTMs are typically implemented within the Basic Input/Output System (BIOS) boot block, whereas 
DRTMs require a CPU operating in a special trusted mode, e.g., Intel Trusted Execution Technology 
(TXT) [4]. 

A Trusted Platform Module (TPM) is a component defined by a TCG specification. It is envisioned 
as a purely passive, inexpensive, tamper-resistant device, which acts as the RTS and the RTR of a 
trusted platform. Additionally, it also offers some limited secure storage, a random number generator 
(RNG), and (highly) constrained cryptographic functionalities. As a passive device, a TPM does not 
have visibility of the system where it is installed. However, the TPM together with the RTM (which 
reports its measurements to the TPM), can form the basis from which we can bootstrap trust in other 
parts of the system. Typical use cases of a TPM are: release an encryption key only if a chain of 
trust has produced an expected measurement, or attest reported integrity measurements to another 
system. The TPM does not (and cannot) judge if those measurements signify that the system is in 
good state or not. The trustworthiness of the measured values is simply judged by the requesting 
party. 
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One of the TCG’s main tasks is to define and maintain the architectural specification of the TPM. It 
is conceptually divided into two stages: the main TPM specification, and a set of domain-specific 
profiles that define the particularities of selected platforms (e.g., servers or mobile devices). The 
current main TPM specification (TPM 2.0) is split into four parts, which detail the general architecture 
[3], the data types and structures [5], the command descriptions [6], and the set of supporting 
routines used by the commands [7]. 

Departing from the TCG view of Trusted Computing, the FutureTPM project aims at creating a whole 
Trusted Computing framework, where the design of a QR TPM –from a formal, holistic perspective– 
will constitute a paramount objective. The goal is to develop a TPM-based solution that can enhance 
the security posture of the hosting device: a TPM system that is not merely secure for today but that 
will also remain secure in the long term against attacks by quantum computers. The architecture 
obligations are motivated, but not restricted, by the requirements of the three Reference Scenarios 
considered for the project: secure mobile wallet and payments, personal activity and health kit 
tracking, and device management. Moreover, a lot of effort will be put on designing a system that, in 
addition to have the desired security and privacy properties, it will also allow a ‘smooth transition’ 
between non-QR and QR cryptography. This envisages scenarios where cryptosystems from both 
domains need to coexist, e.g., to allow legacy applications and services to operate until they are QR-
ready. Consequently, it will be investigated how the QR TPM can become a drop-in replacement for 
TPM 2.0, while maintaining the interoperability of present-day systems. 

1.1 Scope and Purpose 

The main focus of this deliverable is to provide a comprehensive overview of the specification of the 
FutureTPM reference architecture that will serve as a basis for the whole duration of the project. This 
includes the components of the FutureTPM framework, their interfaces and the characteristics of the 
APIs that will be provided for the communication between them. FutureTPM revolves around three 
technological axes that are directly related to the core architectural components: the QR TPM (and 
its host device), the Risk Assessment component, and the Security Policy Enforcement component. 
An overview of these axes will be provided, as well as how are they going to be instantiated within 
FutureTPM.  

Further, this document provides an analysis and point of reference for the FutureTPM architecture 
in relation to the three specific Reference Scenarios defined in the DoA, including an analysis of 
relevant classical protocols and the scenarios themselves, in terms of FutureTPM functionality. 
Hence, this document will also structure the technical requirements imposed by the three envisioned 
Reference Scenarios, documented in Deliverable D1.1 [1], to support the new protocols and the new 
cryptographic primitives required to achieve QR security. 

To this end, Deliverable D1.2 will provide a thorough system-level architectural specification that will 
comprise a high-level overview of the architecture layers and components, as well as, the technology 
axes and contributions to open-source projects, that will guide the implementation of the particular 
layers. As Deliverable D1.2 will guide the development of the technical components comprising the 
platform, this deliverable also includes an initial overview of the interaction patterns and 
intercommunication schemes between system components, users and third-party entities. Thus, 
starting from the mapping of the system requirements to platform components, each component will 
be further decomposed into high-level functional blocks and supported primitives and interfaces. In 
turn, Deliverable D1.2 introduces the analysis performed to derive use-cases describing the 
implementation scenarios of the mechanisms that are to be developed within the scope of the project 
demonstrators, suitable acceptance criteria per demonstrator and their mapping to both system 
requirements and platform components. 

Departing from the current TPM 2.0 Specification [3], the goal is that the API of FutureTPM mirrors 
as much as possible the API of present day TPMs. Therefore, the identification of the required 
extensions and modifications of the current API to handle the additional constraints imposed by the 
QR requirements and the Reference Scenarios will also lie within the scope of this deliverable.  

We stress here that some of the specific details of the architecture are not likely to be known at the 
moment of submission of this deliverable (e.g., what specific algorithms will be implemented 
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following the recommendations from WP2). Thus, they will be precisely defined in the context of the 
associated work packages.  

1.2 Relation to other WPs and Deliverables 

With the definition of clear use-cases that will be supported along with the documentation of the 
FutureTPM reference architecture and the further decomposition of the basic system entities and 
the intercommunication scheme among them, this deliverable (D1.2), will be used as an agreed upon 
instruction set guiding the development of the components that must be delivered by the FutureTPM 
project. Figure 1 depicts the direct and indirect relationship of the deliverable to the other Work 
Packages (WPs). The definition of the system-wide reference architecture is cornerstone, along with 
the requirement scheme documented in Deliverable D1.1 [1], in order to drive the technical work of 
WP2-WP5. What is more, with the clear definition of the project use-cases, demonstrator 
descriptions, evaluation acceptance criteria, and the prioritization of requirements to match the 
needs of the use-cases, the work in WP6 can begin as planned. 
 

 

Figure 1: Deliverable D1.2 relationships within the FutureTPM project. 

 

Within WP1, the current document directly feeds from Deliverable D1.1 [1], which provides the 
definition of the technical, functional and security requirements for FutureTPM, as well as the 
extraction of the Reference Scenarios specific security and privacy requirements. This serves as the 
core information to structure and translate these requirements into concrete architectural 
specifications in order to meet the desired QR capabilities of the FutureTPM framework. In addition, 
within WP2, Deliverable D2.1 [8] provides the technical basis of the cryptography subsystem of the 
projected QR TPM, by proposing a set of potential QR primitives, and as such it will help establish 
the scope of the necessary changes in the reference architecture related to that component.  

The outcome of Deliverable D1.2 is intended to support the definition of later activities in the project. 
More concretely, it will provide the narrative basis of the architecture requirements of the Risk 
Assessment framework, which will be developed in the context of WP4. There, the concrete 
components, and the input and output types to communicate between them will be documented. 
Moreover, Deliverable D1.2 provides the reference architecture that will guide the implementation of 
the three projected QR TPMs (software, hardware, and virtual) that will be developed within WP5, 
and that will constitute the basis for the integration of the platform demonstrators for the three 
Reference Scenarios in WP6. 
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1.3 Deliverable Structure 

This deliverable is structured as follows. In Chapter 2, we review the key technologies that will 
constitute the foundations of the FutureTPM architecture. We will provide an overview of the current 
TPM 2.0 Specification, focusing on the details that will be relevant to the development of the QR 
TPM, a fundamental component of FutureTPM. Also, we review aspects of Risk Management and 
Security Policy Enforcement topics that will be used as a foundation to build the FutureTPM 
framework. In Chapter 3, we relate the Reference Scenarios’ functional (technical) and non-
functional (security and privacy) requirements with the QR TPM functional and security 
requirements. This mapping will enable us to identify the situations where a QR TPM can be a drop-
in replaced of current TPM technologies, and which API calls must be modified in order to support 
the proposed QR primitives. Appendix A will provide most of the technical contents for this chapter. 
Chapter 4 is devoted to detail the overall architecture of the FutureTPM framework, its different 
phases, and the expected types of inputs and outputs between different components. This chapter 
will take as a basis the key technologies discussed in Chapter 2, and will examine and outline how 
these technologies need to be adapted and extended towards the QR Trusted Computing framework 
proposed in the project. In Chapter 5, we will describe more technical and logistic aspects related to 
the development phase of FutureTPM; we document the implementation guidelines that will be taken 
into consideration during the realization of the architecture. More specifically, the already agreed and 
setup development circle is analysed along with (a tentative list of) best practices that will be adopted. 
Finally, the conclusions will be drawn in Chapter 6.  
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Chapter 2 State of the Art and Key Technology Axes 

This chapter is devoted to discuss the state-of-the-art of the key technology elements that will 
constitute the basic building blocks leveraged by the FutureTPM framework. In relation to the 
Background section of Deliverable D1.1 [1], this chapter provides a reference guide to the specific 
technologies that are embraced by the communities targeted by the FutureTPM project. We can 
classify these elements into three different domains: 

• the Trusted Platform Module (TPM) and the host device containing the TPM; 

• the Risk Assessment component; 

• the Security Policy Enforcement component. 

Noticeably, the core element that will serve as a basis to develop the proposed architecture is the 
Trusted Platform Module (TPM). As aforementioned, TPMs have been devised as a component of 
trust that enable to check the security posture of a device and provide mitigation measures against 
attacks such as not allowing for the device to boot up in case of a compromise. Furthermore, TPMs 
act as one of the main components handling the operations related to key management, such as 
key creation, storage, destruction and duplication. The TCG empowers the TPM to be the RTS and 
the RTR for a platform. The FutureTPM architecture, envisioned in the project, will take the current 
TPM 2.0 Specification [3] as the departing basis to define the architecture of the novel QR TPM. In 
what follows, Section 2.1 provides an overview of the underpinnings of the current architectural 
components from TPM 2.0 that are necessary to understand in order to transition to a QR version. 
As cryptography operations (including key management), authorizations and sessions, and platform 
attestation features are three essential features of a TPM, these topics and its related components 
will be addressed in separate sections, namely, Sections 2.2, 2.3, and 2.4. 

Beyond the newly investigated QR TPM, the FutureTPM framework will provide a holistic TPM-based 
solution by also taking into consideration the complex threat landscape that the devices (e.g., 
processors, ASICS, etc.) hosting the TPM (through the TPM Software Stack (TSS)) pose to the 
cryptographic applications. Risk Management refers to the process that allows to assess, evaluate, 
measure and address potential security threats, in order to minimize the effect that they might pose 
to corporate and personal assets. Risk Assessment (RA) is a process within Risk Management that 
deals with the identification of threats, and determines their probability of occurrence, and their 
resulting impact. In the context of FutureTPM, Risk Assessment will take into consideration not only 
the QR TPM device itself, but also to the host device and all the remaining assets of the whole 
architectures envisioned by the three Reference Scenarios detailed in Deliverable D1.1 [1]. By 
leveraging the Risk Assessment component, a set of security policies can be defined in order to 
satisfy the security requirements of a given scenario, e.g., under what conditions is a certain private 
key allowed to sign the information of interest. Ensuring and imposing the correct usage of this set 
of rules is the task of the Security Policy Enforcement module.  

A Risk Assessment Phase can be executed at design-time, but can also extend during run-time, to 
address initially unknown threats. In particular, during design-time, concrete indications regarding 
the security posture of a device will be provided in order to achieve the minimization of specific risks 
and vulnerabilities. However, considering the complexity of current cyber-physical systems where 
the deployed software may be updated to a more sophisticated version with new capabilities, the 
threat model has to take into consideration, e.g., zero day attacks that were not evaluated in the Risk 
Assessment Phase at design-time. Therefore, the former will essentially dictate the policies to be 
enforced by the Security Policy Enforcement module to mitigate the identified risks whereas the 
latter will allow the dynamic update of the already defined policies as a response to any newly 
identified attacks. Section 2.5 will provide an overview on current topics for Risk Assessment and its 
link with Policy Enforcement, in connection with TPM and the TPM Software Stack (TSS).  

2.1 Current TPM 2.0 Architecture 

TPM 2.0 evolved as the second major version of TPM, being built upon the previous version, TPM 
1.2 [9], [10], [11]. The last revision of the TPM 2.0 Specification dates from September 2016 (and 
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this is the one that will be used as the baseline in the context of FutureTPM). The main specification 
is structured into a set of four (extremely) detailed documents: 

• Part 1 – Architecture [3]: This document describes the TPM operations in detail (e.g., how 
to create sessions, and all its variation types), and the rationale behind the TPM design.  

• Part 2 – Structures [5]: This document presents a description of the data types, constants, 
and command returning values and error definitions. 

• Part 3 – Commands [6]:  This document presents the commands of the TPM and error 
conditions in detail. 

• Part 4 – Supporting routines [7]: This document contains code for the supporting routines 
used in Part 3. 

As introduced in Chapter 1, this common four-part library is then augmented trough platform-specific 
profiles, suitable for different types of devices. For example, there are specifications for PCs and 
server platforms [12], mobile devices [13], and information technology systems within a vehicle [14]. 
These profiles instantiate and define what parts of the library are mandatory, optional, or banned, 
what are the values and properties of the different TPM components, and detail other technical 
requirements for that platform. The FutureTPM QR TPM architecture will be mostly driven by the 
Main TPM 2.0 Specification [3], particularized through the PC Client Platform Specification [12]. 

A brief introduction of the TPM 2.0 
architecture was already given in 
Deliverable D1.1 [1]. An overview of this 
conventional TPM architecture is shown in 
Figure 2. In a nutshell, its architecture 
consists of: (i) a cryptographic module 
(including private/public key encryption, 
digital signatures, hash functions and 
MACs), (ii) a random number generator, (iii) 
a protected storage region (volatile and non-
volatile), (iv) a management component, 
and (v) an authorization component. A TPM 
is conceived as a System-on-a-Chip, hence 
all security-sensitive services are executed 
within a closed system. This, together with a 
cryptographic key storage, allows for the 
realization of the protected capabilities, as 
documented in the TCG Specification [3]. 
The command execution engine is a 
microcontroller which forms the basis of the 
TPM realization. This execution engine 
processes the incoming commands and 
controls the cryptographic engines 
accordingly. It is also intended for the 
realization of the cryptographic 
communication protocols.  

The TPM Software Stack (TSS) is a 
software specification that provides a standard API for accessing the functions of the TPM. In 
addition to the TCG’s specifications cited above, we also refer the reader to [15], [16] and [17] for a 
more detailed discussion of TPM 2.0, and Trusted Computing in general. 

In the following sections, we describe in more detail the main components of the TPM 2.0 
architecture required to develop the FutureTPM QR TPM. The main intuition is that the architecture 
and API of the FutureTPM QR TPM should mirror where possible those of present day TPMs, in 
order to be backwards compatible and to allow for a smooth transition to the QR world. 

Figure 2: Overview of the TCG's TPM Architecture. 
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2.1.1 TPM 2.0 Components and Interfaces 

TPMs may be implemented under different forms (hardware-, software-, and virtual-TPM), each of 
which has its own components and interfaces [3], [18]. Nonetheless, the TCG has provided 
standardised mechanisms that adequately abstract specific interface implementations, so that any 
software using the TPM may be implemented in a portable manner [18], [19]. 

A hardware-based TPM may be comprised of the following components [20], [21]:  

• a security-aware general-purpose processor;  

• a highly reliable non-volatile (NV) memory; 

• hardware accelerators for cryptographic operations such as private and public-key engines 
and hashing; 

• hardware true random number generators, and 

• sets of Platform Configuration Registers (PCRs). 

Intra-chip communication may be achieved with protocols like: the Advanced Microcontroller Bus 
Architecture (AMBA) [22] that facilitates right-first-time development of embedded microcontroller 
products with one or more CPUs, GPUs or signal processors; the CoreConnect [23] which is a 
microprocessor bus-architecture for System-on-Chip (SoC) designs, planned to ease the integration 
and the reuse of processor, system, and peripheral cores within standard and custom SoC designs; 
the Open Core Protocol (OCP) [24] that defines a core-centric protocol that enables a bus-
independent, configurable interface; and the Wishbone Bus [25] that is intended to let the parts of 
an integrated circuit communicate with each other. External communication between a TPM and a 
main processor may be achieved through protocols such as Low Pin Count (LPC), with a bandwidth 
of 20.48 Mbps, Serial Peripheral Interface (SPI) with bandwidths of about 10 Mbps, or Inter 
Integrated Circuit (I2C) bus with a maximum bandwidth of 3.4 Mbps [12], [26]. 

Software-based TPMs may either correspond to TPM emulators used for prototyping and testing 
or may be implemented in Trusted Execution Environments (TEEs) [27] to achieve a similar level of 
security as the one provided by hardware-TPMs. 

In this latter case, the TPM NV memory makes use of the permanent storage that the host device 
(where the TPM is running) provides. Should the TEE provide a key that is only available to a certain 
Trusted Application (TA), the TPM might make use of it to ensure that no other application can 
access its storage. True random number generation (RNG) might make use of processor-specific 
instructions (such as Intel RdRand [28]), TEE specific functionality (such as ARM TrustZone TRNG 
[29]), or mechanisms provided by the Operating System (OS) (such as Linux’ /dev/random [30]). The 
remaining TPM functionality, mostly related to cryptographic operations, may be implemented in 
software, make use of long-established libraries like OpenSSL [31], or use processor-specific 
instructions, like Intel’s AES-NI [32]. Communication between the different components may be done 
through the passing of arguments and return codes in the case of the software components being 
embodied as functions, or through inter-process communication, when they are embodied as 
separate processes, using mechanisms like sockets, pipes and Remote Procedure Calls (RPCs). 
External communication is achieved through generic process communication in the case of software 
emulators or through platform specific mechanisms, like ARM’s SMC instruction [33], when exploiting 
a TEE. 

A virtual TPM implementation makes use of both hardware and software TPMs’ components and 
interfaces. By supporting its security on a hardware TPM, it is able to provide a highly secure TPM 
interface to virtual machines [34]. 

2.1.1.1 TPM Software Stack (TSS) API 

A client can abstract the previous implementations details pertaining to the external communication 
of a TPM by making use of the TSS. The TSS is a software specification that provides a standard 
API for accessing the functions of the TPM. Application developers can use this software 
specification to develop inter-operable client applications for more tamper-resistant computing. 
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In this subsection we provide an overview of the TSS API layers from the highest level of abstraction 
to the lowest: Feature API (FAPI), Enhanced System API (ESAPI), System API (SAPI), TPM 
Command Transmission Interface (TCTI), TPM Access Broker (TAB) and Resource Manager 
(RM). The TSS specifies the software layer for application developers to use functions provided by 
a TPM [18], [19]. Figure 3 illustrates the TSS software stack.  

 

Figure 3: TSS diagram [35]. 

 

• Feature API (FAPI): This is meant to be a very high-level API, aimed at having commands 
in it that will allow 80% of the programmers who write a program using the TPM to find 
everything they want in the specification [36]. 

• Enhanced System API (ESAPI): The ESAPI is an interface that is intended to sit directly 
above the SAPI. The primary purpose of the ESAPI is to reduce the programming complexity 
of applications that desire to send individual “system level” TPM calls to the TPM, but that 
also require cryptographic operations on the data being passed to and from the TPM. In 
particular, applications that wish to utilize secure sessions to perform Hash-based Message 
Authentication Code (HMAC) operations, parameter encryption, parameter decryption, TPM 
command audit and TPM policy operations could benefit from using the ESAPI. Additionally, 
context and object management are provided by the ESAPI [37]. 

• System API (SAPI): The SAPI provides a programming interface that provides access to all 
the functionality of the TPM while performing the necessary marshaling (convert commands 
to byte streams) and unmarshaling operations (convert byte streams to commands) on the 
parameters of TPM commands [18]. 

• TPM Command Transmission Interface (TCTI): TCTI provides a generic interface to a wide 
variety of transport methods that could be used to communicate to the TPM. TCTI offers 
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functionality to transmit TPM command packets, receive responses, terminate a connection, 
cancel a command, provide handles (which can be used by the TCTI to notify a caller that a 
response is available for reception), and set locality. It handles the communication to and 
from the lower layers of the TSS, providing a common API that abstracts device drivers. 
Applications can be written to send binary streams of command data to the TCTI and receive 
binary data responses from it. This is like programming in assembly [19]. 

• TPM Access Broker (TAB): The TAB controls multi-process synchronization to the TPM. 
Basically, it allows multiple processes to access the TPM without stomping on each other 
[38]. 

• Resource Manager (RM): The RM acts in a manner similar to the virtual memory manager 
in an OS. Because TPMs generally have very limited on-board memory, objects, sessions, 
and sequences need to be swapped from the TPM to and from memory to allow TPM 
commands to execute [38]. 

As aforementioned in Chapter 1, one of the main goals of FutureTPM is to enable a ‘smooth 
transition’ between QR and non-QR cryptographic services (provided by the TPM) which entails the 
provision of a QR TPM capable of easily replacing the current TPM platform (plug-and-play 
approach). Thus, updates will be performed to only those layers that are necessary to support the 
newly identified QR crypto primitives. As will be documented in more detail in Chapter 3, most of the 
changes required will be instantiated at the SAPI/TCTI layers since these provide the core (low-level) 
interfaces with all the necessary TPM commands for providing the various crypto primitives; thus, in 
what follows we will focus on the underpinnings of these two layers. Of course, adequate measures 
will be taken so that any changes are successfully reflected to the upper layers, and especially the 
FAPI which is the one that provides the ‘glue interface’ with the programmers/analysts. 

A TCTI context is a data structure containing the version of the current TCTI implementation, along 
with pointers to the functions offered by the TCTI. A pointer to this structure is passed to the SAPI, 
which can cast it to a TCTI version structure, containing the first two fields of the TCTI context 
structure. One of the two fields corresponds to the version offered by the TCTI. Each newer version 
must at least contain all fields of the previous versions in the same order. This allows the SAPI to 
safely cast the TCTI context to any version not greater than the value in the version field. A SAPI 
implementation makes use of the TCTI function pointers to offer its functionality. 

The SAPI provides functions to initialise and finalise a SAPI command context. Furthermore, 
command-specific functions, Tss2_Sys_<COMMAND>_Prepare, 
Tss2_Sys_<COMMAND>_Complete and one-call Tss2_Sys_<COMMAND> are made available 
(wherein <COMMAND> denotes the name of a specific command); as well as other functions that 
aid with the execution of TPM commands. 

The Tss2_Sys_<COMMAND>_Prepare function resets the SAPI command context and makes it 
ready for next flow of command functions. Functions Tss2_Sys_GetDecryptParam and 
Tss2_Sys_SetDecryptParam support decrypt sessions by allowing the caller to get access to the 
unencrypted command parameters, encrypt them, and then set the encrypted command parameters 
in the byte stream before sending the command. Tss2_Sys_GetCpBuffer underpins the computation 
of command authorisation Hash-based Message Authentication Codes (HMACs). 
Tss2_SetCmdAuths sets command authorisation area parameters, including nonces, session 
attributes, passwords and command HMACs. The pair Tss2_Sys_ExecuteAsync and 
Tss2_Sys_ExecuteFinish can be used to asynchronously execute a command; while 
Tss2_Sys_Execute executes a command synchronously. Upon receiving a response from the TPM: 
Tss2_Sys_GetCommandCode supports the computation of a command HMAC; 
Tss2_Sys_GetRspAuths gets the response authorisation data; Tss2_Sys_GetEncryptParam and 
Tss2_Sys_SetEncryptParam enable getting the encrypted result, decrypting it, and setting the 
decrypted results in the byte stream; Tss2_Sys_<COMMAND>_Complete unmarshals the decrypted 
results; and Tss2_Sys_GetRpBuffer returns a pointer to the unmarshalled results. In some cases, 
the previously described flow to issue TPM commands can be replaced with a single call to a 
Tss2_Sys_<COMMAND> function. 
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2.1.2 Commands and Data Communication Architecture 

In the following, we give an overview of the command architecture for the TPM 2.0, and its associated 
data structures and data communication architecture. 

2.1.2.1 Commands and Responses 

As pointed out in Section 2.1 above, the TPM command and response structures are described in 
the TPM 2.0 Specification [3], [5], [6]. A TPM command is a byte stream composed of generic and 
command-dependent metadata as well as of command-dependent parameters. After command 
execution, the TPM responds with a response byte stream. 

A command consists of  

1. a command header, which itself is comprised of  
a. a tag which indicates whether the command contains sessions (i.e., an authorization 

area) or not (see Section 2.3 for more details on sessions), 

• TPM_ST_SESSIONS indicates the presence of an authorization area, 

• TPM_ST_NO_SESSIONS indicates that the authorization area is empty, 
b. a field commandSize indicating the overall size of the command byte stream (incl. the 

header),  
c. a field commandCode holding the identifier of the TPM command to be executed. 

2. a handle area containing up to three handles (a handle uniquely identifies a resource in the 
TPM memory) 

3. a 32-bit value authorizationSize holding the size of the subsequent authorization area, in 
particular indicating the number of sessions treated by the authorization area, 

4. a so-called authorization area, which contains session data for up to three sessions. Each 
session is represented by an authorization structure, which contains authorization data, per-
command session use modifiers and session state information for communication with the 
application. In particular, it is composed of 

a. a session handle, a four-byte value holding the associated session number; 
b. a nonce size field followed, if present, by a nonce, a byte array holding a nonce 

chosen by the caller (used for HMAC authorization to prevent replay attacks);  
c. the session attributes holding information on the session usage; 
d. an authorization size field followed, if present, by an authorization field containing – 

depending on the session type - either an HMAC or a password. 
5. a command-dependent parameter area. 

The structure of a TPM command byte stream is depicted in Figure 4 below. 

 

Command Header 

tag | commandSize | 
commandCode 

Handle 
Area 

authorization 
Size 

Authorization Area 

session handle | size nonce | nonce | 
session attributes | size authorization | authorization 

Parameter 
Area 

Figure 4: Structure of a TPM command. 

 

A response consists of: 

1. a response header, which is composed of 
a. a tag identifying whether the response contains sessions or not (i.e. an authorization 

area):  

• TPM_ST_SESSIONS indicates the presence of an authorization area 

• TPM_ST_NO_SESSIONS indicates that the authorization area is empty 
b. a field responseSize indicating the overall size of the response byte stream (incl. the 

header) 
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c. a field responseCode showing whether the TPM command execution was successful 
(TPM_RC_SUCCESS in this case) or an error identifier otherwise. 

2. a handle area containing up to three handles, which are only present on success 
3. a parameter area which contains the command-dependent response parameters 
4. an authorization area that contains the response session data area, which contains 

parameters of up to three sessions. Furthermore, it contains authorization data, per-
command session use modifiers and session state information for communication with the 
application. In particular, it is composed of 

a. a nonce size field followed, if present, by a nonce, a byte array holding a nonce 
chosen by the TPM (used for HMAC authorization to prevent replay attacks); 

b. the session attributes holding information on the session usage; 
c. an authorization size field followed, if present, by an authorization field containing – 

depending on the session type - either an HMAC or a password. 

The structure of a TPM response byte stream is depicted in Figure 5 below. 

 

Response Header 

tag | commandSize | 
commandCode 

Handle 
Area 

Parameter 
Area 

Authorization Area 

size nonce | nonce | session attributes | 
size acknowledgement | acknowledgement 

Figure 5: Structure of a TPM response. 

 

Thereby, in case of a successful command execution, the number of authorization structures in the 
authorization area of a response is equal to the number of authorization structures in command and 
zero otherwise. 

There are two command types: authorized and unauthorized commands. An example for the latter 
is the command TPM2_Startup as it is the first command that has to be sent to a TPM. This command 
has neither session (indicated with tag TPM_ST_NO_SESSIONS) nor return parameters. An 
example for an authorized command is TPM2_Create, which is described below. 

Subsequently, we will detail some often-used TPM commands in Table 1 below. 

 

Table 1: List of frequent TPM 2.0 commands. 

Command Code Description 

TPM2_Startup TPM_CC_Startup 
0x00000144 

Start up TPM. 

TPM2_NV_Read TPM_CC_NV_Read 
0x0000014e 

Read data from the TPM’s NVM, 
respectively (given an NV 
index).  

TPM2_NV_Write TPM_CC_NV_Write 
0x00000137 

Write data to the TPM’s NVM, 
respectively (given an NV 
index).  

TPM2_Create TPM_CC_Create 
0x00000153 

Generic command to generate 
all types of keys. 

TPM2_Create_Primary TPM_CC_CreatePrimary 
0x00000131 

Generic command to generate 
all types of primary keys, which 
are derived form a primary seed. 
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Command Code Description 

TPM2_Load TPM_CC_Load 
0x00000157 

Loads wrapped private keys. 

TPM2_LoadExternal TPM_CC_LoadExternal 
0x00000167 

Loads publics keys 

TPM2_StartAuthSession TPM_CC_StartAuthSession 
0x00000176 

Establishes parameters which 
will be used for the 
authorizations. 

TPM2_RSA_Encrypt TPM_CC_RSA_Encrypt 
0x00000174 

Perform RSA encryption 
operation. 

TPM2_RSA_Decrypt TPM_CC_RSA_Decrypt 
0x00000159 

Perform RSA decryption 
operation. 

TPM2_EC_Ephemeral TPM_CC_EC_Ephemeral 
0x0000018e 

Perform 1st key agreement 
(ECDH/ECMQV/SM2) phase by 
generating an ephemeral key. 

TPM2_ZGen_2Phase TPM_CC_ZGen_2Phase 
0x0000018d 

Perform 2nd key agreement 
(ECDH/ECMQV/SM2) phase. 

TPM2_EncryptDecrypt TPM_CC_EncryptDecrypt 
0x00000164 

Generic command to perform 
symmetric key en- and 
decryption.  

TPM2_Hash TPM_CC_Hash 
0x0000017d 

Compute a hash. 

TPM2_HashSequenceStart TPM_CC_HashSequenceStart 
0x00000186 

Start a hashing computation. 

TPM2_HMAC TPM_CC_HMAC 
0x00000155 

Compute an HMAC. 

TPM2_HMAC_Start TPM_CC_HMAC_Start 
0x0000015b 

Start an HMAC computation. 

TPM2_SequenceUpdate TPM_CC_SequenceUpdate 
0x0000015c 

Update the hash/HMAC 
computation. 

TPM2_SequenceComplete TPM_CC_SequenceComplete 
0x0000013e 

Finalize the hash/HMAC 
computation. 

TPM2_Sign TPM_CC_Sign 
0x0000015d 

Generic command to sign a 
message (the signature 
algorithm must be specified via 
the parameters). 

TPM2_VerifySignature TPM_CC_VerifySignature 
0x00000177 

Generic command to verify a 
message-signature pair. 
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2.1.2.2 Data Handling and Common Data Structures 

In order to be able to encode and decode byte streams when communicating with the TPM, it is 
necessary to understand the TPM C data structures and the way data gets encoded and decoded.  

2.1.2.2.1 Data Encoding and Decoding 

TPMs are often connected via slow interfaces (like SPI or I²C) and internal C data structures are 
often larger than necessary (e.g. unions with elements of different size). Thus, the size of data sent 
to or received from a TPM is always optimized beforehand and, if not already the case, additionally 
converted to big-endian format (canonicalization). Response data sent from the TPM is also 
canonicalized. 

Moreover, the conversion of data in byte stream to C structure format is called unmarshalling, 
whereas the inverse conversion from C structure format to a byte stream is called marshalling. 

2.1.2.2.2 Common Data Structures 

All TPM C data structures prefixed with TPM2B_ are byte buffers with a preceding unsigned 16-bit 
integer holding the buffer size. For example, the data structures for message digests and Rivest-
Shamir-Adleman (RSA) public keys are shown in the code listings below. 

 

Code Listing 1: Example of a TPM2B data structure (TPM2B_DIGEST). 

/* Table 2:73 - Definition of TPM2B_DIGEST Structure  */ 
typedef union { 
    struct { 
 UINT16                  size; 
 BYTE                    buffer[sizeof(TPMU_HA)]; 
    }            t; 
    TPM2B        b; 

} TPM2B_DIGEST; 

 

Code Listing 2: Example of a TPM2B data structure (TPM2B_PUBLIC_KEY_RSA). 

/* Table 2:165 - Definition of TPM2B_PUBLIC_KEY_RSA Structure  */ 
typedef union { 
    struct { 
 UINT16                  size; 
 BYTE                    buffer[MAX_RSA_KEY_BYTES]; 
    }            t; 
    TPM2B        b; 

} TPM2B_PUBLIC_KEY_RSA; 

 

New (public) key structures for QR algorithms will be drafted in a similar fashion in the FutureTPM 
project. 

Another common data structure are unions, which are prefixed with TPM2_U. 

2.1.3 Entities 

A TPM entity is any item that can be directly referenced with a TPM handle [15]. TPM handles are 
used to uniquely identify resources that occupy TPM memory, either RAM or NV. So, an entity is a 
generic term that is used to define a large group of resources which are utilized by the 
implementation. They are divided in the following categories: permanent entities, NV entities, 
objects and volatile entities [3], [15]. We are now going to present these categories in detail 
alongside with some examples. 
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Permanent entities are resources which are preinstalled in the TPM and cannot be created or 
deleted, with their handles being defined within the TPM 2.0 Specification [3]. Permanent entities 
include: 

• E1.1 Persistent Hierarchies 

• E1.2 Ephemeral Hierarchy 

• E1.3 Dictionary Attack Lockout Reset 

• E1.4 Platform Configuration Registers 

• E1.5 Reserved Handles 

• E1.6 Password Authorization Session 

• E1.7 Platform NV Enable 

A hierarchy is a collection of entities that are handled as a group and have common characteristics. 
The TPM 2.0 Specification defines three persistent hierarchies, namely: platform, storage and 
endorsement. Each one of these hierarchies, has separate access permissions through 
authorization values and policies that will be presented in Section 2.1.4 below. There is also an 
ephemeral hierarchy that is used when an external entity is using the TPM for cryptographic 
operations. The ephemeral hierarchy has no authorization values or policies as it should be usable 
by anyone. All these hierarchies cannot be created or deleted, but they can be cleared of their 
contents with proper authorization. 

The dictionary attack lockout reset is used by a mechanism that prevents any authentication 
attempts when too many failed tries have been made. This entity controls the state of the lock and, 
like the hierarchies, has an authorization value and a policy to be handled by the administrator of 
this entity. Although technically it is a hierarchy, this entity has no objects or keys and it serves as a 
reset switch that disables the dictionary attack lock mechanism or clears the owner persistent 
hierarchy. This mechanism is utilized by Dell in its laptops to prevent dictionary attacks [39], by the 
Microsoft Bitlocker technology [40] and by many other technology vendors. 

Platform Configuration Registers, which will be discussed in detail in Section 2.1.5 below, are a 
core entity of the TPM. With PCRs the TPM can attest to the device’s state and provide a provable 
list of the functions that have run in the TPM until now. PCRs can be read without any authentication, 
although they have authorization values and policies. The number of PCRs within the TPM depends 
on the implementation, (e.g. 24 PCRs in the PC Client Platform Specification [12]) but there should 
be at least one bank of PCRs that supports either SHA-1 or SHA-256 at boot time. The number of 
PCRs installed in a TPM, is defined by the manufacturer and there is no way to delete or create 
them. PCRs are core components of many security designs, in the work of Yang et al. [41] PCRs 
are proposed as a safe storage space to hold attestable information for their scheme of memory 
attestation for wireless sensor nodes. 

Vendors can choose to install some predefined reserved handles in the TPM that are meant to be 
used in case of a critical security failure. These handles should be used to testify to the state of the 
software that is stored in the TPM. Although the ability to store these handles is defined in the TPM 
2.0 Specification, there is no evidence of any vendor using them. 

In order for callers to provide authorization, they need to authenticate themselves first. The TPM 
provides many ways for users to authorize commands, but the specification mandates that the 
password authorization session is a permanent entity and as such it cannot be deleted. This 
specific authorization session uses passwords to authorize commands, as opposed to advanced 
sessions that can use HMAC and advanced authentication like biometrics together with passwords. 
In [42] an automated proof for authorization protocols that uses TPM authorization sessions is 
presented. Also, in [43] a formal analysis of the TPM 2.0 enhanced authorization scheme is made. 

The NV memory indices can belong to both the platform hierarchy and/or to the storage hierarchy. 
The indices that belong to storage, are managed by the storage hierarchy and its settings. On the 
other hand, platform indices are managed by a separate control: the platform NV enable entity. 
This extra entity is used in order to have a more fine-grained control over the platform hierarchy and 
the platform NV indices. Next, we are going to analyse the NV entities. 
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The only NV entities that exist in the TPM are the E2 NV indices. An NV Index is a storage space 
that is defined by a user of the TPM.  These indices belong to hierarchies and have authorization 
mechanisms (policies and values) just like all the entities. NV indices provide a highly configurable 
storage that can be tailored to support almost any scenario, they can be configured to provide PCR 
like functionality, counter functionality or even be generic bit fields. Similar to these entities, are the 
E3 objects, which are entities that can store either keys or data. Objects should not be confused 
with NV indices, since they are less configurable and exist to serve more specific purposes. They 
are also part of hierarchies and have authorization values and policies and they provide a 
mechanism to control what actions are performed on the object depending on the authorization of 
the actor. 

Finally, there are the E4 volatile entities that can be either persistent or nonpersistent. The entities 
of the latter category never persist through power cycles, some examples are: E4.1 authorization 
sessions and E4.2 hash/HMAC event sequences. On the other hand, persistent entities, survive the 
event of a TPM reset. A user can configure an object to be persistent in order to optimize loading 
times, but he must consider that the memory available for persistent entities is limited. Some basic 
examples that can be persistent entities are: E4.3 primary storage keys, E4.4 primary restricted 
signing keys and E4.5 endorsement keys. 

2.1.3.1 Entity Names 

The Name of an entity is its unique identifier. The handle associated with an object may change, but 
the name of an object remains constant as it is generated by the data within the entity. The name 
associated with an NV Index is correlated with changes to the attributes of the index. The naming 
concept was introduced in the TPM 2.0 Specification [3], to solve a security problem identified in the 
earlier TPM version. In the TPM 1.2 Specification [9], entities had only handles that were practically 
pointers to memory allocated and used to store this entity. With the purpose of saving memory, a 
key manager was used within the TPM to reallocate entities for storage space optimization. 
Moreover, a middleware handled these changes, and updated all the incoming commands, changing 
the entities referenced to point to the correct location. If someone decided to give the same password 
to more than one entity, then it would be possible for one of those entities to be substituted for 
another by an attacker, and the attacker could then authorize the wrong entity to be used in a 
command. Although this scenario seems unlikely, the TPM was designed to provide the highest 
levels of trust, and so the naming convention was introduced to provide the ability to uniquely identify 
each entity with the use of hashes. 

2.1.4 Hierarchies 

A hierarchy is a set of entities and resources contained in the TPM that are related and independently 
managed as a group. The TPM 1.2 Specification [9] only defined one hierarchy, namely, the Storage 
Hierarchy. This approach had the drawback that everything is under the control of the owner. If the 
TPM is not enabled, activated, and owned; there isn’t much that can be done with it, so ultimately 
TPM 1.2 has only one administrator. It is only the owner, who can control both the security and 
privacy functions.  

The TPM 2.0 Specification [3] defines up to four different hierarchies, which are related to different 
security domains. They are divided into two classes, as discussed in Section 2.1.3 above: persistent 
hierarchies (platform, endorsement and storage) and one ephemeral (null) hierarchy. The 
employment of the different hierarchies allows several use cases, such as using the TPM as a 
cryptoprocessor, enabling or disabling parts of the TPM, and separating privacy-sensitive and 
privacy-nonsensitive operations in different control domains. 

2.1.4.1 Persistent Hierarchies 

The TPM 2.0 Specification defines three persistent hierarchies, namely Platform, Storage (or 
Owner), and Endorsement Hierarchy. The main features of them are: 

• they can be independently enabled or disabled; 

• each hierarchy has an independent authorization and a policy; 



D1.2 - FutureTPM Reference Architecture 

FutureTPM D1.2 Public Page 23 of 105 

• each hierarchy has an associated persistent Primary Seed from which keys and data objects 
are derived (Primary Seeds are generated from the TPM internal RNG); 

• each can have primary keys from which descendant keys can be created. 

The authorization, policy, Primary Seed and logical switch to enable each hierarchy are referenced 
in the TPM 2.0 Specification as follows: 

• Platform Hierarchy: platformAuth / platformPolicy / PPS / phEnable. 

• Storage Hierarchy: ownerAuth / ownerPolicy / SPS / shEnable. 

• Endorsement Hierarchy: endorsementAuth / endorsementPolicy / EPS / ehEnable. 

Platform Hierarchy. This hierarchy is intended to be under control of the platform manufacturer, 
represented by the BIOS/ Unified Extensible Firmware Interface (UEFI), in relation to the functions 
that protect the integrity of the platform and firmware services. Manufacturers use the Platform 
Hierarchy to protect the update mechanisms of the roots of trust of the platform in order to fulfil NIST 
SP 800-147. When the platform boots, and upon every TPM2_Startup command execution, the 
platform hierarchy is enabled (i.e., phEnable is set to 1), platformAuth and platformPolicy are set to 
the empty buffer.  The intent is that the platform firmware will generate a strong platform authorization 
value (and optionally install its policy). Unlike the other hierarchies, which may have a human enter 
an authorization value, the platform authorization is entered by the platform firmware. When the 
BIOS goes through a full initialization it has no memory of any previous authorization values.  
Therefore, there is no reason to have the authorization persist (and to find a secure place to store it) 
rather than regenerate it each time. 

The Platform Hierarchy is typically used to authenticate software as part of the UEFI secure boot 
process, for example, by maintaining a public key in a TPM NV index within this hierarchy. During 
boot, the platform firmware uses this key to verify the signature to authenticate the software. The 
Platform Primary Seed is used to derivate any required Platform Key, which is of exclusive use by 
platform firmware, and should not be made available to user-installable software such as the OS or 
applications.  

In addition to its own enabling/disabling switch phEnable, this hierarchy has an additional control 
switch, namely phEnableNV (which is also set to 1 upon calling TPM2_Startup). This control enables 
to independently turn on or off the access to the NV memory for that particular hierarchy, whereas 
phEnable is used to control the rest of the entities within the hierarchy. That is, the Platform Hierarchy 
can be disabled while still permitting access to its NV memory space. 

Certain security-related and administrative operations are only available within the Platform 
Hierarchy, and are not available to an ordinary user of the TPM. Examples of commands that can 
only be executed in the context of this hierarchy are shown in Table 2. 

 

Table 2: Examples of TPM 2.0 commands reserved to be used within the Platform Hierarchy. 

Command Description 

TPM2_PCR_Allocate Used to set the desired PCR allocation of PCR and algorithms. 

TPM2_ChangePPS Used to replace the current Platform Primary Seed. 

TPM2_ChangeEPS Used to replace the current Endorsement Primary Seed. 

TPM2_ChangeSPS Used to replace the current Storage Primary Seed. 

TPM2_Clear Removes all TPM context associated with a specific owner. 

TPM2_SetAlgorithmSet Allows the platform to change the set of algorithms that are used 
by the TPM. 
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Command Description 

TPM2_PP_Commands Used to determine which commands require assertion of Physical 
Presence. 

TPM2_PCR_SetAuthPolicy Used to associate a policy with a PCR or group of PCRs. The 
policy determines the conditions under which a PCR may be 
extended or reset. 

 

Storage Hierarchy. This hierarchy is intended to be used by the platform owner, whether it is the 
end user or the IT department in an enterprise scenario. This hierarchy is intended for non-privacy 
sensitive operations such as generation and storage of user application keys. As opposed to the 
Platform Hierarchy, the authorization and policy, ownerAuth / ownerPolicy, persist through reboots, 
and may be explicitly changed through designated operations. However, the intent is that they be 
set and rarely changed (e.g., after credential compromise).  

One of the main differences compared to TPM 1.2 is that multiple key hierarchies are allowed to 
coexist within the Storage Hierarchy. Each one of these key hierarchies are rooted at a primary key 
called Storage Root Keys (SRKs), where parent keys protect subsequent child keys. In addition to 
the creation and managing of these storage key hierarchies, other important feature available to the 
owner is the management of NV memory: create, update, read, and delete objects. The TPM owner 
can clear all the storage hierarchies, changing the SPS and effectively erasing all storage hierarchies 
of keys. 

In Table 3 below we show some examples of typical commands available to the platform owner 
through the Storage Hierarchy. 

 

Table 3: Examples of TPM 2.0 commands available under the Storage Hierarchy. 

Command Description 

TPM2_CreatePrimary Used to create primary objects (e.g., Storage Root Keys). 

TPM2_CreateLoaded Used to create any type of object (Primary, Ordinary, or Derived). 
In this hierarchy, it will be used to create, e.g., child encryption 
keys. 

TPM2_EvictControl Allows certain Transient Objects to be made persistent or a 
persistent object to be evicted. 

TPM2_NV_DefineSpace Used to reserve space to hold data associated within the NV 
storage. 

TPM2_NV_UndefineSpace Removes data permanently from the NV storage. 

TPM2_HierarchyControl Enables and disables use of the hierarchy and its associated NV 
storage. 

TPM2_HierarchyChangeAuth Allows the authorization secret for the hierarchy or lockout to be 
changed. 

Endorsement Hierarchy. The endorsement hierarchy is intended to be under the control of the 
privacy administrator. As above, this can be either the end user or an IT department. This is the 
hierarchy of choice when the user has privacy concerns. A user with high privacy concerns can 
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disable the endorsement hierarchy while still using the storage hierarchy for TPM applications and 
permitting the platform software to use the TPM. As in the storage hierarchy, the authorization and 
policy for this hierarchy, endorsementAuth / endorsementPolicy, persist through reboots and can be 
changed through designated commands. 

TPM and platform vendors certify that primary keys in this hierarchy, namely, Endorsement Keys 
(EK), are constrained to an authentic TPM attached to an authentic platform. Similarly, as in the 
other hierarchies, EKs are primary objects derived using a public template from the EPS, and 
constitute cryptographically verifiable identities for the RTR. Therefore, manufactures need not install 
EKs into the TPM, as they can be replicated at owner’s discretion by means of the EPS. 

If an EK is a signing key that directly certifies other keys, correlation between the different signatures 
can be traced back to that EK using the certificate chain, and in turn to the original TPM. This is the 
main source of privacy concerns. Therefore, EKs are typically instantiated as encryption keys, and 
are used to create a hierarchy of descendant keys named Attestation Identity Keys (AIKs). These 
AIKs can then be certified through a Privacy Certification Authority, which is trusted not to leak any 
correlation between EKs and AIKs. The certificate obtained, therefore, ensures that an AIK belongs 
to a TPM, but not to which one. 

When compared to the other persistent hierarchies, the privacy administrator has a more limited 
domain of operations available through the Endorsement Hierarchy: essentially, only the 
management of EKs/AIKs, and enabling the availability of the hierarchy. Some examples of 
commands to carry out operations in the context of this hierarchy can be found in Table 4. 

 

Table 4: Examples of TPM 2.0 commands available under the Endorsement Hierarchy. 

Command Description 

TPM2_CreatePrimary Used to create primary objects (Endorsement Keys). 

TPM2_CreateLoaded Used to create any type of object (Primary, Ordinary, or Derived). 
In this hierarchy, it will be used to create AIKs. 

TPM2_HierarchyControl Enables and disables use of the hierarchy and its associated NV 
storage. 

TPM2_HierarchyChangeAut
h 

Allows the authorization secret for the hierarchy or lockout to be 
changed. 

2.1.4.2 Ephemeral (Null) Hierarchy 

The aim of the Null Hierarchy is to use the TPM as a cryptoprocessor, and benefit from the already 
implemented crypto algorithms present in it. As with the persistent hierarchies, the Null Hierarchy 
also allows the creation of primary keys and complete hierarchies of descendant objects. The Null 
Primary Seed is set to a random value on every TPM reset. Therefore, objects created in this 
hierarchy cannot be made persistent, as they will not be able to be reconstructed after a TPM reset. 
Moreover, this hierarchy cannot be disabled, and it contains an authorization value that is a zero-
length password, and an empty policy.  

Using a TPM as a cryptoprocessor is not one of the main use cases envisioned for these devices. 
As an extremely resource-constrained device, its performance executing intensive cryptographic 
operations might not be acceptable for some applications. It is therefore not advised that the TPM 
be used for bulk encryption. However, there are certain scenarios that can benefit from this use case. 
For example,  

• Early boot resource-constrained environments, which may require the use of 
cryptographic operations. 
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• Applications where the cost in performance is affordable in comparison, e.g., to produce 
commercial encryption software. 

• Applications that require certified implementations. 

• Encryption of small, high-valuable data where the encryption keys are externally stored. 

Typical operations executed within this hierarchy are common cryptographic operations such as 
generating random numbers, computing hash and MACs, or symmetric/asymmetric encryption and 
decryption. Table 5 below shows some usual commands normally used in the context of this 
hierarchy. 

 

Table 5: Examples of TPM 2.0 commands available under the Null Hierarchy. 

Command Description 

TPM2_Hash Performs a hash operation on a data buffer and returns the 
results. 

TPM2_HMAC Performs an HMAC on the supplied data using the indicated hash 
algorithm. 

TPM2_EncryptDecrypt2 Performs symmetric encryption or decryption. 

TPM2_GetRandom Returns the requested number of bytes from the random number 
generator. 

TPM2_RSA_Encrypt Performs RSA encryption. 

TPM2_RSA_Decrypt Performs RSA decryption. 

2.1.5 PCRs 

Platform Configuration Registers (PCRs) are one of the essential features of a TPM that allows it 
to act as an RTR. A PCR is a memory register that can store the entire output of a hash algorithm 
(e.g., 256 bits for SHA-256), and provides a method to cryptographically record a log of 
measurements corresponding to the software states that affect the security condition of a platform. 
In the context of Trusted Computing, such measurements are initiated by the RTM, and are expected 
to take place, at least, during the boot phase of the collection of system resources responsible of 
maintaining the security policy of the system. 

PCRs cannot be modified arbitrarily. When an entry is appended to a log of measurements, the TPM 
receives a copy of such entry (or a digest of the data described by the log), and the data sent to the 
TPM is employed to update the value of the PCR to its next value. This operation is executed using 
a hash algorithm as described in Section 2.1.5.1 below, and is known as PCR extend operation. The 
TPM can provide an attestation of the value of a PCR (or a set of PCRs) upon request, corresponding 
to the cumulative value of log measurements up to that point. This is used to verify the contents of 
the log. This attested measurement allows an independent entity to determine whether the platform 
has been compromised or not.  

PCRs can also be used in conjunction with the authorization mechanisms to restrict access to a 
TPM-protected object, e.g., a decryption key. If certain PCRs do not have the required values, then 
the TPM will not allow access to that object. A well-known example of this use case is Microsoft 
BitLocker full disk encryption [44]. BitLocker is used in conjunction with a TPM to ensure that the 
integrity of the trusted boot path of a platform (e.g. BIOS and boot sector) is in a trustworthy state, 
in order to prevent most offline physical attacks and boot sector malware. That is, full-disk decryption 
keys are only released if the PCRs report an expected set of measurements after platform boot. 
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Theoretically, a platform requires only a single PCR to record its entire history of measurements. 
However, this would make difficult to evaluate the platform state at different stages, and typically 
several PCRs are allocated to the various software layers. For example, some PCRs measure the 
booting environment, others record the OS environment, yet others are devoted to application 
measurements. Therefore, an individual that cared about which OS was loaded, but not what the 
OS had done since it loaded, could restrict its data to the set of PCRs that represent the booting 
environment, and ignore the remaining PCRs. 

The TPM 2.0 Specification [3] considers PCRs as Shielded Locations. That is, a location within the 
TPM that contains data that is secured from access by any entity other than the TPM itself, and 
which may be operated on only by a Protected Capability. Within the architecture of TPM 2.0, PCRs 
are regarded as part of volatile memory. However, the specification allows a certain degree of 
flexibility concerning the persistence of these registers: it is an implementation-dependent decision 
if the values of PCRs are retained in TPM RAM after it is powered off. Moreover, PCRs need not be 
maintained in RAM. It is possible, but not advisable, that they are kept in NV memory, where 
consideration must be made for the possible impact on TPM performance during the critical boot 
cycle, which could also subject the NV memory to wear-out. It is therefore recommended to use 
RAM for PCRs. If a TPM uses NV memory for PCRs, then the vendor is strongly recommended to 
provide a cache for the most recently used PCRs. Again, PCR persistence is an optional feature, 
and as far as the specification is concerned, PCRs are assumed to be reset to their initial values 
after the power is removed. 

PCRs are grouped into PCR banks. A PCR bank is simply a collection of PCRs that are extended 
with the same hash algorithm. PCR banks are identified by the hash algorithm used to perform the 
extend operation. This architecture is useful, for example, when a certain hash algorithm is required 
for legacy or compatibility applications, and a different hash algorithm is required to meet stronger 
security criteria. Not all PCR banks are required to have the same number of PCRs. However, the 
attributes of all PCR with the same index must be equal, except for the particular hash function 
employed. For example, if PCR[0] of a certain bank has an attribute that allows it to be reset by 
command TPM2_PCR_Reset, then this attribute applies to the PCR[0] of every bank. The 
specification requires that a TPM implement a PCR bank for each supported hash algorithm. 
However, it also allows a PCR bank be defined so that it contains no PCRs. 

The PC Client Platform Specification [12] requires at least 24 PCRs and one bank, although it allows 
fewer than 24 PCRs per bank. This minimum is expected to be the actual number in PCs. Other 
applications such as vehicular TPMs may have more. Also, if only one bank of PCRs is supported, 
[12] requires that a conformant TPM use SHA-256 for this bank. If the platform supports more banks, 
it shall support both SHA-256, SHA-1, and it may support additional hash algorithms. Table 6 below 
shows the intended usage for PCRs in the PC Client Platform Specification. 

 

Table 6: PC Client Platform Specification PCR usage. 

PCR Index Alias 

0 – 15  SRTM 

16 Debug 

17 Locality 4 

18 Locality 3 

19 Locality 2 

20 Locality 1 
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PCR Index Alias 

21 Dynamic OS Controlled 

22 Dynamic OS Controlled 

23 Application Specific 

2.1.5.1 Localities 

A locality is an assertion to the TPM to indicate the source of the command from within the platform. 
Locality can be thought of as a hardware-based authorization, and it was conceived as a way to 
allocate different security privileges to different memory address ranges. Each range corresponds to 
a different locality indication. In a PC platform, the locality is communicated by the platform’s chip 
set as a signal on the Low Pin Count (LPC) bus to which the TPM is attached. A TPM has no idea, 
however, where the command originated and does not care: it simply trusts the locality indication 
supplied with the command. 

Localities have a direct impact on the usage of PCRs: some PCRs can only be extended or reset by 
commands at a certain locality. For example, when the DRTM is executing, locality is set to 4 to each 
TPM command, indicating that the command was issued to the CPU by the DRTM firmware. When 
the DRTM passes control to user-provided code, but the CPU is still in secure mode, commands are 
sent with locality 3. Normal execution uses locality 0. Localities 1 and 2 are controlled by the OS, 
based on the memory page the code is being executed. Table 7 summarizes locality usages. 
Localities 1 and 2 are rarely used in today’s systems, as they rely both on having high trust in the 
OS enforcement mechanisms, and on having a trusted TPM driver capable of operating at multiple 
localities. 

Table 7: Types of localities. 

Locality Intended usage Common usage 

4 Trusted Hardware/DRTM DRTM 

3 Auxiliary Components/DRTM Software launched by DRTM 

2 Trusted OS Not used 

1 Trusted Applications Not used 

0 SRTM/Legacy STRM, Default 

2.1.5.2 PCR Operations 

Below we summarize the set of PCR-related operations as defined in [3], focused on the PC Client 
Platform Specification [12]. 

Initialization. PCRs are reset to their default values upon reaching the following TPM operational 
state or invoking the following operations: 

• TPM Reset (TPM2_Shutdown(CLEAR) + TPM2_Startup(CLEAR), or 
TPM2_Startup(CLEAR)). PCRs designated as being preserved will be restored to the state 
they had at the last TPM2_Shutdown(STATE). 

• TPM Restart (TPM2_Shutdown(STATE) + TPM2_Startup(CLEAR)). Same behaviour as 
above for preserved PCRs. 

• TPM2_PCR_Reset. Only when this operation is explicitly allowed by the referred PCR 
attributes. This operation requires authorization. 
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• Upon a Dynamic Root of Trust Measurement (DRTM) executed after calling TPM2_Startup. 
On each invocation of the DRTM sequence, the RTM must be in the same known state. For 
DRTM, the TPM will initialize one or more PCR to zero and then extend PCR[17] in each 
bank with the Hardware Core Root of Trust Measurement (H-CRTM) data accumulated in 
the H-CRTM Event Sequence. 

Default values. Platform-specific implementations are allowed to choose from several options for 
defining the initial values of PCRs. The default values for all PCRs, except PCR[0] is either all bits 
set to 0 or all bits set to 1. For PCR[0], the default value can be all bits set to 0, all bits set to 1, the 
locality at which TPM2_Startup was received, or an indicator that the first measurement came from 
an H-CRTM. 

Extend. The command TPM2_PCR_Extend is used to update the indicated PCR. Except for DRTM, 
authorization is required to extend a PCR. The extend operation works in the same way for all PCR, 
except for the particular hash algorithm associated with the PCR bank. The current contents of the 
PCR are concatenated with the measurement and processed in a hash algorithm, which creates an 
output of the same size as the PCR. The output is then stored again in the same PCR: 

𝑃𝐶𝑅. 𝑑𝑖𝑔𝑒𝑠𝑡𝑛𝑒𝑤 ≔ H𝑎𝑙𝑔(𝑃𝐶𝑅. 𝑑𝑖𝑔𝑒𝑠𝑡𝑜𝑙𝑑 ∥ 𝑑𝑖𝑔𝑒𝑠𝑡). 

In more detail, the command TPM2_PCR_Extend has a handle referencing the PCR to be extended 
(that is, the PCR index), and a 𝑑𝑖𝑔𝑒𝑠𝑡𝑠 parameter that contains one or more tagged digest values, 

i.e., identified by an algorithm ID. For each digest in 𝑑𝑖𝑔𝑒𝑠𝑡𝑠, the PCR associated with the handle is 
extended into the bank identified by the tag 𝑎𝑙𝑔 as 

𝑃𝐶𝑅. 𝑑𝑖𝑔𝑒𝑠𝑡𝑛𝑒𝑤[𝑝𝑐𝑟𝑁𝑢𝑚][𝑎𝑙𝑔] ≔ H𝑎𝑙𝑔(𝑃𝐶𝑅. 𝑑𝑖𝑔𝑒𝑠𝑡𝑜𝑙𝑑[𝑝𝑐𝑟𝑁𝑢𝑚][𝑎𝑙𝑔] ∥ 𝑑𝑖𝑔𝑒𝑠𝑡𝑠[𝑎𝑙𝑔]. 𝑏𝑢𝑓𝑓𝑒𝑟), 

where 

• H𝑎𝑙𝑔: hash function associated to the PCR bank identified by 𝑎𝑙𝑔. 

• 𝑃𝐶𝑅. 𝑑𝑖𝑔𝑒𝑠𝑡: digest value of the PCR. 

• 𝑝𝑐𝑟𝑁𝑢𝑚: PCR numeric selector. 

• 𝑎𝑙𝑔: PCR algorithm selector for the digest. It will update the corresponding PCR of the bank 
identified by alg. If no digest value is specified for a bank, then the PCRs in that bank will not 
be modified. 

• 𝑑𝑖𝑔𝑒𝑠𝑡𝑠[𝑎𝑙𝑔]. 𝑏𝑢𝑓𝑓𝑒𝑟: the data specific to bank 𝑎𝑙𝑔 to be extended. 

The TPM maintains a pcrUpdateCounter, which is incremented each time a PCR is modified (either 
extended or reset). A platform-specific implementation may designate that updates of selected PCR 
will not cause a change to pcrUpdateCounter. 

Recording events. Rather than extending PCRs with supplied computed hash values, the TPM 
supports extending PCRs with the actual value of the log entries. This can be done through two 
standard operations: 

• A single call to TPM_PCR_Event, for events no larger than 1024 bytes. This command 
implicitly selects all PCR with the same index in all the banks. 

• For longer messages, using the standard sequence TPM2_HashSequenceStart, 
TPM2_SequenceUpdate and TPM2_EventSequenceComplete. The last operation requires 
authorization. 

In addition to the execution of the commands above, the TPM 2.0 Specification also states that a 
recording of an event can also be triggered from the TPM interface (and not from the command 
buffer) as the result of an H-CRTM. This is achieved through the sequence of indications 
_TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End.  

Reading. Retrieving values from PCRs can be achieved through the command TPM2_PCR_Read. 
This command receives as input a PCR selection structure named TPML_PCR_SELECTION. This 
structure is an array of lists, where each entry has a hash identifier indicating the PCR bank, and a 
bit field indicating the PCRs being selected in the bank. The response provides a PCR selection 
structure indicating the PCR values that are present in the return structure. 
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Attesting to PCR. There are cases where it is required that certain PCRs stay in a certain state. 
Concretely, the following commands require this functionality: 

• TPM2_PolicyPCR: used to cause conditional access of a policy based on PCR. 

• TPM2_Quote: to produce a report that evidence that the platform is in a certain state. 

Instead of comparing the values of the PCRs with a list of values specifying the value for each one, 
the specification states that the comparison is made through the digest of the concatenation of values 
of the PCRs. The PCRs included in this digest are selected, again, via the TPMl_PCR_SELECTION 
structure.  

Allocation. PCR allocation refers to the assignment of the desired PCR algorithms. This process is 
likely to be done once at most, if the default algorithm is to be changed. It is achieved through the 
TPM2_PCR_Allocate command, which requires Platform Authorization. The allocation will take 
effect upon the next TPM2_Startup(TPM_SU_CLEAR) execution, and will persist until a new 
allocation is executed. As above, the allocation structure to select the particular PCRs in this 
command is TPML_PCR_SELECTION.  

2.1.5.3 PCR Attributes 

Each PCR have an associated set of attributes (PCR Property Tags), which are defined in the TPM 
2.0 Specification. However, which PCR indexes have which attributes is left to the platform-specific 
implementation. The attributes are shown in Table 8 below. 
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Table 8: PCR attributes. 

PCR attribute Description 

TPM_PT_PCR_SAVE  Indicates that the PCR is saved and restored after executing 
TPM2_Shutdown. 

TPM_PT_PCR_EXTEND_Lx Indicates that the PCR may be extended from locality x 
(x=4,3,2,1,0) by using the TPM2_PCR_Extend or 
TPM2_PCR_Event commands. 

TPM_PT_PCR_RESET_Lx Indicates that the PCR may be reset by TPM2_PCR_Reset 
from locality x (x=4,3,2,1,0). 

TPM_PT_PCR_NO_INCREMENT Indicates that modifications to this PCR (reset or extend) will 
not increment the pcrUpdateCounter. 

TPM_PT_PCR_DRTM_RESET Indicates that the PCR is reset by a DRTM event. These PCR 
are reset to all-ones on TPM2_Startup and reset to all-zeros 
on a _TPM_Hash_End event following a _TPM_Hash_Start 
event. 

TPM_PT_PCR_POLICY Indicates that the access to the PCR is controlled by policy. 
This property is only present if the TPM supports policy 
control of a PCR. 

TPM_PT_PCR_AUTH Indicates that the PCR is controlled by an authorization value. 
This property is only present if the TPM supports authorization 
control of a PCR. 

2.1.5.4 PCR Quotes 

TPM PCR quotes are defined in the TPM 2.0 Specification – Part 2: Structures [5] as the data 
structure TPMS_ATTEST. The quote structure, i.e., the structure that is hashed and signed as a 
result of an attestation of the platform state, is composed of the fields described below. The values 
in parenthesis denote the data type. 

• magic (TPM_GENERATED): The indication that this structure was created by a TPM. 
Prevents an attacker from signing arbitrary data with a restricted signing key and claiming 
later that it was a TPM quote. 

• type (TPMI_ST_ATTEST): Type of attestation structure (a quote, in this case) 

• qualifiedSigner (TPM2B_NAME): Qualified Name of the signing key. A key could appear 
strong but be protected by an ancestor with a weaker algorithm. The qualified name 
represents the entire ancestry of the key. 

• extraData (TPM2B_DATA): External information supplied by the caller. This data is typically 
an anti-replay nonce. 

• clockInfo (TPMS_CLOCK_INFO): The clock information is obfuscated when signing with a 
key outside the endorsement hierarchy. 

• firmwareVersion (UINT64): TPM-vendor-specific value identifying the version number of the 
firmware. Included so that the verifier can decide if it thrusts a particular TPM code version. 

• [type]attested (TPMU_ATTEST): The type-specific attestation information. In this case, a 
TPMS_QUOTE_INFO structure which contains: 

o pcrSelect (TPML_PCR_SELECTION): Information on the PCR selected for the quote. 
o pcrDigest (TPM2B_DIGEST): Digest of the selected PCR using the hash of the 

signing key. 
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2.2 Cryptography Subsystem, Keys and Key Operations 

2.2.1 Cryptography Subsystem 

The cryptography subsystem implements the TPM’s cryptographic functions. They include hash 
functions, asymmetric encryption and decryption, asymmetric signing and signature verification, 
symmetric encryption and decryption, symmetric signing (HMAC), signature verification and key 
generation. 

A TPM may only implement algorithms that have a TCG-assigned algorithm ID. Algorithm IDs are 
available in the TCG Algorithm Registry [45], and also in the TPM 2.0 Specification – Part 2: 
Structures [5]. 

The strength of at least one algorithm set supported by a TPM should be at least 112 bits. Other 
algorithms and algorithm sets may be supported in any combination. 

TCG requires various platform-specific algorithms to be implemented in different platforms (including 
one hash algorithm, one symmetric encryption algorithm with approved parameters, and one 
asymmetric encryption/signing algorithm with approved parameters).  

A TPM implementation may support additional (crypto) algorithms in addition to the platform-specific 
algorithms required by the TCG standard.  

2.2.1.1 Hash Functions 

Hash functions may be used directly by external software or as the side effect of many TPM 
operations. The TPM uses hashing to provide integrity checking and authentication as well as one-
way functions, as needed, e.g., Key Derivation Functions (KDFs). 

A TPM should implement an approved hash algorithm that has approximately the same security 
strength as its strongest asymmetric algorithm. 

The hash functions are also used when validating certain types of authorizations or used in support 
of other operations in the TPM such as PCR operations. 

2.2.1.2 HMAC Algorithm  

The TPM implements the Hash-based Message Authentication Code (HMAC) algorithm described 
in ISO/IEC 9797-2. 

An HMAC is a form of symmetric signature over some data. It provides assurance that protected 
data was not modified and that it came from an entity with access to a key value. To have usefulness 
in protecting data, the key value needs to be a secret or a shared secret. 

A TPM module may use the HMAC function to validate an authorization. The HMAC function may 
be used by the Command Execution Engine in support of its operations. 

2.2.1.3 Asymmetric Operation 

A TPM uses asymmetric algorithms for attestation, identification, and secret sharing. An asymmetric 
algorithm identifier will indicate a family of algorithms and methods that are used with that algorithm. 

The only supported asymmetric algorithms in TPM 2.0 are RSA and Elliptic-Curve Cryptography 
(ECC) using prime curves. 

A TPM is required to implement at least one asymmetric algorithm. 

2.2.1.4 Signature Operation 

The TPM may sign using either an asymmetric or a symmetric algorithm. The method of signing 
depends on the type of the key. For an asymmetric algorithm, the methods of signing are dependent 
on the algorithm (RSA or ECC). For symmetric signatures, only the HMAC signing scheme is 
currently defined. If a key may be used for signing, then it will have an attribute to allow it for. 
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A key may be restricted to sign messages with specific contents. When a key has this restriction, the 
TPM will not use the key to sign message digests that the TPM did not compute. 

Any attestation message produced by a TPM will have a header to identify the data as being 
produced within a TPM. If a restricted key is used to sign this data, then a relying party can have 
assurance that the message data came from a TPM. 

To allow a restricted key to sign an externally generated message, the TPM can produce the 
message digest. When the TPM computes the digest, it will not produce a special certification (called 
ticket) that indicates that the digest was produced by the TPM and is safe to sign with a restricted 
key. 

A signing scheme can be used when a key allows for it because not all schemes are valid for all 
keys. A TPM generates an error if the scheme is not allowed with the indicated key type. 

A restricted signing key requires to have a signing scheme specified in the key definition and that is 
the only signing scheme that is allowed to be used with the key. Unrestricted keys may contain a 
signing scheme selection, or the signing scheme may be determined when the key is used. 

2.2.1.5 Symmetric Encryption 

The TPM uses symmetric encryption to encrypt some command parameters (e.g.: authentication 
information) and to encrypt objects stored outside it. Cipher Feedback mode (CFB) is the only block 
cipher mode required by TPM 2.0 Specification to encrypt command parameters (as well as sessions 
and sensitive area of a key object). 

Any symmetric block cipher supported by a TPM may be used for parameter encryption. Weak keys 
are not permitted to be used (some algorithms have known weak keys, if such a key is generated, it 
must be discarded, and a new key generated by starting over with another iteration).  

A TPM should support Exclusive OR (XOR) obfuscation, which is a hash-based stream cipher. XOR 
obfuscation may be used only for confidential parameter passing. 

When paired with an asymmetric key, a symmetric key is required to have as many bits of security 
strength as the asymmetric key with which it is paired. 

When a symmetric key is used for data encryption, the encrypted data has an HMAC. This HMAC is 
checked before the data is decrypted.  

2.2.1.6 Random Number Generator (RNG) Module 

The RNG module is the source of randomness in the TPM. The TPM uses random values for nonce, 
in key generation, and for randomness in signatures. 

It nominally consists of an entropy source and collector, a state register, and a mixing function 
(typically, an approved hash function). The entropy collector collects entropy from entropy sources 
(e.g. noise, clock variations, air movement, event timestamps, or jitter) and removes bias. A TPM 
should have at least one internal source of entropy, and possibly more. It is also possible to add 
externally generated entropy through the TPM2_StirRandom command. The collected entropy is 
then used to update the state register that will provide input to the mixing function to produce the 
random numbers. 

The mixing function may be implemented with a pseudo-random number generator (a PRNG). A 
PRNG may produce numbers that are apparently random from a non-random input such as a 
counter. An approved PRNG that combines an input with much more entropy than a counter will 
yields a RNG with properties no worse than the underlying PRNG and possible better.  

Each RNG access produces a new value regardless of the data usage. There is no distinction 
between accesses for internal versus external purposes. 

It is worth noticing that the entropy sources, as defined in the TPM 2.0 Specification [3], largely 
depend on the manufacturer of the hardware chip and the application domain it is envisaged for 
usage (intended market). Whereas the vendor implementations of the entropy collection process are 
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usually non-disclosed information, it is possible to find public evaluation reports that demonstrate the 
quality of the RNG. See for example report [46] for Infineon SLB 9670 TPM 2.0. Also, more 
information can be found on datasheets provided by manufacturers, such as Atmel (Microchip) 
AT97SC3205T TPM 1.2, which claims to contain a hardware RNG, including a FIPS-140-2 [47] 
certified PRNG [48]. 

2.2.2 Keys and Key Operations 

The correct and secure handling of keys in a cryptographic system is essential for its operation. After 
the description of a key internal structure (public and private areas), this section will go through the 
lifeline of a key from its creation (generation or derivation) to its destruction. 

These operations are referred as key management operations and they include mechanisms to store 
a key outside the TPM. To complete the section, the authorization concept that mandate the usage 
of a key is introduced (alongside the session that carries it) and further discussed in Section 2.3. 

2.2.2.1 Key Structure 

A Key Object is composed of two areas: a public and a sensitive area. Values within parenthesis 
denote the data type, as defined in [5]. 

The public area contains the attributes of the key and a public identity, including: 

• type (TPMI_ALG_PUBLIC): algorithm ID used to create the key. 

• nameAlg (TPMI_ALG_HASH): algorithm ID used as hash algorithm to compute the name of 
the object, it may be TPM_ALG_NULL 

• objectAttributes (TPMA_OBJECT): usage, authorization, duplication, creation, persistence  

• authPolity (TPM2B_DIGEST): authorization policy 

• [type]parameters (TPMU_PUBLIC_PARMS): parameters for the algorithm specified as type 
(e.g.: key size) 

• [type]unique (TPMU_PUBLIC_ID): for asymmetric key it will be the public key, for symmetric 
it will be a value hashed of information in the sensitive area 

The sensitive area contains data that are required to be encrypted, including: 

• sensitiveType (TPMI_ALG_PUBLIC): type of object in the sensitive area, it must be equal to 
the type parameter in the public area 

• authValue (TPM2B_AUTH): authorization value for the object, it’s a bite array with length 
equal to the length of the digest produced by nameAlg. 

• seedValue (TPM2B_DIGEST): it may represents the optional protection seed (for a parent 
key) or an obfuscation value 

• [sentitiveType]sensitive (TPMU_SENSITIVE_COMPOSITE): parameters dependent on the 
sensitiveType (e.g.: private key for asymmetric key)  

2.2.2.2 Key Generation 

Keys can be generated in two different ways. The first way is to produce a key starting from a random 
number generator (see RNG, Section 2.2.1.6). The second way is to produce a key starting from a 
Primary Seed following a KDF.  

2.2.2.3 Key Derivation Functions (KDFs) 

A key can be generated by deriving it from another secret value. The TPM has 3 primary seeds, 
which are large random numbers stored persistently in the different TPM hierarchies. Generating a 
key using one of these seeds creates a hierarchy of keys. See Section 2.1.4 for further details. 

The TPM uses two different KDF schemes: one scheme for ECDH (Elliptic curve Diffie-Hellman) and 
one for all other crypto operations. These schemes are based on hash-functions (Section 2.2.1.1). 
For ECDH the KDF is SP800-56A, for all the others it is SP800-108. 
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2.2.2.4 Key Import  

Before using a key, it must be loaded in the TPM. Loading a key may require authorization. It is 
possible to load the public portion or the public and sensitive portion of a key object.  

Multiple consistency checks are performed to assure that the sensitive area was not modified, that 
the sensitive area is bonded to the correct public area, and that the attributes are consistent. 

There are cases when only the public portion of the key is loaded (such as duplication or signature 
verification). In these cases, it is required to associate the key to a hierarchy to determine which 
proof value need to be used. If the hierarchy is disabled, the key will not be loaded in the TPM. 

External objects might be loaded but a TPM will not create or load an object that uses an algorithm 
that is not supported by the TPM.  

2.2.2.4.1 Context Management and Loading 

A key can be loaded into the TPM in a wrapped form (i.e., encrypted) with a specified parent. The 
TPM will unwrap it and check along the chain from the parent for authorization (this may require 
inconvenient password prompts or certain PCR states that might be passed). 

A TPM can also context-save and context-load a key outside/inside it. The key is wrapped with a 
key derived from a hierarchy therefore it is attached to a hierarchy but not connected to any parent. 

In the TPM 2.0 Specification, both context management and loading use symmetric encryption to 
export a key outside the TPM. 

2.2.2.5 Key Destruction 

When a key needs to be destroyed, its parent needs to be destroyed such that when the key is 
imported it can’t be verified. If the key to be destroyed is a primary key then its primary seed needs 
to be destroyed.  

2.3 Authorisations and Sessions 

Authorisations relate to mechanisms granting someone access to a TPM entity [3]. The properties 
of that entity, often defined at creation time, determine the kind of authorisation that is required by 
each role. The TPM 2.0 Specification considers 3 roles: the USER role is used for the normal uses 
of a key (e.g., signing with a signing key, or loading the child of a storage key); the ADMIN role 
controls the certification and the changing of the authorisation value of an object; and the DUP role 
is only used for the duplication of keys. 

Authorisation may be granted by two means. The first corresponds to a proof of knowledge of an 
authorisation value, also known as a password. This can be achieved by sending the password in 
the command authorisation area, or via an HMAC whose behaviour is determined by the password. 
The second means is through a policy digest, which requires that specific tests or actions are 
performed before an action is completed. 

A session is defined to be a collection of TPM state that changes after each use [3]. They provide 
means to communicate authorisation data, audit a sequence of commands, build a policy digest, 
and encrypt command parameters. 

In the TPM, there is a single, always-available password session that is used to authorise a single 
TPM command. Because of this, a client never needs to start a session to be granted authorisation 
with a password. It suffices that he passes the password in clear text format to the TPM as part of a 
command. This type of authorisation is of limited flexibility and presents security issues when a TPM 
is accessed remotely. 

Sessions can be created through the TPM2_StartAuthSession command. They have associated 
session and HMAC keys. The values of the keys are determined not only by the authorisation value 
of the entity that is being accessed but can also depend on salts and on the authorisation value of 
another entity. When a session is started, the caller might indicate a size of nonces and an initial 
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nonce. After initialising the session, the TPM returns a nonce generated by it. Each time the session 
is used for authorisation, nonces are updated, and the session and HMAC keys are updated 
accordingly. An entity handle might be sent with the TPM2_StartAuthSession command to indicate 
that that entity’s authorisation value should also be included in the calculation of the session and 
HMAC keys of the session being initiated. 

Sessions might be of 3 types: HMAC, policy or trial policy.  

• When an HMAC session is in place, a client might compute an HMAC of the digest of the 
command parameters. Since the HMAC key depends on the entity’s authorisation value, the 
correct computation of the HMAC proves knowledge of the authorisation value. If the entity’s 
properties are compatible with this type of authorisation and authorisation role, the command 
will execute successfully. The command response parameters may also be HMACed, 
guaranteeing their integrity and authenticity. 

• Access to entities might also be made dependent of a policy session, ensuring that a 
sequence of conditions have been satisfied before that entity can be accessed. A policy 
session is a form of enhanced authorization to allow for complex type of authorizations. It 
may include authorization based on TPM command sequences, TPM states or information 
coming from external devices (e.g., fingerprint and retina scanners, smart cards etc…). The 
policy is encapsulated in a value that is associated with the entity.  
The value representing a policy corresponds to a digest. After initiating a policy session, the 
TPM is given a sequence of policy-related commands that modify the digest in the policy 
session. Commands that affect the policy digest include assertions (for example, 
TPM2_PolicySigned is a policy assertion that an authorization was signed by a specific entity; 
and TPM2_PolicyPCR is an assertion that a selected set of PCRs have a specific value), 
ANDs that require two assertions or compounded assertions to be satisfied, and ORs that 
require that one of two assertions or compounded assertions are satisfied. After executing 
all the required commands, the policy session is used to access an entity. Certain policy-
related commands do deferred assertions at this point. If the deferred assertions are satisfied, 
and the policy session digest matches that of the entity’s policy value, access is granted. 

• A trial policy session provides a means to compute a policy value that can be associated 
with an entity. Like in a normal policy session, after the session is created, a number of 
commands are issued that update the trial policy session digest. In contrast to a normal policy 
session, all the assertions are assumed to be true, and the trial policy digest is updated 
accordingly. After the computation of the trial policy trial digest has been finalised, the policy 
value can be read from the TPM. Then, when creating an entity, this value can be set as the 
policy value associated with that entity. Trial policy sessions cannot be used to be granted 
access to entities. 

Per-command session modifiers are available. In the case of HMAC sessions, one may encrypt the 
first parameter of certain commands that are sent to a TPM; or ask for a response parameter to be 
encrypted; or ask for commands to be audited. Similar options are available for the policy sessions, 
apart from the auditing. Two modes of encryption are available: CFB and XOR. The former requires 
both access to a block cipher and a hash function, while for the latter access to a hash function 
suffices. The type of encryption to be used is established at session creation time. For the CFB 
mode, a KDF is used to produce both the key and the Initialisation Vector (IV) from the session key 
and the nonces. For the XOR mode, a one-time pad is produced with a KDF using the HMAC key 
and the nonces as input. 

A host may maintain a record of the command and response parameters that are passed between 
it and a TPM. As these commands are issued, a host may furthermore request the TPM to extend 
the command and response parameters into an audit digest, as part of an HMAC session. An auditor 
can later request a signed copy of the audit digest to validate the integrity of the host’s log. In addition, 
a host may have a single exclusive audit session, which may be used to prove to an auditor that no 
other commands were interleaved with the logged sequence. 
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2.4 Attestation Protocols 

FutureTPM will include the provision of secure, robust, and efficient run-time behavioural attestation 
and verification methods to check the internal state of an untrusted cyber-physical system towards 
establishing its trustworthiness and privacy. This is considered as one of the main goals towards 
“security and privacy by design” solutions, including all methods, techniques, and tools that aim 
at enforcing security and privacy at software and system level from the conception and guaranteeing 
the validity of these properties. For privacy, FutureTPM will leverage advanced crypto primitives, 
namely Direct Anonymous Attestation (DAA) [49], whereas for security and operational 
assurance, it will enable the provision of Control Flow Attestation. 

In general, remote attestation is a means of integrity verification of software running on a remote 
device. It is a mechanism, typically realised as a challenge-response protocol, which enables a 
trusted party (verifier) to obtain an authentic, accurate and timely report about the software state of 
a potentially untrusted remote device (prover). The verifier then checks whether the reported state 
is trustworthy, i.e., whether only benign software is loaded on the prover. 

On the privacy side, DAA is a platform authentication mechanism that enables the provision of 
privacy-preserving and accountable authentication services. DAA is based on group signatures, 
which give strong anonymity guarantees [50]. The key security and privacy properties documented 
in [51], [52], [53] are: 

• User-controlled Anonymity: Identity of user cannot be revealed from the signature. 

• User-controlled Linkability: User controls whether signatures can be linked. 

• Non-frameability: Adversaries cannot produce signatures originating from a valid TPM. 

• Correctness: Valid signatures are verifiable, and linkable, where needed. 

A DAA scheme considers a set of issuers, hosts, Trusted Components (TCs), and verifiers. A host 
and its TCs together form a Trusted Platform. An issuer is a trusted third-party responsible for 
attesting and authorizing platforms to join a network. A verifier is any other system entity or trusted 
third-party that can verify a platforms’ credentials in a privacy-preserving manner using DAA 
algorithms, i.e., without the need of knowing the platform’s identity. The TCG has standardized the 
ECC-based DAA scheme in the TPM 2.0 Specification [3]. This specification has also been published 
as the international standard ISO/IEC 11889:2015 [54] and comprises five algorithms: SETUP, JOIN, 
SIGN, VERIFY and LINK. 

In a nutshell, DAA is essentially a two-step process where, firstly, the registration of a TC is executed 
once, and during this phase the TC chooses a secret key (SETUP). This secret key is stored in 
secure storage so that the host cannot have access to it; see Section 2.1.4.1. Next, the TC talks to 
the issuer so that it can provide the necessary guarantees for its validity (JOIN). The issuer then 
places a signature on the public key, producing an AIK <cre>. The second step is to use this <cre> 
for anonymous attestations on the platform (SIGN), using Zero-Knowledge Proofs [55]. These proofs 
convince a verifier that a message is signed by some key that was certified by the issuer, without 
knowledge of the TC’s DAA key or AIK <cre> (VERIFY). Of course, the verifier has to trust that the 
issuer only issues <cres> to valid TCs. More details on the underpinnings of each one of these 
phases and various proposed DAA schemes can be found in Section 7.4 of D2.1 [8]. 

Based on the security and privacy requirements that have been specified for the three envisioned 
Reference Scenarios [1], the anonymity, pseudonymity and unobservability properties are built into 
DAA’s algorithms, JOIN and SIGN / VERIFY by using anonymous digital signatures. Therefore, third-
parties cannot identify and link subsequent service requests originating from the same user/system. 
This is also true in the presence of colluding third-parties. The JOIN protocol is intentionally not 
privacy-preserving as the Issuer needs to be aware of the user/system to be authenticated. However, 
successful completion of the protocol results in the user/system solely owning a DAA credential. 

Unlinkability (and/or different levels of user linkability) is controlled by the user through the DAA SIGN 
/ VERIFY phases. A user/system has control over its credential, and can decide whether or not to 
“blind” it, thus, producing pseudonyms (and revocation) that are linkable. In addition, DAA also 
provides non-frameability and correctness properties which are security attributes that are vital to 
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the envisioned scenarios and especially in the context of Reference Scenario 2 (Personal Activity 
Tracking). DAA ensures that only valid and trustworthy TCs are able to join a network by ensuring 
that the endorsed TC keys have not been previously compromised. This ensures that TCs only 
produce valid signatures and can only be linked when specified by a particular authorized service. 

On the security side, there exist different kinds of attestation, particularly static attestation and 
dynamic attestation [56]. Static attestation allows the attestation of static properties and 
configuration of a remote platform. The most prominent example is the attestation of the integrity of 
binaries [57]. As the name implies, dynamic attestation deals with dynamic properties of the runtime. 
For instance, it is concerned about the execution and data flow of programs, and not the static 
integrity of binaries. Naturally, attesting dynamic properties is significantly more challenging than 
attestation of static (already known) properties. Hence, the majority of research has focused on static 
attestation including industry effort in the Trusted Computing Base introducing secure and 
authenticated boot loading mechanisms of operating systems. However, given the continuous 
attacks on dynamic properties such as zero-day exploits which corrupt program’s control flows, static 
attestation alone cannot be considered a viable security solution in the long-run, and needs to 
enhanced with advanced dynamic attestation mechanisms. 

There does not yet exist a comprehensive design nor an effective as well as efficient implementation 
to enabling dynamic attestation. The most prominent approach in this context is Control Flow 
Attestation [58]. Control Flow Attestation is one of the most important dynamic properties at the 
software layer since it captures diverse instantiations of software exploits that hijack a program's 
control flow. In FutureTPM, we will develop automated and scalable behavioural-based attestation 
techniques focusing on the attestation of properties of software and hardware for cyber-physical 
systems. For this, we plan to adopt and extend static and dynamic attestation techniques so that 
both static and run-time properties of a remote platform can be attested. See Section 4.5. 

2.5 Risk and Vulnerability Assessment 

Risk Management is a key aspect for the secure and efficient operation of (deployed) cyber-physical 
systems. Risk analysis methods are used to evaluate the effectiveness of mitigation actions that are 
associated with a given risk/incident. The FutureTPM project will provide a framework that 
transparently augments the security of the QR TPM developed tailored to both the security 
requirements of the whole QR TPM-based system (i.e., the QR TPM and the host device) but also 
of the targeted ICT deployments through the three envisioned use cases, providing a risk 
quantification methodology which is model-driven. The goal of Risk Management is to minimize the 
risk to corporate and personal assets due to malicious and accidental loss or exposure. Risk 
Management processes help assess and mitigate risk. An element of Risk Management is risk and 
vulnerability assessment. Asset owners seek to understand techniques employed to protect their 
assets and identify vulnerabilities associated with the protection mechanisms. 

2.5.1 Risk Assessment for TPM and TSS 

This subsection provides an overview of the literature regarding the most known Risk Assessment 
methods and tools used a high level reference point. For more information, Deliverable D3.1 and 
WP4 will provide more details in the topic. The Risk Assessment phase is completed during design 
time. Various techniques have been proposed in the literature for performing threat and vulnerability 
modelling and risk assessment. Techniques performing threat modelling and risk assessment 
include, for example, STRIDE, Attack Tree, Attack Libraries, COBRA, and Mehari. A more 
exhaustive list of methods and tools can be found in [59].  

One work that focuses on threat modelling and TPM 2.0 is [60]. This work presents a threat model 
for TPM 2.0 constructed using Microsoft Security Development Lifecycle Threat Modelling Tool and 
STRIDE model. The work, even though is based on simple scenarios, highlights some potential 
pitfalls that should be considered when conducting further research into the applications of TPM. 
Until now there aren’t many research works related to TPM risk assessment. For instance, risk 
assessment focused on specific threats in TPM and TPM commands is still missing from the 
literature. 
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Regarding the risk assessment, tracing techniques can be used. Tracing has proved itself to be a 
robust and efficient approach to debugging and reverse engineering complex systems. Tracing is 
common in user applications but is also widely used in the Linux kernel, which provides multiple 
tracing infrastructures [61]. A work that leverages eBPF tracing is [62], where a side-channel attack 
on Java heap management is presented. A basic component of risk assessment is vulnerability 
analysis, which is the study of identified vulnerabilities and to what extent they affect the object of 
the assessment. There is a wide range of generic and TPM specific vulnerabilities in the literature, 
more specifically, an attack called “Bad Dream” [63] uses a power management flaw in order to forge 
custom PCR values that are used by the TPM to testify to its integrity. This attack is part of a general 
category that targets the hardware of the implementation, these hardware attacks include side 
channel attacks, clock glitching and fault injections, with all of these affecting any kind of hardware 
depending on how it is implemented and what primitives are used. On the other hand, software 
based attacks, target the firmware and the applications that are running on the platform. In CVE-
2017-15361 [64], there was identified a flaw in the RSA key generation software used by the TPM 
from a specific manufacturer, this led to the predictability of private keys given the corresponding 
public keys. As it is obvious, software attacks are highly dependent on the quality of the software 
implementation. Software attacks include fuzzing, denial of service, buffer overflows and spoofing. 

2.5.2 Security Policy Enforcement Mechanism 

Security policy enforcement is executed both during the design phase and the run-time phase of 
product development. The design phase enforcement will enforce policies that are expected to reach 
a specific security level. If some criteria fail and the desired level is not met, the run-time enforcement 
sets new policies that are calculated with a security level goal system, in order to improve the 
system’s security posture against newly identified attacks. The run-time phase can be run iteratively 
until all the criteria for the required security level are met. There is a large body of related work on 
information flow security enforcement mechanisms. There are two major approaches to information 
flow security enforcement: static techniques and dynamic techniques [65]. In particular, during the 
design phase of the policy enforcement, the main approaches to enforce a particular information flow 
security policy, is called noninterference. Noninterference for programs means that a variation of 
confidential (high) input does not cause a variation of public (low) outputs. Static analysis techniques 
have one major drawback: they accept the program only if all its executions ensure non-interference. 
A common mechanism for ensuring that software, in our case the risk assessment, behaves securely 
is to monitor programs at run-time and check that they dynamically adhere to constraints specified 
by a security policy. Policies enforced by the run-time composition, configuration, and regulation of 
security services. The principle of separating security policy and dynamically enforcing security on 
applications is not new. Several authors have proposed security policy enforcement mechanisms 
using code modification as a technique for enforcing security policies such as resource limits, access 
controls, and network information flows. However, these approaches are typically ad hoc and are 
implemented without a high level abstract framework for code modification [66]. Another approach 
is by using reflection as a mechanism for implementing code modifications within an abstract 
framework based on the semantics of the underlying programming language. A recent survey [67], 
presents novel methods that employ machine learning and artificial intelligence in the pursuit for 
security vulnerability mitigation. 

2.5.3 Risk Assessment Components and Interfaces 

According to the supervisory guidance, a model could constitute any quantitative method, 
methodology or rule-set. These approaches apply statistical, economic, financial, or mathematical 
theories, techniques or assumptions that function to transform input data into quantitative estimates. 
This construct has three components according to [68]: 

• Inputs: These constitute either data (which could be ‘hard’ or an expert opinion based), 
hypotheses, assumptions or other model output. 

• Processing apparatus: This is a method, technique, system or algorithm for transforming 
model inputs into model outputs. This may be a statistical, mathematical or judgemental. 
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• Reporting component: This is the system for converting model outputs into a form that is 
useful for making business decisions.  

From the standpoint of prudent Risk Management, the main quantitative Risk Assessment (RA) life 
cycle components can be described in three phases below [68]: 

• The identification of model risk sources and classification. 

• The quantification of the model risk inherent to each source. 

• The mitigation of model risk identified and quantified by applying the appropriate measures, 
which will depend on the nature of the source. 
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Chapter 3 Analysis of Reference Scenarios’ 

Requirements wrt. QR TPM Interfaces 

3.1 FutureTPM Functional Requirements 

In this subsection, we provide the analysis of the FutureTPM functional requirements of the 
Reference Scenarios. An initial mapping between the three scenarios and the technical requirements 
is listed in Deliverable D1.1 [1], which will be used as a reference point and input to further analyse 
the functional requirements per use case. For this further analysis we will include only the MVP 
functional requirements that covered from the scenario requirements. More specifically, only the 
basic blocks category of the mandatory requirements are the functional ones. The rest of the 
categories, such as performance and cost-effectiveness, implementation and deployment, are non-
functional requirements and we will not be addressed in this subsection. We will further analyse non-
functional requirements in the context of WP6. Table 9 below summarises the number of functional 
requirements that will be demonstrated per scenario. 

 

Table 9: Number of functional requirements per use case. 

No. Functional 
Requirements 

Reference Scenario 1 

Secure Mobile Wallet 
and Payments (INDEV) 

Reference Scenario 2 

Personal Activity and 
Health Kit Tracking (S5) 

Reference Scenario 3 

Device Management 
(HWDU) 

Mandatory 2 2 3 

Desirable 0 0 0 

Total 2 2 3 

 

In Table 10, we give a more detailed breakdown of the functional requirements per Reference 
Scenario. The Future QR TPM functional requirements are depicted in black colour, whereas the 
way each requirement is envisioned to be leveraged in the scenarios are depicted in blue colour. 
The functional requirement IDs can be found in Deliverable D1.1 [1], Section 5.1. 

 

Table 10: Breakdown of QR TPM Functional Requirements per Reference Scenario. 

Functional 
Requirement ID 

Functional Requirement description / 
Intended usage in the Reference Scenario 

Reference Scenario 1: Secure Mobile Wallet and Payments (INDEV) 

TR.1.1.1 It should provide non-volatile random-access memory (NVRAM) storage 

NVRAM will be used for OAuth Bearer & FreePOS authentication token 
storage  

TR.1.1.4 It should support enhanced authorization (EA) 

EA will be used for both user and server authorization 

Reference Scenario 2: Personal Activity and Health Kit Tracking (S5) 
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Functional 
Requirement ID 

Functional Requirement description / 
Intended usage in the Reference Scenario 

TR.1.1.2 It should provide a small set of platform configuration registers (PCR) 

PCR can be used to reassure that S5Tracker Analytics Engine is trusted 

TR.1.1.4 It should support enhanced authorization (EA) 

EA will be used for both Data Analyst and User authorization 

Reference Scenario 3: Device Management (HWDU) 

TR.1.1.1 It should provide non-volatile random-access memory (NVRAM) storage 

NVRAM will be used for key storage to establish a secure channel 

TR.1.1.2 It should provide a small set of platform configuration registers (PCR) 

PCRs will be used to accumulate measurements and determine if the 
software on controlled devices are enforcing the management commands 

TR.1.1.4 It should support enhanced authorization (EA) 

EA will be used for network devices 

3.2 FutureTPM Security Requirements 

In this subsection, we provide the analysis of the FutureTPM security requirements of the Reference 
Scenarios. An initial mapping between the three scenarios and the security requirements is also 
listed in Deliverable D1.1 [1], which will be used as a reference and input to further analyse the 
security requirements per scenario. For this further analysis we will include only the MVP functional 
requirements that covered from the use case requirements (both mandatory and desirable). Table 
11 below summarises the number of security requirements that will demonstrated per use case.   

 

Table 11: Number of security requirements per use case. 

No. Security 
Requirements 

Reference Scenario 1 

Secure Mobile Wallet 
and Payments (INDEV) 

Reference Scenario 2 

Personal Activity and 
Health Kit Tracking (S5) 

Reference Scenario 3 

Device Management 
(HWDU) 

Mandatory 7 12 13 

Desirable 2 2 4 

Total 9 14 17 

 

In Table 12 below, we are giving a more detailed breakdown of the security requirements per 
Reference Scenario. Similarly, as in the previous section, the QR TPM security requirements are 
depicted in black colour, whereas the way it will be utilized in the scenarios are depicted in blue 
colour. The security requirement IDs can be found in Deliverable D1.1 [1], Section 5.2. 
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Table 12: Breakdown of QR TPM Security Requirements per Reference Scenario. 

Security 
Requirement ID 

Functional Requirement description / 
Intended usage in the Reference Scenario 

Reference Scenario 1: Secure Mobile Wallet and Payments (INDEV) 

SR.1.1.2 Key generation and storage functionalities 

RNG will be used to generate encryption key and NVRAM will be used for 
token storage 

SR.1.1.3 Hash functions 

HMAC will be used for database integrity 

SR.1.1.4 MAC 

HMAC will be used for database integrity 

SR.1.1.5 Symmetric encryption 

SE will be used for database confidentiality 

SR.1.1.6 Digital signatures 

DS will be used for database integrity 

SR.1.2.1 Support for possible QR-crypto candidates for each category (symmetric, 
asymmetric and DAA) 

SR.1.2.2 QR Support for signing, key exchange, attestation 

SR.2.2.1 Support for a broader range of access policies 

EA will be used to support such policies 

SR.2.2.6 Secure key backup and recovery on TPM damage 

Reference Scenario 2: Personal Activity and Health Kit Tracking (S5) 

SR.1.1.1 Pseudorandom number generator 

RNG will be used to generate encryption key 

SR.1.1.2 Key generation and storage functionalities 

RNG will be used to generate encryption key 

SR.1.1.3 Hash functions 

HMAC will be used for database integrity 

SR.1.1.4 MAC 

HMAC will be used for database integrity 

SR.1.1.5 Symmetric encryption 

Analytics Engine and users raw data are encrypted in the S5Tracker 
Analytics Engine 
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Security 
Requirement ID 

Functional Requirement description / 
Intended usage in the Reference Scenario 

SR.1.1.6 Digital signatures 

DS will be used for database integrity 

SR.1.1.7 Public key encryption and key exchange 

Public key cryptography will be used for key exchange 

SR.1.1.8 Direct Anonymous Attestation (DAA) (for SW QR TPM) 

DAA will be used between S5PersonalTracker and the S5Tracker Analytics 
Engine 

SR.1.2.1 Support for possible QR-crypto candidates for each category (symmetric, 
asymmetric and DAA) 

SR.1.2.2 QR Support for signing, key exchange, attestation 

SR.1.3.1 Support software measurement (PCR extend) and measurement reporting 
(Quote), using QR algorithms 

SR.1.3.2 Support remote attestation functionalities 

DAA will be used between S5PersonalTracker and the S5Tracker Analytics 
Engine 

SR.2.2.3 Use of TPM to support cryptographic operations in blockchains and other 
services such as verifiable data access 

SR.2.2.5 Secure logging of access to cryptographic operations in a blockchain (ability 
to provide accountable decryption and similar constructs) 

Reference Scenario 3: Device Management (HWDU) 

SR.1.1.1 Pseudorandom number generator 

RNG will be used to generate encryption key 

SR.1.1.2 Key generation and storage functionalities 

RNG will be used to generate encryption key 

SR.1.1.3 Hash functions 

HMAC will be used for database integrity 

SR.1.1.4 MAC 

HMAC will be used for database integrity 

SR.1.1.5 Symmetric encryption 

SE will be used to establish trusted channels 

SR.1.1.6 Digital signatures 

Network devices will be checked against TPM signature validity 
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Security 
Requirement ID 

Functional Requirement description / 
Intended usage in the Reference Scenario 

SR.1.1.7 Public key encryption and key exchange 

Public key cryptography will be used for key exchange 

SR.1.2.1 Support for possible QR-crypto candidates for each category (symmetric, 
asymmetric and DAA) 

SR.1.2.2 QR Support for signing, key exchange, attestation 

SR.1.2.4 Provide a crypto library with TPM backed keys implementing TLS with QR 
algorithms 

SR.1.3.1 Support software measurement (PCR extend) and measurement reporting 
(Quote), using QR algorithms 

SR.1.3.2 Support remote attestation functionalities 

Remote attestation will support between NMS and a network device 

SR.1.3.3 Support sealing and binding operations 

Sealing and binding will be used on routing table 

SR.2.1.1 The future TPM implements a PQ-DAA schema 

SR.2.1.5 Add support for QR algorithms and for TPM as key storage back-end to an 
IPSEC (IKE) implementation 

SR.2.2.1 Support for a broader range of access policies 

Policies will allow the key usage depending on the integrity of the software 

SR.2.2.6 Secure key backup and recovery on TPM damage 

3.3 QR TPM Interfaces 

Within the FutureTPM project, an important effort will be directed towards making the API for the QR 
TPM as similar and compatible as possible to the TPM 2.0 API, thus, achieving backwards 
compatibility. Therefore, the FutureTPM QR TPM software stack will be largely based on the present-
day TSS introduced in Section 2.1.1.1.  

As already pointed out in Deliverable D1.1 [1], with the primary goal of adding quantum resistance 
to existing TPM functionalities, ideally, the QR TPM would be as a drop-in replacement for present-
day TPMs. In some cases, this ‘plug-and-play’ approach will be achievable, although there will 
inevitably be many cases where this is not possible. Interfaces between the components and 
external interfaces will be identified and specified. The architecture will include the essential 
components (various cryptographic engines, shielded memory, counters, etc.). Extensions will be 
needed to support the additional requirements of QR crypto; for example, hash-based signatures 
require machinery to ensure that signing keys are used only on one (perhaps composite) message, 
and machinery to manage key renewal. To support later activities, we will also outline how the 
reference architecture will be adapted to the three use cases.  

The inclusion and support of the new QR-related features and commands can potentially trigger 
changes in the FAPI, ESAPI, SAPI and TCTI layers of the TSS. This will follow a bottom-up 
approach. As commented in Section 2.1.1.1, in order to satisfy the requirements identified in 
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Deliverable D1.1 [1], it is expected that most of the updates will be instantiated and triggered at the 
SAPI layer, which will also include the TCTI. These changes will be taken into consideration to be 
propagated and reflected to the upper layers (reaching the FAPI layer, which offers a more user-
friendly version of the SAPI commands), but only where it is strictly necessary to do so. There are 
two main reasons to justify this approach:  

• First and foremost, it is within the objectives of FutureTPM to achieve a drop-in functionality 
with the newly developed QR TPM. That is, it should be possible a seamless replacement of 
a TPM 2.0 device by a FutureTPM QR TPM device, so that any present-day system (featuring 
a TPM 2.0) continues to work normally after that replacement. Consequently, this requires a 
minimum propagation of changes to the upper TSS layers, which, of course, will be 
investigated when they are required by the QR nature of the algorithms. 

• The second reason is that it can be the case that not all Reference Scenarios will use the 
upper layers such as FAPI or ESAPI, and will satisfy their requirements by using the SAPI 
layer only.  

This will be investigated and documented within WP5 and WP6, in order to ensure that all the new 
features are reflected and addressed appropriately throughout the different API layers, where 
necessary. 

An initial study of the FutureTPM interfaces based on the functional and security requirements is 
provided below. The aforementioned functional requirements (Section 3.1 and Table 13) are the 
already existing in TPM 2.0, meaning the interfaces are the same. However, the aforementioned 
security requirements (Section 3.2 and Table 14) need some additions and adjustments. As we can 
see there is an overlapbetween some of the requirements. For instance, there is an overlap between 
SR.1.1.7 Public key encryption and key exchange and SR.1.2.1 Support for possible QR-crypto 
candidates for each category (symmetric, asymmetric and DAA).  

We have to note here that the list of TPM commands put forth in Table 13 andTable 14 is the output 
of an initial investigation of commands that need to be taken into consideration to satisfy the 
scenarios’ requirements. By no means is it an indicative list of the entire set of commands that is 
going to be implemented, which, again, will be detailed in the context of WP5 and WP6. 

 

 

Table 13: Functional interfaces per use case requirements. 

Reference Scenarios Interface API Commands 

[TR.1.1.1] It should provide non-volatile random-access memory (NVRAM) storage 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 3 (HWDU) 

SAPI 
(also reflected in 
FAPI) 

TPM2_NV_DefineSpace 
TPM2_NV_UndefineSpace 
TPM2_NV_UndefineSpaceSpecial 
TPM2_NV_ReadPublic 
TPM2_NV_Write 
TPM2_NV_Increment 
TPM2_NV_Extend 
TPM2_NV_SetBits 
TPM2_NV_WriteLock 
TPM2_NV_GlobalWriteLock 
TPM2_NV_ChangeAuth 
TPM2_NV_Certify 

[TR.1.1.2] It should provide a small set of platform configuration registers (PCR) 

Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

SAPI TPM2_PCR_Extend 
TPM2_PCR_Event 
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Reference Scenarios Interface API Commands 

(also reflected in 
FAPI) 

TPM2_PCR_Read 
TPM2_PCR_Allocate 
TPM2_PCR_SetAuthPolicy 
TPM2_PCR_SetAuthValue 
TPM2_PCR_Reset 
TPM2_PCR_Start 
TPM2_PCR_Data 
TPM2_PCR_End 

[TR.1.1.4] It should support enhanced authorization (EA) 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 3 (HWDU) 

SAPI 
(also reflected in 
FAPI) 

TPM2_PolicySigned 
TPM2_PolicySecret 
TPM2_PolicyTicket 
TPM2_PolicyOR 
TPM2_PolicyPCR 
TPM2_PolicyLocality 
TPM2_PolicyNV 
TPM2_PolicyCounterTimer 
TPM2_PolicyCommandCode 
TPM2_PolicyPhysicalPresence 
TPM2_PolicyCpHash 
TPM2_PolicyDuplicationSelect 
TPM2_PolicyAuthorize 
TPM2_PolicyAuthValue 
TPM2_PolicyPassword 
TPM2_PolicyGetDigest 
TPM2_PolicyNvWritten 
TPM2_PolicyTemplate 
TPM2_PolicyAuthorizeNV 

Table 14: Security interfaces per use case requirement. 

Ref. Scenarios Interface API Commands Possible Changes 

[SR.1.1.1] Pseudorandom number generator 

Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

SAPI 
(also reflected 
in FAPI) 

TPM2_GetRandom 
TPM2_StirRandom 

 

[SR.1.1.2] Key generation and storage functionalities 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

SAPI 
(also reflected 
in FAPI) 

TPM2_ECDH_KeyGen ECDH BROKEN 
EC BROKEN 

[SR.1.1.3] Hash functions 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

ESAPI TPM2_HashSequenceStart 
TPM2_SequenceUpdate 
TPM2_SequenceComplete 
TPM2_EventSequenceComplete 

 

[SR.1.1.4] MAC 
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Ref. Scenarios Interface API Commands Possible Changes 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

ESAPI TPM2_HMAC_Start 
TPM2_HMAC 

 

[SR.1.1.5] Symmetric encryption 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

SAPI 
(also reflected 
in FAPI) 

TPM2_EncryptDecrypt 
TPM2_EncryptDecrypt2 
TPM2_Hash 
TPM2_HMAC 

 

[SR.1.1.6] Digital signatures 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

SAPI 
(also reflected 
in FAPI) 

TPM2_VerifySignature 
TPM2_Sign 
TPM2_Commit 

RSA signature 
BROKEN 
 
EC signature 
BROKEN 

[SR.1.1.7] Public key encryption and key exchange 

Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

ESAPI TPM2_RSA_Encrypt 
TPM2_RSA_Decrypt 
TPM2_ECDH_ZGen  
TPM2_ECC_Parameters  
TPM2_EC_Ephemeral  
TPM2_ZGen_2Phase 

RSA BROKEN 
EC BROKEN 
 
ECDH BROKEN 
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Ref. Scenarios Interface API Commands Possible Changes 

[SR.1.1.8] Direct Anonymous Attestation (DAA) [for SW TPM] 

Ref. Scen. 2 (S5) ESAPI TPM2_Certify 
TPM2_CertifyCreation 
TPM2_Quote 
TPM2_GetSessionAuditDigest 
TPM2_GetCommandAuditDigest 
TPM2_GetTime 

EC-DAA BROKEN 

[SR.1.2.1] Support for possible QR-crypto candidates for each category (symmetric, 
asymmetric and DAA) 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

NEW Overlapping with existing 
commands that need 
modification 

TO ADD  
based on algorithms 
selected from WP2 

[SR.1.2.2] QR Support for signing, key exchange, attestation 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

NEW Overlapping with existing 
commands that need 
modification 

TO ADD 
based on algorithms 
selected from WP2 

[SR.1.2.4] Provide a crypto library with TPM backed keys implementing TLS with QR 
algorithms 

Ref. Scen. 3 (HWDU) NEW - TO ADD 
based on algorithms 
selected from WP2 

[SR.1.3.1] Support software measurement (PCR extend) and measurement reporting 
(Quote), using QR algorithms 

Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

NEW Overlapping with existing 
commands that need 
modification 

TO ADD 
based on algorithms 
selected from WP2 

[SR.1.3.2] Support remote attestation functionalities 

Ref. Scen. 2 (S5) 
Ref. Scen. 3 (HWDU) 

ESAPI TPM2_Certify 
TPM2_CertifyCreation 
TPM2_Quote 
TPM2_GetSessionAuditDigest 
TPM2_GetCommandAuditDigest 
TPM2_GetTime 

EC-DAA BROKEN 
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Ref. Scenarios Interface API Commands Possible Changes 

[SR.1.3.3] Support sealing and binding operations 

Ref. Scen. 3 (HWDU) SAPI 
(also reflected 
in FAPI) 

Overlapping with existing 
commands that need 
modification 
 
TPM2_PolicyPCR 
TPM2_GetRandom 
TPM2_Create 
 
TPM2_Load 
TPM2_PolicyPCR 
TPM2_Unseal 

TO ADD 
based on algorithms 
selected from WP2 

[SR.2.1.1] The future TPM implements a PQ-DAA scheme 

Ref. Scen. 3 (HWDU) NEW - TO ADD 
based on algorithms 
selected from WP2 

[SR.2.1.5] Add support for QR algorithms and for TPM as key storage back-end to an 
IPSEC (IKE) implementation 

Ref. Scen. 3 (HWDU) NEW - TO ADD 
based on algorithms 
selected from WP2 

[SR.2.2.1] Support for a broader range of access policies 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 3 (HWDU) 

SAPI Overlapping with existing 
commands that need 
modification 

- 

[SR.2.2.3] Use of FutureTPM to support cryptographic operations in blockchains and 
other services such as verifiable data access 

Ref. Scen. 2 (S5) NEW - TO ADD 

[SR.2.2.5] Secure logging of access to cryptographic operations in a blockchain (ability to 
provide accountable decryption and similar constructs) 

Ref. Scen. 2 (S5) NEW - TO ADD 

[SR.2.2.6] Secure key backup and recovery on TPM damage 

Ref. Scen. 1 (INDEV) 
Ref. Scen. 3 (HWDU) 

SAPI 
(also reflected 
in FAPI) 

TPM2_Duplicate 
TPM2_Rewarp 
TPM2_Import 
TPM2_LoadExternal 

- 

3.4 QR TPM API Updates 

The aim for a direct drop-in was outlined in Deliverable D1.1 [1]. In addition, Deliverable D1.1 
summarised an initial study on the features that require adjustments. This study might be updated 
on WP4, WP5 and WP6. These include: 

• Increased key sizes, which may exceed the memory buffer available to the hardware QR 
TPM depending on the algorithms selected in WP2; 
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• Key renewal and stateful processes, which may require new API calls for hash-based 
signatures in comparison with the lack of stateful signatures in TPM 2.0; 

• Key management may also provide issues for a plug-and-play approach; 

• PQ keys and classical keys might not be able to co-exist in the same hierarchy; 

• The current firmware updates of TPMs may not be secure under quantum security models 
(for example, if signed with RSA), but making firmware updates QR may require changes to 
the implementation from present-day TPM. Deliverable D3.1 will provide more information on 
this topic. 

The envisioned “plug-and-play” replacement of the full list of existing TPM API calls is still a difficult 
task, assess at this stage. However, the API SHALL provide access to all features of all TPM 2.0 
and FutureTPM QR TPM commands. In order to keep the TPM quantum resistant it is necessary to 
update the default sizes to the appropriate number of bits and at the same time that do not exceed 
hardware requirements. As already pointed out all public-key encryption and digital signature 
schemes as well as the DAA algorithm are not QR, since their security relies on the difficulty of 
factoring large composite integers and computing discrete logarithms and need replacement. Hash 
functions, RNGs and symmetric encryption algorithms seems to be fine but possible with an update 
on the default key sizes. Table 15 below summarizes the impact of quantum computing on common 
cryptographic algorithms [69]. In addition, for more information regarding the new FutureTPM QR 
algorithms we will focus on WP2. 

 

Table 15: Impact of quantum computing on common cryptographic algorithms [69]. 

Cryptographic 
Algorithm 

Type Purpose Impact from large-scale 
quantum computer 

AES Symmetric key Encryption Larger key sizes needed 

SHA-2, SHA-3 - Hash functions Larger output needed 

RSA Public key Signatures, key 
establishment 

No longer secure 

ECDSA, ECDH 
(Elliptic Curve 
Cryptography) 

Public key Signatures, key 
establishment 

No longer secure 

DSA (Finite Field 
Cryptography) 

Public key Signatures, key 
establishment 

No longer secure 

 

Table 16 below lists all necessary changes from the newly added and the modifications needed for 
the QR TPM based on the impact of quantum computing on common cryptographic algorithms. We 
will focus only on the 34 extracted commands related to the security use case requirements that 
possibly need changes/update. All the 34 commands can be found on Appendix A. While Table 16 
below provide only the interfaces that might need update. For further information regarding the 
commands, the reader can refer to [6] and for replacement algorithms per crypto family to Deliverable 
D2.1 [8]. 
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Table 16: QR TPM command updates. 

Command | Description | Parameters | Response Changes Needed 

TPM2_ECDH_KeyGen 

This command uses the TPM to generate an ephemeral key pair. 

 

YES 

 

ECDH is broken need to be updated 
with another algorithm 

 

TPM2_Commit 

TPM2_Commit performs the first part of an ECC anonymous signing operation.  

 

YES 

 

ECC is broken need to be updated 
with another algorithm 
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Command | Description | Parameters | Response Changes Needed 

TPM2_RSA_Encrypt 

This command performs RSA encryption using the indicated padding scheme according to IETF 
RFC 3447 (PKCS#1) [70].  

 

YES 

 

RSA is broken need to be updated 
with another algorithm 

 

TPM2_RSA_Decrypt 

This command performs RSA decryption using the indicated padding scheme according to IETF 
RFC 3447 (PKCS#1) [70]. 

 

YES 

 

RSA is broken need to be updated 
with another algorithm 
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Command | Description | Parameters | Response Changes Needed 

TPM2_ECDH_ZGen  

This command uses the TPM to recover the Z value from a public point and a private key. 

 

YES 

 

EDCH and ECC are broken need to 
be updated with other algorithms 

 

TPM2_ECC_Parameters  

This command returns the parameters of an ECC curve identified by its TCG-assigned curveID. 

 

YES 

 

ECC is broken need to be updated 
with another algorithm 

 

TPM2_EC_Ephemeral  

TPM2_EC_Ephemeral creates an ephemeral key for use in a two-phase key exchange protocol. 

 

YES 

 

ECDH is broken need to be updated 
with another algorithm 
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Command | Description | Parameters | Response Changes Needed 

TPM2_ZGen_2Phase 

This command supports two-phase key exchange protocols. The command is used in combination 
with TPM2_EC_Ephemeral. TPM2_EC_Ephemeral generates an ephemeral key and returns the 
public point of that ephemeral key along with a numeric value that allows the TPM to regenerate 
the associated private key. 

 

YES 

 

EDCH and ECC are broken need to 
be updated with other algorithms 

 

TPM2_Certify 

The purpose of this command is to prove that an object with a specific Name is loaded in the TPM. 

 

YES 

 

ECC is broken need to be updated 
with another algorithm 
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Command | Description | Parameters | Response Changes Needed 

TPM2_CertifyCreation 

This command is used to prove the association between an object and its creation data. 

 

YES 

 

ECC is broken need to be updated 
with another algorithm 
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Chapter 4 FutureTPM  Reference Architecture 

FutureTPM is envisioned as a technical solution providing security, privacy and assurance services 
to the deployed platforms, with a special focus on the potential threats that quantum computers pose 
when they become a reality in the following few decades. As such, it will provide a framework 
supporting the design, test and validation of, not only a QR TPM, but also a set of mutually 
interconnected components that will help ensuring security properties. The goal is that the resulting 
solution offers effective means to guarantee the specific needs in terms of cybersecurity, privacy and 
trust, and remain secure not only today, but also in the long term against attacks carried out by 
adversaries possessing quantum capabilities. This chapter aims at giving more details, about the 
phases and the components, to serve as a guide for the development of the project. 

4.1 FutureTPM Conceptual Architecture 

FutureTPM is based on the technological axes described in Chapter 2 (TPM, Risk Management, and 
Security Policy Enforcement) to build a Trusted Computing framework, whose principal components 
are: 

• the QR TPM, which will be the core component, 

• the device hosting the QR TPM,  

• the Risk Assessment component, composed of real-time and offline modules, 

• the Security Policy Enforcement component. 

Privacy, security and trust will be integrated from the very beginning in the development of the 
project. In order to combine all these technological axes together and build the proposed 
architecture, we propose a methodology that splits the FutureTPM development into three 
interlocking phases ( Figure 6). Two of them are the core technical phases (Design and Risk 
Management Phases) and there is an overall Implementation Phase which is orthogonal to the 
whole duration of the project, consisting of the implementation and integration of the individual 
FutureTPM technical components. 

 

 Figure 6: High-level FutureTPM orchestration.  

 

Design Phase. Comprises the identification, design and development of cryptographic primitives 
and algorithms for use in the QR TPM, concretely, in terms of the two core TPM services: secure 
storage and attestation. This phase will focus on the principles of holistic security modelling, formal 
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verification and modular design of QR algorithms to replace current non-quantum safe cryptographic 
primitives. Moreover, the concept of crypto agility (i.e., the ability to replace cryptographic algorithms 
without the need to rewrite the entire specification) will also play an important role during this phase.  
Crypto agility highlights the need for current algorithms to be prepared for transition to new versions, 
if they prove to be insecure in the future. For some protocols, QR security can be achieved by means 
of cryptographic agility through replacing the appropriate primitives. Unfortunately, this situation 
highly depends on the protocol, and no general claim can be made in this regard. In cases where 
algorithms that are not yet QR are used, such as DAA, adequate recommendations for outlining a 
migration path to QR security should be made within the scope of this task. It is also important to 
note that the identified algorithms must be not only secure, but also efficient, adapting to the different 
performance challenges of resource-constrained devices. The current TPM 2.0 Specification allows 
that a single TPM command can be shared among multiple algorithms. Therefore, FutureTPM will 
address the problem of letting multiple cryptographic algorithms be implemented efficiently with a 
minimum number of TPM commands. This phase will be carried out in WP2 and WP3. 

Implementation Phase. Includes the implementation, integration and validation of the identified QR 
primitives (in the Design Phase) into the full range of possible TPM variants: hardware, software and 
virtual. The algorithm design and analysis must consider differences in the security threat model and 
tamper-resistant capability for each environment. Validation here refers to the demonstration of the 
security qualities of the specified QR algorithms, in the context of the specified Reference Scenarios, 
including formal verification, analysis, testing and performance evaluation. The FutureTPM includes 
the definition and implementation of all the necessary TSS functions, integrating the supported QR 
algorithms. This phase will be addressed in WP5, where the three QR TPMs will be developed, and 
used in the demonstrators of WP6. 

Risk Management Phase. Comprises the development of a model to identify threats and 
vulnerabilities, and a risk assessment methodology for a TPM-based system. To develop a holistic 
QR TPM-solution, it is crucial to take into consideration the complex threat landscape posed by the 
ecosystem of the devices hosting the QR TPM. Failing to tackle adequately this increased surface 
of attack may allow an adversary with quantum capabilities mount successful attacks and recover 
secret information. Therefore, in addition to a risk assessment methodology during design-time, it is 
also required to develop a reactive run-time risk assessment and mitigation framework (for the whole 
TPM-based solution) to ensure security of use cases in the face of emerging threats and 
vulnerabilities. WP4 will be focused on this phase. 

4.1.1 Communication between components 

The flow of inputs and outputs among the different components can be described as follows. Based 
on the asset cartography, the cyber physical ecosystem envisioned on the use cases and databases 
of existing vulnerabilities, the offline risk assessment module is going to produce a risk graph. Using 
this information, the security policy enforcement module will be in charge of transforming the risk 
graph into a set of policies that will meet the security requirements of each Reference Scenario. 
These two steps will be executed during the Design Phase. The device hosting the QR TPM will be 
in charge of using the appropriate set of commands to comply with these policies.  

Additionally, the client application that implements the real-time risk assessment component within 
the host device will be in charge of collecting evidence for the whole device and the TSS if a deviation 
from normal behaviour is detected. This will reflect the need to address attacks or vulnerabilities that 
were not identified during the Design Phase, e.g., zero-day vulnerabilities, but that have been 
detected during run-time. Control flow attestation coupled together with Berkeley Packet Filters will 
be leveraged to understand if the system is under attack in real-time. The output of the real-time risk 
assessment component will also populate the security policy enforcement module. Therefore, the 
framework offers an update mechanism of the policies considered during the Design Phase.  
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Figure 7: FutureTPM conceptual architecture. 

 

Recall that the specific details of the implementation of the inputs and outputs for each component, 
and how they are going to be expressed will be made precise in the contexts of WP6. More 
specifically, in Deliverable D6.1 - Technical Integration Points and Testing Plan, where a detailed 
guideline will be provided, relating of how the different implementation components are going to be 
integrated and communicate with each other.  

Table 17 summarizes the communication flow, the types of inputs and outputs expected, and where 
the concrete instantiations of the messages will be defined. 
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  Table 17: Inputs and outputs between FutureTPM components. 

Component  Expected type of inputs / outputs From / to  Defined in 

Offline Risk 
Assessment  

In
p

u
ts

 Reference Scenario asset cartography. Security analyst WP1, WP4 

Set of known vulnerabilities, e.g., US 
NIST CVE/CPE database. 

Open 
vulnerability 
database 

WP4 
O

u
tp

u
ts

 Risk graph Security Policy 
Enforcement 

WP3, WP4 

Risk assessment report Security Policy 
Enforcement 

WP4 

Run-time 
Assessment 
(Attestation 
Toolkit) In

p
u

ts
 Trust evidence collection from program 

execution flow  
Host device, 
TSS 

WP4, WP5 

Security Policies  Security Policy 
Enforcement 

WP3, WP4 

O
u

tp
u

ts
 

Update on risk graph Security Policy 
Enforcement 

WP4 

Update on risk assessment report Security Policy 
Enforcement 

WP4 

TPM Commands that satisfy the 
security policies 

TSS WP5 

Security Policy 
Enforcement 

In
p

u
ts

 

Risk graph Offline Risk 
Assessment 

WP4 

Risk assessment report Offline Risk 
Assessment 

WP4 

Update on risk graph Real-time Risk 
Assessment 

WP4 

Update on risk assessment report Real-time Risk 
Assessment 

WP4 

O
u

t.
 

Set of security policies Real-time Risk 
Assessment 

WP3, WP4 

TSS 

In
. TPM commands Real-time Risk 

Assessment 
WP5 

QR TPM  

In
. Marshalled TPM commands 

 
TSS WP2, WP5 

Of course, we have to highlight that there will be a holistic, formal modelling of both the TSS and the 
QR TPM in order to identify trust assumptions, adversarial models and to understand in what cases 
the security properties identified hold. This will be carried in the context of WP3. This formal 
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modelling will also provide feedback to WP4 to define the first version of the security policies and 
adversarial models during design-time.  

4.2 QR TPM Architecture 

The QR TPM architecture proposed for FutureTPM will essentially be based on the current TPM 2.0 
Specification. In the following sections we describe the changes required in the architecture, which 
are essentially motivated by the adoption of the QR primitives.  

4.2.1 QR TPM Components and Interfaces 

While the elements identified in Section 2.1.1 as belonging to the TPM 2.0 architecture need to be 
updated to achieve QR security, the three variants of QR TPM to be implemented in FutureTPM will 
be based on the structure identified therein. This includes all the necessary updates to the TSS for 
the hardware, software and virtual QR TPM. 

A hardware QR TPM may similarly be comprised of a security-aware general-purpose processor, a 
highly reliable NV memory, hardware accelerators for cryptographic operations, hardware true 
random number generators, and sets of PCRs. Nevertheless, the hardware accelerators will differ 
from those developed for the TPM 2.0 Specification, as cryptographic operations featured on that 
standard, based on RSA, EC, SHA-2, and others, are considered to be broken or offer reduced 
security in the presence of a quantum computer. Changes to the cryptographic operations may also 
be reflected on the size of the NV memory (which may need to store keys of larger size or contain 
state for hash-based signatures [71]) and on the size of PCRs. Standards for communication 
between the QR TPM modules and between the QR TPM and a main processor may be achieved 
via the protocols identified in Section 2.1.1. If the messages to be transmitted through these protocols 
are made larger as a result of changing cryptographic primitives, a larger communication overhead 
might be incurred on with the QR TPM. 

In the context of the FutureTPM project, a Field-Programmable Gate Array (FPGA)-based 
coprocessor demonstrator will be targeted for the hardware QR TPM Reference Scenario (Secure 
Mobile Wallet and Payments). That is, the hardware QR TPM will actually be a software instance of 
a QR TPM running bare-metal on an FPGA. The details of this implementation will be specified within 
the scope of WP5. 

Also, as already identified in Section 3.3 and Section 3.4, the SAPI offers functions that represent 
TPM commands [18], and many of the necessary changes to satisfy the requirements of FutureTPM, 
essentially motivated to achieve QR security in the Reference Scenarios, will be instantiated at this 
layer. Following a bottom-up approach, an investigation will be conducted so that these changes will 
be propagated and reflected appropriately in the remaining (upper) API layers. This may include, 
e.g., deprecating calls pertaining to RSA, EC, and any other non-QR operations, and giving access 
to the new QR primitives. Again, the QR TPM will be designed with a “plug-and-play” approach in 
mind, trying to minimize the propagation of changes to the upper layers (only where identified as 
necessary), so that it can smoothly replace its TPM 2.0 counterpart.   

4.2.2 Commands and Data Communication Architecture 

On a black-box view, QR  cryptography (e.g. lattice-based cryptography) can be used as a substitute 
for RSA or ECC-based cryptography (the latter is being described in the Annex C of the TPM 2.0 
Specificatcion – Part 1: Architecture [3]). In order extend the TPM 2.0 Specification with QR 
algorithms, it is necessary to introduce new data structures (e.g. for keys) and new TPM command 
codes. Subsequently, we will exemplify these steps for the QR key-encapsulation mechanism 
NewHope and the QR signature scheme qTesla. 

4.2.2.1 NewHope and qTesla Data Structures 

For integration of the selected QR schemes, we first define TPM 2.0-compatible C data structures 
for NewHope keys. NewHope and qTesla keys are treated as two separate key structures, where 
we give the respective public key structures below: 
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Code Listing 3: Proposed NewHope public key data structure. 

typedef union { 
  struct { 
    UINT16 size; 
    BYTE   buffer[MAX_PUBLIC_KEY_NEWHOPE_BYTES]; 
  } t; 
  TPM2B b; 

} TPM2B_PUBLIC_KEY_NEWHOPE; 

 

Code Listing 4: Proposed qTesla public key data structure. 

typedef union { 
  struct { 
    UINT16 size; 
    BYTE   buffer[MAX_PUBLIC_KEY_QTESLA_BYTES]; 
  } t; 
  TPM2B b; 

} TPM2B_PUBLIC_KEY_QTESLA; 

4.2.2.2 NewHope and qTesla Key Generation 

For the integration of NewHope and qTesla key generation, the commands TPM2_Create and 
TPM2_CreatePrimary need to be extended. In doing so, the central function CryptCreateObject must 
be modified to dispatch to the respective key generation algorithms.  

4.2.2.3 qTesla Sign and Verify Commands 

The qTesla signature creation and verification will be triggered by the TPM2_Sign and 
TPM2_VerifySignature commands. The code must then dispatch to the corresponding qTesla 
function depending on the key type. 

The TPM uses signature generation also for other commands (e.g. TPM2_Certify, TPM2_Quote). 
To integrate qTesla with these other commands the qTesla implementation must be called by the 
central function CryptSign. The same holds for signature verification, which is also used by other 
commands (e.g. PM2_PolicySigned) via the central function CryptValidateSignature):  

4.2.2.4 NewHope Key En- and Decapsulation Commands 

In the following, we show how to add TPM commands for NewHope CCA encryption and decryption. 
The NewHope key encapsulation and decapsulation will be realized by two new TPM commands 
and their corresponding functions. 

• The command code TPM_CC_NEWHOPE_Enc (0x00000199) dispatches to the 
TPM2_NEWHOPE_Enc function with the following in/out parameters: 

o In: TPMI_DH_OBJECT key handle for encryption public key 
o In: TPM2B_CIPHER_NEWHOPE for the cipher object 
o Out: TPM2B_SHAREDSECRET_NEWHOPE for the shared secret 

• The command code TPM_CC_NEWHOPE_Dec (0x00000198) dispatches to the 
TPM2_NEWHOPE_Dec function with the following in/out parameters: 

o In: TPMI_DH_OBJECT key handle for decryption private key 
o Out: TPM2B_CIPHER_NEWHOPE for the cipher object 
o Out: TPM2B_SHAREDSECRET_NEWHOPE for the shared secret 
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4.2.2.4.1 Integration of PQ Algorithms 

The TPM uses encryption also for other commands (e.g. TPM2_Duplicate or TPM2_Rewrap), which 
must be integrated with the qTesla implementation (via the central function CryptSecretEncrypt).  

The same holds for decryption where the qTesla implementation must be integrated for use with by 
commands (e.g. TPM2_Rewrap or TPM2_Import) via the central function CryptSecretDecrypt.  

4.2.2.4.2 Implementation Issues 

The TPM 2.0 supports the NIST SP800-56A C(2e, 2s) key agreement scheme for ECC keys. This 
is basically a 2-pass scheme with mutual authentication and forward secrecy. In that scheme, two 
ECDH exchanges will be performed: 

1. ss1= static-static ECDH for mutual authentication 
2. ss2= ephemeral-ephemeral ECDH for replay protection and forward secrecy  

The shared secret is then a hash value of the concatenation of ss1 and ss2. 

The CCA NewHope variant cannot perform a static-static key agreement with mutual authentication: 
It can only perform an ephemeral-static agreement with one-sided authentication, whereas the CPA 
variant of NewHope can provide an ephemeral-ephemeral key agreement. So, one could implement 
a NewHope protocol with mutual authentication and forward secrecy by the following 3-pass 
protocol: 

1. ss1 = Static-ephemeral NewHope CCA  
2. ss2 = Ephemeral-static NewHope CCA 
3. ss3 = Ephemeral-ephemeral NewHope CPA  

The shared secret is then a hash value of the concatenation of ss1, ss2 and ss3. 

One could therefore consider to additionally include NewHope CPA encapsulation and 
decapsulation command. Nevertheless, an integration thereof is up for discussion and needs further 
evaluation. More details will be given in the respective deliverables in WP5. 

4.2.3 Entities  

In general, FutureTPM does not have special requirements for entities for the QR TPM. We are going 
to focus on the requirements specified in Deliverable D1.1 [1] and identify all the entities involved. 
We recall that the technical and security requirement IDs are specified in Deliverable D1.1 [1], 
Sections 5.1 and 5.2. 

• TR.1.1.1: The QR TPM requires NV random access memory, so the persistent storage 

hierarchy is utilized here alongside with the NV indices. 

• TR.1.1.2: There should be enough number of PCR entities to achieve the goals of FutureTPM 

Reference Scenarios’ requirements. 

• TR.1.1.3: No entities were identified in this requirement. 

• TR.1.1.4: The QR TPM should support enhanced authorization. There is a related persistent 

entity, the password authorization session that is a part of the enhanced authorization 

specification. Because of this, the QR TPM will be designed designed to have greater levels 

of security, so that the authorization process should use more than just a password for 

authorization. To achieve this, the enhanced authorization can be implemented with 

message authentication codes and signatures as defined in the TPM 2.0 Specification [3]. In 

order for this method to be QR, it should be enriched with suitable algorithms identified in 

WP2. 

• TR.1.2.1-2: No entities were identified in these requirements. 

• TR.1.3.1-5: No entities were identified in these requirements. 
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• TR1.3.6: The QR TPM should have some backwards compatibility. In order to achieve that, 

it should support a variety of algorithms and this must reflect on the entities it implements. 

More specifically, the PCRs are grouped in banks according to the algorithm they use for 

hashing, as evident, there must be enough PCR banks in order to support the wanted 

backwards compatibility. 

• TR.1.4.1: At least one major OS should be supported, like Linux. A Linux environment can 

be configured to work on most devices but it is mostly used in a PC. According to the PC 

Client Platform Specification, there are some numbers that the TPM should achieve, namely 

it should have: 

o The ability to hold 3 transient objects in TPM RAM. 

o The ability to hold 7 persistent objects in TPM NV memory. 
o The ability to hold 3 authorization sessions in TPM RAM. 
o It can manage 64 authorization sessions concurrently. 
o It should have at least 24 PCRs. 
o It should have at least 6962 bytes of NV memory. 

• TR.2.1.1-2: These are two requirements which specify that it is desirable to have 

performance close to non-QR TPMs. As for all performance requirements, there should be 

enough RAM and NV memory for the algorithms defined in WP2 to have acceptable run 

times. 

• TR.2.2.1-4: No entities were identified in these requirements. 

• TR.2.2.5: In order to enhance a virtual TPM to provide better security guarantees closer to 

that of a physical TPM, we need better measurements. PCRs are used to measure the state 

of software and help the TPM to attest to its validity. A virtual QR TPM could use more PCRs 

in order to have a more fine-grained measuring capability. 

• TR.2.2.6: The ability to run arbitrary code within the QR TPM requires that enough memory 

(RAM and NV memory) is present to support this functionality. 

• TR.2.3.1-4: No entities were identified in these requirements. 

• SR.1.1.1-8: No entities were identified in these requirements. 

• SR.1.2.1-4: In order to support the new QR cryptographic primitives, we need adequate RAM 

and NV memory. 

• SR.1.3.1: There should be support for measuring and reporting that uses QR algorithms. 

This directly impacts PCRs, as we should use QR hash functions in order to store the 

software state (measuring) and also use QR signing primitives to sign this measurement and 

report them to external auditors. 

• SR.1.3.2-3: No entities were identified in these requirements. 

• SR.1.4.1-2: No entities were identified in these requirements. 

• SR.1.4.3: Credentials should be safely stored and protected from eavesdropping. The 

storage hierarchy should have a branch just for credentials and encrypt each one of them 

with a separate key in order to achieve the required level of security and protect this sensitive 

data. 

• SR.2.1.1-7: These requirements build upon SR.1.2.1-4 and extend the QR requirements. In 

order to achieve this higher level of quantum resistance, the QR TPM is going to need the 

appropriate amount of internal storage and RAM. 

• SR.2.2.1-6: No entities were identified in these requirements. 

4.2.4 Hierarchies 

As in the previous section, there are no specific needs for the QR TPM beyond what TPM 2.0 offers, 
in terms of control domain hierarchies. 
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Table 18 summarizes the usage of the different hierarchies in the scope of the three Reference 
Scenarios, along with a tentative list of relevant commands used by the different agents within their 
set of user stories. We exclude from the list some obvious common commands such as 
TPM2_Startup/TPM2_Shutdown. For a complete list and description of the commands, we refer the 
reader to the TPM 2.0 Library Specification - Part 3: Commands [6]. See Deliverable D1.1 [1], 
Chapter 4 for User Stories IDs.  

We have to note that in the current stage of the project, discussions on the families of QR primitives 
that are going to be implemented, in the various TPM variants, is still ongoing in the context of WP2. 
There is still no final decision on method signatures for such primitives, or what commands need to 
be updated. Hence, the content from Table 18 mainly reflects the current TPM 2.0 commands 
pertaining to the usage in the different hierarchies. The inclusion of non-QR commands such as 
TPM2_RSA_Encrypt in the table reflects the potential need of a hybrid approach for using a 
combination of classical and QR algorithms. This comes in line with one of the main goals of the 
FutureTPM project, which envisions a smooth transition from current TPM 2.0 scenarios, using non-
QR algorithms and protocols, to their QR version. 
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Table 18: Usage of hierarchies in FutureTPM. 

Hierarchy User Stories Tentative List of Commands 

Reference Scenario 1: Secure Mobile Wallet and Payments (INDEV) 

Platform N/A N/A 

Endorsement N/A N/A 

Storage INDEV.AU.1 
INDEV.AU.2 
INDEV.AU.3 
INDEV.AU.4 
INDEV.AU.5 

TPM2_Create,TPM2_CreatePrimary, TPM2_Load, 
TPM2_LoadExternal,TPM2_ReadPublic, 
TPM2_CreateLoaded,TPM2_RSA_Encrypt, 
TPM2_RSA_Decrypt, TPM2_EncryptDecrypt, 
TPM2_EncryptDecrypt2, TPM2_HMAC, 
TPM2_VerifySignature, TPM2_Sign, 
TPM2_NV_DefineSpace,TPM2_NV_Write, 
TPM2_NV_Read,TPM2_NV_ReadPublic 

Null No specific User 
Story 

TPM2_Hash, TPM2_GetRandom 

Reference Scenario 2: Personal Activity and Health Kit Data Tracking (S5) 

Platform No specific User 
Story 

TPM2_PCR_Allocate, TP_SetAlgorithmSet, 
TPM2_PCR_SetAuthPolicy. 

Endorsement S5.IU.4 
S5.IU.6 
S5.IU.7 
S5.DA.1 
S5.DA.2 
S5.DA.4 
S5.AE.3 
S5.AE.4 
S5.AE.5 

TPM2_MakeCredential, TPM2_ActivateCredential, 
TPM2_Certify, TPM2_CertifyCreation, 
TPM2_Quote, TPM2_VerifySignature, 
TPM2_PCR_Extend, TPM2_PCR_Event, 
TPM2_PCR_Read, TPM2_PolicyPCR, 
TPM2_PolicyAuthorize, TPM2_PolicyPassword. 

Storage S5.DA.1 TPM2_Create, TPM2_CreatePrimary, 
TPM2_Load, TPM2_LoadExternal, 
TPM2_ReadPublic, TPM2_CreateLoaded, 
TPM2_RSA_Encrypt, TPM2_RSA_Decrypt, 
TPM2_EncryptDecrypt, TPM2_EncryptDecrypt2, 
TPM2_HMAC, TPM2_VerifySignature, 
TPM2_Sign, TPM2_NV_DefineSpace, 
TPM2_NV_Write, TPM2_NV_Read, 
TPM2_NV_ReadPublic. 

Null No specific User 
Story 

TPM2_Hash, TPM2_GetRandom. 
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Hierarchy User Stories Tentative List of Commands 

Reference Scenario 3: Device Management (HWDU) 

Platform No specific User 
Story 

TPM2_PCR_Allocate, TPM2_SetAlgorithmSet, 
TPM2_PCR_SetAuthPolicy. 

Endorsement HWDU.NA.1 
HWDU.NA.4 
 

TPM2_Unseal, TPM2_Certify, 
TPM2_CertifyCreation, TPM2_Quote, 
TPM2_VerifySignature, TPM2_PCR_Extend, 
TPM2_PCR_Event, TPM2_PCR_Read, 
TPM2_PolicyPCR. 

Storage HWDU.NO.1 TPM2_Create, TPM2_CreatePrimary, 
TPM2_Load, TPM2_LoadExternal, 
TPM2_ReadPublic, TPM2_CreateLoaded, 
TPM2_RSA_Encrypt, TPM2_RSA_Decrypt, 
TPM2_EncryptDecrypt, TPM2_EncryptDecrypt2, 
TPM2_HMAC, TPM2_VerifySignature, 
TPM2_Sign, TPM2_NV_DefineSpace, 
TPM2_NV_Write, TPM2_NV_Read, 
TPM2_NV_ReadPublic. 

Null No specific User 
Story 

TPM2_Hash, TPM2_GetRandom. 

 

As examples of command usages, we describe below how some of the commands are used in a 
few user stories: 

• INDEV.AU.1 (“As an Individual User I want to log in to the FreePOS Service.”): This User 
Story is clearly linked to the Storage Hierarchy. Upon completion of the OAuth 2.0 protocol 
flow, the client application receives an Access Token, which is the credential that must be 
used to act on behalf of the user, and access the protected resource in the network, 
authenticating between the client and the business logic. This token can therefore be stored 
in the NV memory of the TPM through TPM2_NV_Write. Alternatively, it can be externally 
encrypted using TPM2_EncryptDecrypt, with a key generated through TPM2_Create. The 
resulting encryption key will be created using a parent key from the Storage Hierarchy.  

• S5.AE.5 (“As the S5Tracker Analytics Engine I want to prove that as a platform I have not 
been compromised regarding my initial configuration, so that I am trusted by other entities”): 
In this user story, the S5Tracker Analytics Engine generates a PCR quote through 
TPM2_Quote, after the CRTM has executed a number of measurements using 
TPM2_PCR_Extend. This can be the case of either a Static or Dynamic RTM.  

• HWDU.NO.1 (“The Network Operator connects the router to the network”): This User Story 
requires the creation of secure communication channels, which in turn requires the usage of 
asymmetric encryption, achieved through TPM2_RSA_Encrypt, TPM2_RSA_Decrypt. 
However, within the scope of FutureTPM, a QR public key cryptosystem should be 
considered instead of the quantum-insecure RSA. 

4.2.5 PCRs 

There are four mandatory technical requirements identified in Deliverable D1.1 that are directly linked 
to the PCRs, namely,  

• TR.1.1.2: It should provide a small set of platform configuration registers (PCR) [2 

Reference Scenarios, 13 User Stories]; 
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• SR.1.3.1: Support software measurement (PCR extend) and measurement reporting 

(Quote), using QR algorithms) [2 Reference Scenarios, 13 User Stories]; 

• SR.1.3.2: Support remote attestation functionalities) [2 Reference Scenarios, 13 User 

Stories]; 

• SR.1.3.3: Support sealing and binding operations [1 Reference Scenario, 5 User Stories]. 

In general terms, the operational behaviour and commands of the PCRs, as described by the TPM 
2.0 Specification [3] do not need any major changes to satisfy the technical requirements of the three 
Reference Scenarios from Deliverable D1.1. However, taking into consideration the particular 
instance of the PCR requirements from the PC Client Platform Specification [12], there are several 
considerations that have to be taken into account for the particular instance of PCRs for the QR 
TPM. 

Algorithms.  As described in Section 2.1.5 above, PCRs are grouped into banks, and all the PCRs 
within the same bank are updated using the same hash algorithm. Therefore, new constants will be 
required to reference the PCR banks extended with the new hash functions. See Section 4.3 below. 

Number of PCRs. The PC Client Platform Specification [12] requires a minimum of 24 PCRs, as 
described in Table 6, where 16 are devoted to Static RTM measurements, and one is devoted to 
application measurements.  

• Reference Scenario 2 (Personal Activity and Health Kit Data Tracking): The PCRs are used 
to verify the integrity and establish trust between the three components, namely, 
S5PersonalTracker, S5TrackerAnalytics and S5DataAnalysis. It is plausible that this 
Reference Scenario require DRTM, and therefore, an increased number of PCRs with 
respect [12] will probably be necessary. 

• Reference Scenario 3 (Device Management): The PCRs are used to verify the integrity of 
the different network routers, and report their measures to the Network Management System. 
This scenario is likely to use both SRTM and DRTM.  

As described in Section 2.1.4 above, the manufacturer through the Platform Hierarchy can allocate 
an arbitrary number of PCRs, if sufficient memory is available for the requested allocation. This is 
possible with the restriction that it is not possible to allocate more PCR in any bank than there are 
PCR attribute definitions. However, the PCR allocation will be retained only until the next 
TPM2_Startup(TPM_SU_CLEAR) is executed. Therefore, the number of PCRs that FutureTPM 
should support at least is the minimum required to satisfy Reference Scenarios 2 and 3. The exact 
number of required PCRs will be identified in the context of WP5 and WP6. 

Attributes. The attributes (defined in Section 2.1.5.3 above) of each PCR index in each bank are 
retained across different banks. Although the TPM 2.0 Specification allows ample degree of freedom 
in the selection of the values of the PCR attributes, the QR TPM architecture should maintain similar, 
if not equal, values for them as those defined in the PC Platform Client Specification [12]. If further 
sets of PCR indexes are required, and unless there is a clear justification for a particular requirement, 
they should mimic as much as possible the values of the most similar currently defined PCR index 
from [12]. 

4.3 Cryptography Subsystem, Keys and Key Operations 

The high level description of the cryptography subsystem, keys and key operations will be similar to 
the one described in Section 2.2 for TPM 2.0. The main difference will be the particular set of 
algorithms that are going to be used (which need to achieve a certain level of quantum-resistance 
guaranties), the increase in key/output lengths, and any change required to the API to allocate non-
existent algorithms in TPM 2.0 with specific requirements. See, e.g., Section 3.4 and Section 4.2.1 
above. Table 19 summarizes the difference between the set of algorithms used in the FutureTPM 
QR TPM versus the ones used in TPM 2.0. This table is based on the list of QR candidates proposed 
in Deliverable D2.1, and the current TPM 2.0 set of algorithms.  
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Table 19: Algorithm comparison between TPM 2.0 and FutureTPM. 

Primitive type 
Defined in TPM 2.0 
and abandoned in 

FutureTPM 

Defined in TPM 2.0 
and maintained in 

FutureTPM 
New in FutureTPM 

Hash function SHA-1  SHA-256, SHA-384, 
SHA-512, SHA3-256, 
SHA3-384, SHA3-512, 
SM3 

SHAKE128, 
SHAKE256, BLAKE2, 
PHOTON 

KDF  KDF2, NIST SP800-
108, NIST SP800-108 

 

Asymmetric RSA, ECC  NewHope, Frodo, 
Kyber, BIKE 

Symmetric SM4 AES, XOR, Camellia Serpent, Twofish 

Signature HMAC (ISO/IEC 9797-
2), RSASSA (IETF 
RFC 3447), RSASSA-
PSS (IETF RFC 3447), 
RSASSA-PKCS1-v1_5 
(IETF RFC 3447), 
ECDSA, ECDAA, SM2, 
EC Schnorr 

 Dilithium, Tesla, 
pqNTRUSign, 
FALCON, SPHINCS 

The inclusion of these new algorithms require the definition of new constants to identify them. In the 
TPM 2.0 Specification, the algorithm identifier that references a given algorithm  is a 32-bit unsigned 
integer of type TPM_ALGORITHM_ID (formerly named TPM_ALG_ID in TPM 1.2). This type is 
instantiated then as interface types. We will take as an example the case of hash functions. For hash 
functions, TPM_ALGORITHM_ID is instantiated as the interface type TPMI_ALG_HASH. The 
current TCG Algorithm Registry [45] defines the following constants for hash algorithms: 

Table 20: Currently defined hash algorithm identifiers in TPM 2.0. 

Constant Value Reference 

TPM_ALG_SHA 0x0004 ISO/IEC 10118-3 

TPM_ALG_SHA1 0x000D 
ISO/IEC 10118-3 (redefinition for documentation 
consistency) 

TPM_ALG_SHA256 0x000B ISO/IEC 10118-3 

TPM_ALG_SHA384 0x000C ISO/IEC 10118-3 

TPM_ALG_SHA512 0x000D ISO/IEC 10118-3 

TPM_ALG_SM3_256 0x0012 GM/T 0004-2012 

TPM_ALG_SHA3_256 0x0027 NIST PUB FIPS 202 

TPM_ALG_SHA3_384 0x0028 NIST PUB FIPS 202 
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Constant Value Reference 

TPM_ALG_SHA3_512 0x0029 NIST PUB FIPS 202 

Therefore, it should be taken into account the set of hash functions identified in Deliverable D2.1 as 
potential candidate that are not included in the current algorithm registry. Namely, constants would 
be required for BLAKE2, Photon, and Lesamnta-LW for the recommended bit size security, for the 
implementations that will include these algorithms. 

• TPM_ALG_BLAKE2B_256 

• TPM_ALG_BLAKE2B_384 

• TPM_ALG_BLAKE2B_512 

• TPM_ALG_BLAKE2S_128 

• TPM_ALG_BLAKE2S_160 

• TPM_ALG_BLAKE2S_224 

• TPM_ALG_BLAKE2S_256 

• TPM_ALG_PHOTON_80 

• TPM_ALG_PHOTON_128 

• TPM_ALG_PHOTON_160 

• TPM_ALG_PHOTON_224 

• TPM_ALG_PHOTON_256 

• TPM_ALG_LESAMNTALW_256 

In a similar fashion, the same approach should be taken for the rest of primitives (KDFs, asymmetric, 
symmetric, and signature). 

As also aforementioned, we would like to stress that the decision on the specific algorithms to be 
implemented for each Reference Scenario is still under discussion, and it is not within the scope of 
this deliverable to make such a decision. The set of algorithms presented in this section is an initial, 
tentative selection, based on the output of Deliverable D2.1, which produced a list of potential QR 
algorithm candidates to be further investigated and implemented in the FutureTPM project. The first 
recommendation of what particular algorithms are going to be used will also come within the context 
of WP2 in Deliverable D2.2. This set of recommendations might be updated, if needed, according to 
the progress of WP2, WP5, and WP6, when it comes to the QR TPM implementation and 
demonstration of the Reference Scenarios. Deliverable D2.3 will provide the final list of QR 
algorithms, where any required change and corrective measure will be indicated, in the case where 
any problem had been identified in the initial set of suggested algorithms. In conjunction with WP2, 
a more complete description of the set of QR families to be implemented in each environment will 
also be addressed in the context of WP6. 

For instance, for the hardware QR TPM variant, there is the following agreement regarding crypto 
primitives to be supported: NewHope for asymmetric encryption, AES for symmetric encryption, 
qTesla for digital signature, NIST SP800-56A for KDF, and supported hash functions of TPM 
2.0. 

4.4 Authorization and Sessions 

The authorisations and sessions described in Section 2.3 need to be updated to achieve QR security 
in the FutureTPM QR TPM. In particular, hashing algorithms with larger outputs should be made 
available to ensure the security of the KDFs, HMACs and the extensions of policy and audit digests. 
Symmetric ciphers with larger blocks should be made available for encrypt/decrypt sessions when 
the CFB mode is used. 

Furthermore, Enhanced Authorisation (EA) has been identified as a functional requirement of the 
project use cases. This type of authorisation is achieved through the policy sessions described in 
Section 2.3. Through the aforementioned updates of the FutureTPM project with respect to the 
description of sessions in Section 2.3, this functionality can be made QR. 
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4.5 Attestation Protocols 

As aforementioned in Section 2.4, FutureTPM will build on-top of existing remote attestation 
techniques (namely, DAA, and a combination of Static and Dynamic Attestation) towards ensuring 
the internal state of a remote untrusted cyber-physical system in order to enhance its security and 
privacy posture. These methods will be used for achieving trustworthiness of the command execution 
flows which can be used in combination with Berkeley Packet Filters, discussed in Section 4.6, for 
the detection of any suspicious activities.  

The reason behind employing attestation mechanisms as a means of operational assurance is 
twofold: First of all, one of the main challenges in managing device and network security in today’s 
heterogeneous and scalable infrastructures is the lack of adequate containment and sufficient trust 
when it comes to the behaviour of a remote system that generates and processes mission-critical 
and/or sensitive data. An inherent property in FutureTPM is the codification of trust among computing 
entities that potentially are composed of heterogeneous hardware and software components, are 
geographically and physically widely separated, and are not centrally administered or controlled. By 
leveraging the artefacts of traditional security infrastructure (such as digital signatures, certificates 
and assurance statements) coupled with advanced crypto primitives (such as run-time property-
based attestation) and building upon emerging trusted computing technologies and concepts, 
FutureTPM will convey trust evaluations and guarantees for each network entity. 

This high level of trustworthiness which will not only include integrity of system hardware and 
software but also the correctness and integrity of the generated data flows will, in turn, reduce the 
overall attack vector and allow for the more effective operation of the FutureTPM security framework. 
This will allow the secure configuration, deployment and operation of distributed, scalable “Systems-
of-Systems” infrastructures. 

When it comes to the DAA schemes described in Section 2.4, they need to be updated to achieve 
QR security and privacy requirements, as has been already introduced in the context of Deliverable 
D2.1 [8]. This requires the update of all employed crypto primitives ranging from hash functions and 
asymmetric algorithms to signatures. In the context of FutureTPM, users will be in control of their 
own privacy and that of their devices. There is no dependence with the end device and/or final 
software application, thus, democratizing privacy and avoiding configuration problems or issues with 
software-level updates. Privacy enhancement will be achieved through the use of a QR-based DAA 
scheme as a building block in a large scalable deployment of cyber-physical systems. 

For user device privacy and integrity and in order to cope with the ever-increasing attack surface 
targeting the dynamic execution properties of cyber-physical systems, FutureTPM shall enable the 
provision of automated and scalable behavioural-based attestation services, reflecting the 
identified (and configured during run-time) preventive, access control, information flow and functional 
safety policies that will be enforced by the Security Policy Enforcement component (Section 4.6.2). 
To this end, the properties (of interest) to be attested by the deployed cyber-physical systems will 
vary depending on the type of functionality that each such device offers. A generic assurance 
technique needs to be applied capable of coping with all these different specifications. FutureTPM 
aims to overcome this challenge by having a general behavioural-based attestation mechanism 
developed based on the novel concept of control-flow attestation. 

Control-flow attestation is one of the most important dynamic properties at the software layer since 
it captures diverse instantiations of software exploits that hijack a program's control flow. Such 
attacks tamper with state information in the program’s data memory area, e.g., the stack and the 
heap. Software bugs allow an attacker to arbitrarily alter state information and hijack the program 
flow of applications to induce malicious operations. While traditional attacks require the attacker to 
inject malicious code [72], state-of-the-art attacks such as return-oriented programming leverage 
code that is already present in the vulnerable application thereby bypassing modern mitigation 
strategies [73], [74]. In other words, the attacker resembles malicious codes through a combination 
of already existing benign code pieces. In contrast to traditional PC platforms and mobile phones, 
software exploits against Internet of Things (IoT) devices (as the ones envisioned in some of the 
Reference Scenarios) can have severe safety consequences. Consider a modern network which 
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features a vast amount of heterogeneous hardware and software components with hundreds millions 
lines of code. A common theme of such composable infrastructures is that all of them are pushing 
the envelope with respect to how many application instances can be packed efficiently onto a certain 
physical infrastructure footprint. This co-existence of multiple micro-services, multiple applications, 
or even multiple tenants, enables a variety of Advanced Persistent Threats (APTs) to be exploited 
by adversaries. 

 

Figure 8: FutureTPM behavioural-based attestation of a device’s control flow. 

 

The general approach of control-flow attestation we envision in FutureTPM is depicted in Figure 8. 
It shows a cyber-physical component (hosting a TPM), acting as the verifier, that first receives the 
necessary security policies containing the specifics of the properties to be attested. Based on the 
interpretation of these policies, it then computes all legitimate control-flow paths of an application, 
and store its measurements in a database (step 1 and 2). To trigger the run-time attestation, as 
dictated by an already defined security policy, the verifier sends a request to the device which acts 
as the prover (step 3). The prover device executes the software that the verifier desires to attest 
(step 4) and a trusted component measures the taken control-flow paths (step 5). For instance, this 
can be achieved through a hash function. Finally, the attestation result is send back to the verifier 
for validation (step 6 and 7). In the case of a failed attestation about a system’s integrity, the 
information might not be sufficient to understand the device’s behaviour. Thus, in this case, a more 
in-depth investigation of the system’s behaviour is needed to detect any cheating attempts or if any 
type of (non-previously identified) malware is resident to the system. The goal of this functionality is 
to then feed this detailed analysis to the Risk Assessment component (Section 4.6.1) for dynamically 
defining new attestation policies against this newly identified attack vector. 

4.6 Security Enforcement 

FutureTPM will build on-top of existing models and will propose a holistic approach for Risk 
Management in TPM-based solutions. To this end, a complete assessment methodology 
complemented by a supportive tool in order to support the discrete steps of the methodology will be 
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developed. A high-level overview of the Risk Assessment framework is depicted in Figure 9. The 
core of the framework is the QR TPM platform capable of creating and updating (in real-time) the 
risk graph based on the envisioned application and the types of security properties we want to be 
achieved. These properties can be described as security policies that have to be enforced to the 
devices hosting the QR TPM in order to secure the overall platform against the identified risks, or 
any new vulnerabilities that will be identified during run-time. 

 

 

Figure 9: Risk Assessment Framework. 

 

Furthermore, FutureTPM will perform a thorough vulnerability analysis of all identified threats and 
risks that can affect the final product. More specifically, there will be a security analysis of the various 
TPM environments both from a software and hardware point of view to ensure that the 
implementation does not undermine the overall security goals of the FutureTPM platform. 
Incorporation of widely known vulnerabilities and threat repositories (e.g., US NIST CPE/CVE) will 
provide a wide set of attack scenarios against which the resilience of the overall FutureTPM 
framework will be evaluated. In conjunction with the aforementioned process, there will also be a 
run-time security analysis of the algorithms to be identified in Deliverable D2.3 in order to evaluate 
their security and privacy properties and whether they are properly configured to achieve the required 
level of assurance of FutureTPM. 

4.6.1 Risk Assessment for TPM and TSS 

The overall architecture of the Risk Assessment platform will take into account all the necessary 
components and interfaces and how they can interact with the QR TPM and more specifically with 
the TSS. In particular, we will focus on the following functionalities provided by the QR TPM and 
operated through the TSS: a) the Components and Interfaces, b) the Commands and Data 
Communication Architecture, c) the Entities, d) the Hierarchies and e) the PCRs. To achieve all the 
activities of the Risk Assessment, the Berkeley Packet Filter (BPF) will be employed during design-
time coupled together with the developed Control Flow Attestation mechanisms. BPF was designed 
in 1992 to act as a socket filter and allows working with raw link-layer packets. It consists of a virtual 
machine executing the bytecode, and of a specific language, somewhat close to assembly. It is 
possible to write programs in a subset of C and to compile them into BPF language. This language 
has been designed to provide easy manipulation of captured packets. It also results from strong 
concerns regarding safety and security: a BPF program always ends successfully, there can be no 
infinite loop. In order to attain this goal, several mechanisms have led the conception of BPF. Some 
examples include: 
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• Backward jumps are not allowed (no loops). 

• Program length is limited to 4096 instructions. 

• Instruction set has some built-in safety (no exposed stack pointer, instead load instruction 
has mem modifier). 

• Provides dynamic packet boundary checks 

Such measures enable user-defined BPF programs to be run by the in-kernel BPF machine. Running 
inside the kernel, in many situations, allows for performance gains since undesired packets can be 
dropped before even being copied to user space. In addition, BPF programs can be compiled right 
before execution (JIT, Just-In-Time compiling), hence benefiting from CPU optimizations. Thus, BPF 
is a very efficient tool to deal with packets, with performance roughly equivalent to native x86 code, 
but it has a limited set of instructions. Several extensions have been added over the years; but they 
are not to be confused with the extended version eBPF, which has been evolving since 2013. 

 

Figure 10: Tracing options [75]. 

 

eBPF extends BPF possibilities but preserves its safety measures, making it safe to run in the kernel 
of production systems. It redefines and extends the set of instructions, relying on common subset 
from several assembly languages. It can map some memory space so that it can be shared between 
user and kernel space. It also makes it possible to call certain kernel functions from programs. The 
JIT compiling is preserved. For instance, on x86 systems, the code is turned by the user space 
compiler into some “simplified x86 assembly”, which is in turn verified in the kernel, and then each 
“simplified” instruction is translated into real x86 by the JIT compiler. The process is efficient, as: 

• all registers map one-to-one, 

• most of instructions map one-to-one, 

• BPF call instruction maps to x86 call. 

These powerful features make eBPF suitable not only for packet filtering, but also for general 
networking, event tracing, kernel optimizations, and also for the Risk Assessment of the TSS. The 
goal is to use suitably tailored eBPFs to capture the execution of the command flows in the device 
(hosting the TPM) so that we can check and attest the integrity of the execution behaviour based on 
already defined policies. Figure 10 below depicts all the tracing feature supported from the eBPF. 
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4.6.2 Security Policy Enforcement Mechanism 

FutureTPM will combine the output of Risk Assessment with re-active policy enforcement; building 
upon Artificial Intelligence through the usage of the Drools Expert system, where the model instances 
will be transformed in executable rules. This expert system will propose several mitigation controls 
that map to the real properties that have to be attested with the QR TPM during run-time. These 
properties may be a subset of the configuration and execution properties that are already defined or 
can be other newly identified, high-level properties that can further enable semantic remote 
attestation, i.e., attestation of dynamic, arbitrary and system properties as well as behaviour of 
executable code in an attempt to mitigate the newly discovered run-time vulnerabilities. The 
minimization of different risks will end-up in optimal enforcement of controls.  Part of the enforcement 
is the attempt to attest new properties in the QR TPM deployment and, thus, may require the dynamic 
update of any identified security policies. 

Such a policy enforcement will also allow for Policy-Based Access Control (PBAC) which is an 
access control model based on policy-based security management, which controls the access to 
resources by defining the rules and policy. There are many tools and frameworks for PBAC. Several 
PBAC frameworks are based on the IETF Framework for Policy-based Admission Control [76], which 
consists of the following main components, which can be co-located or distributed: 

• Policy Decision Point (PDP) – The policy server responsible for handling events and 
making decisions based on events.  

• Policy Enforcement Point (PEP) – This enforces the policy based on rules received from 
the PDP.  

• Policy Repository – For storage or retrieval of policy information.  

• User interface – For specifying, administering and editing policy.  

FutureTPM shall enable the composition of large scale “System-of-System” to be controlled via 
layered and cross domain authorization decisions based upon attestation. Such decisions shall be 
made at each layer (and across layers) to determine whether subsystems/systems conform to 
policies based upon the properties to which they can attest. 

The Security Policy Enforcement platform will contain a Policy Admission Point, the logical 
component responsible for creating policies and policy sets and makes them available to the PDP. 
The policies created within the PAP are to be determined by the outputs of the Risk Management 
Phase. While policy creation will be managed by the PAP, a Policy information point (PIP) shall act 
as the source of the attribute values referred to within policies. In the context of FutureTPM, attributes 
shall be the properties attested to by a component and the verification result of the attestation. The 
PIP shall be responsible for requesting and receiving such information from the attestation services. 
The outputs of the RA framework shall aid in determining the specific attributes managed by the PIP. 
The PDP is the logical component that shall evaluate the attested to properties/attributes against 
applicable policies and makes the final authorization decision. While the successful verification of 
the attestation provides evidence that the information supplied is correct, the PDP decides whether 
the collated information supplied sufficiently demonstrates conformance to policy. Where the PDP 
determines that policy has not adhered to, it may also be necessary to feed such information back 
into the RA framework so as to initiate the process of evidence collection and runtime verification for 
performing a more in-depth vulnerability analysis of the failed-to-attest system. 

4.6.3 Risk Assessment Components and Interfaces 

The main Risk Assessment components are the Risk Modelling Toolkit and the Risk 
Quantification Engine. The following subsections describe these main components as well as the 
intercommunication between them.  

4.6.3.1 Risk Modelling Toolkit 

A security analyst will use this Risk Modelling Toolkit to model several processes that are performed 
through the synergy of the various services within a TPM environment. The Risk Modelling Toolkit 
will allow the creation of asset cartographies i.e. the formal representation of the assets and their 
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relationship. In parallel, the toolkit will make use of open databases in order to associate the modelled 
assets with existing vulnerabilities (e.g., Common Vulnerabilities & Exposure – CVE - database). 
Finally, the properties that can be potentially attested per each asset will be also provided as an 
input to the Risk Modelling Toolkit. 

4.6.3.2 Risk Quantification Engine 

After the model creation, the security analyst may trigger the Risk Quantification Engine: This engine 
will be multi-threaded (by-design) since each separate risk quantification request requires different 
set of calculations. The Drools [77] efficient expert system will be used as a cornerstone component 
for the sake of the engine implementation. This technical choice implies that several rules have to 
be created automatically regarding the calculation of vulnerabilities, generation of attack trees, 
propagation of an exploitation (cascading effect), etc. 
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Chapter 5 Implementation Aspects of Reference 

Architecture 

In this chapter, we try to elaborate on the approach that will be followed in order to realize the 
functionalities described in this document and to implement the components that constitute the 
FutureTPM framework and have been introduced in Chapter 4. 

It has to be stated that the FutureTPM framework will be realized with two major releases based on 
implementation cycles of all internal mechanisms, software components and toolkits. The whole 
cycle of activities will be iterative: The first implementation cycle is going to be completed by the end 
of M18 with the delivery of the first release of the FutureTPM components and mechanisms. This 
release will be tested in technical and functional terms and will result in the provision of the first major 
version of the overall FutureTPM framework in M21. The results of the evaluation, testing and design 
choices made in the first version of the prototype will be fed as input to the second implementation 
cycle for further refinement and improvements that will lead to the second release of all internal 
components on M27. The final FutureTPM platform will be delivered at the end of M33 with slight 
improvements derived and imposed from the envisioned demonstrators.  

 

Figure 11: Major Releases of FutureTPM Integrated Framework. 

 

This plan, as depicted in Figure 11, reflects only the major releases of the framework that are 
imposed with specific deadlines and milestones. The actual development of FutureTPM 
components’ will be a continuous process imposing the continuous integration and testing of the 
developed mechanisms and toolkits in order to assure high quality during the entire lifetime of the 
project. 

This process that will be followed by the consortium can be represented as a virtual circle that 
contains the following functional components: (i) source-code-versioning and management, (ii) 
continuous integration, (iii) quality assurance of generated code, (iv) persistent storage of generated 
builts (a.k.a. artefacts) and (v) issue/bug tracking. The decision for this workflow has been decided 
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in a provisional way, at the early stages of the project, and 
there may be changes in the implementation aspects of 
the components during the project lifecycle and the tools 
that will be employed to support each step of this process. 
An initial selection of such tools, as depicted in Figure 12, 
is as follows: (a) Git for source code versioning, (b) 
Jenkins for continuous integration, (c) Sonar for code 
quality assurance, (d) nexus for artefact-management and 
(e) GitHub for issue/bug tracking. 

In the following sections, we will briefly provide more 
information about these the selected tools and how these 
help the consortium to have a continuous pipeline for 
developing, integrating and testing of the FutureTPM 
Framework.                                                                                        

5.1 Version Control System 

A Version Control System (VCS) is a repository of files, 
often the files for the source code of computer programs, with monitored access that tracks every 
change done in the filesystem, along with related metadata like date or person that changed each 
file. Each file that is tracked can be reverted to previous versions, while the exact changes in the file 
are usually available. Version control systems are essential for any form of distributed, collaborative 
development, as they provide the ability to collaborate on the same files, the ability to track each 
change that was made with great detail, and the ability to reverse changes when necessary. 

In FutureTPM, the consortium has selected Git as the primary VCS system, due to its speed, 
distributed nature, branching capabilities, small size of the repository and the popularity of the online 
Git repository host and management platform of GitHub. A Git repository will created for the whole 
cycle of implementation and integration activities in the context of the project (WP2-WP6). Access 
to this repository will be limited to the consortium developers, but in later stages the consortium can 
decide to make the whole platform or some of the components public.  

5.2 Continuous Integration 

Continuous Integration (CI) is a software development practice where the members of a team 
frequently integrate their work – usually each contributor integrates his software code at least daily, 
leading to multiple integrations per day. Each integration cycle is verified by an automated build that 
includes testing in to detect integration errors as quickly as possible.  This approach has the great 
benefit of reduced risk in the integration and therefore is a highly suggested practice on all distributed 
teams. 

The selection of the consortium for CI is Jenkins [78], an open source tool written in Java, which runs 
in a servlet container, such as Apache Tomcat or the GlassFish application server. It supports 
Version Control tools like CVS, Subversion and Git and it can execute both Apache Ant and Apache 
Maven based projects, or even arbitrary shell scripts and Windows batch commands. 

5.3 Quality Assurance 

In a project like FutureTPM it is important to measure the quality of the developed software and the 
progresses in the development, as it is a software developed by distributed teams that create 
different components. Even though quality can be a subjective attribute, software structural quality 
characteristics will be clearly defined by the Consortium following the practices for IT Software 
Quality identified in the literature by CISQ, an independent organization founded by the Software 
Engineering Institute at Carnegie Mellon University. CISQ has defined 5 major characteristics of a 
piece of software that should be taken under consideration for the quality of a software; Reliability, 
Efficiency, Security, Maintainability, Size. These characteristics, among others, are very important 
and we will use SonarQube [79] in order to perform analysis of code quality and monitor the available 

Figure 12: Development Lifecycle. 
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metrics. SonarQube is an open source software quality platform that uses various static code 
analysis tools in order to extract software metrics, which then can be used to improve software 
quality. Basic metrics include duplicated code, coding standards compliance, unit tests coverage, 
code coverage, code complexity, identification of potential bugs by severity, percentage of 
comments. SonarQube is easily integrated Jenkins continuous integration pipeline. 

5.4 Release Planning 

The next step in the development lifecycle is the release planning and the management of the 
produced and required artefacts. An artifact repository is a collection of binary software artifacts and 
metadata stored in a defined directory structure and can be used by clients such Maven, Mercury, 
or Gradle to retrieve binaries during a build process. The introduction of an artefact repository it is 
crucial for distributed teams following the CI pipeline as it allows each new successful build to store 
the produced software components and make them available for the deployment of further 
development of the integrated framework. The release management in the FutureTPM project will 
be accomplished with the help of Nexus Repository Manager [80], but it is also tightly connected with 
the selected branching model. 

In FutureTPM, we will use Git that allows to work with branches easily and in a structured way, so 
that different branches will help us to ensure the quality of the source code created and to decrease 
the number of failures. As usual in Git there will be a master branch, and this will be parted into a 
development branch, a release branch (that will be used for the major releases) and a possibly 
existing Hotfix-branch. Furthermore, separate branches can be created per implemented feature. 
Upon the completion of each feature the feature branch is merged in the development branch. Each 
commit that is performed in the development branch goes through the CI pipeline and creates 
updated versions of the binaries that are hosted in the Nexus. Official releases will also go through 
the CI and will be also hosted in Nexus release repository. 

5.5 Issue Tracking 

The last step of the development lifecycle is the issue/bug tracking, that requires a dedicated issue 
and bug tracking system. An issue tracker should be reachable for every developing partner needs 
to be included to collect development time issues like problem reports, feature requests, and work 
assignments. In the frame of Unicorn, for issues concerning coding, features and distribution, the 
GitHub issue tracker is chosen. The reporting is typically done by creating a new issue via the front 
end of the issue/bug tracker. The newly created issue is picked by the responsible FutureTPM 
developer. 
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Chapter 6 Summary and Conclusion 

This final section will act as a synopsis of this deliverable and will summarize its findings. The scope 
of this deliverable was to provide the FutureTPM Reference Architecture. FutureTPM Reference 
Architecture aims to satisfy the functional and non-functional requirements that have been 
formulated during the requirements analysis and documented in FutureTPM D1.1 [1]. More 
specifically, Deliverable D1.1 highlighted specific functional and non-functional requirements and 
identified the FutureTPM actors that were required towards the formulation the FutureTPM 
framework. 

By defining the FutureTPM Reference Architecture, we achieved the following: a) to define the 
architectural components that cover the functional aspects of the requirements, b) to map the 
identified roles to the aforementioned components, and c) to elaborate on each component by 
providing a usage walkthrough. At this point it should be clarified that the architecture is considered 
as ‘reference’ since it can be subjected to multiple ‘instantiations’. Furthermore, specific components 
can be implemented in a completely different way. In the frame of the project’s Implementation Phase 
a specific ‘instantiation’ of the components will be performed which will be tailored to the need of the 
use-cases. Furthermore, when defining the reference architecture, it is not within the scope of this 
document to recommend the specific set of QR algorithms to be used in each Reference Scenario 
(which is being investigated in the context WP2) neither define an exhaustive list of the QR TPM API 
requirements that will dictate all the subsequent changes needed during the implementation of the 
FutureTPM QR TPM variants (which will be addressed within WP5 and WP6). 

The FutureTPM architecture will revolve around a fundamental element, namely, the QR TPM. As 
conceived by the TCG, TPMs are a fundamental piece in the context of Trusted Computing, and 
they provide a basis where secure systems can be built on. This document reviews the details of the 
current TPM 2.0 Specification that will be required to address the transition to a QR version. This 
includes aspects related to the inner components and interfaces, cryptography-related components, 
the communication subsystem, and how the different objects are structured within TPM 2.0. Other 
aspects that are reviewed to address the development of the FutureTPM framework are aspects 
related to Risk Management (both in design-time and in run-time) and Security Policy Enforcement.  

As aforementioned, this document also relates the functional requirements already identified by the 
three Reference Scenarios in Deliverable D1.1 [1] to the FutureTPM functional and security 
requirements. This includes an analysis of the QR TPM interfaces and API updates (compared to 
the TPM 2.0 Specification) that will be driven by the requirements envisioned by the scenarios and 
the need of QR primitives. There are 34 TPM commands related to the QR security of the scenarios 
that have been identified as commands (possibly) requiring API updates. 

Next, the document provides a description of the main components of the FutureTPM framework, 
describing the different mechanisms, communication interfaces and expected types of inputs and 
outputs between these components. A description of the required QR TPM updates in order to 
support the provision of various sets of QR primitives is also provided. As reflected in Chapters 3 
and 4, many of the functionalities and components currently provided in the TPM 2.0 Specification 
will remain unchanged as they can already support the transition to a QR-based version (recall that 
one of the main goals of FutureTPM is to enable a ‘smooth’ transition between non-QR and QR 
cryptography), incorporating only the necessary changes as dictated by the identified QR 
requirements: larger sets of memory for supporting bigger keys, API changes for dedicated QR 
primitives, etc. The Risk Assessment and Security Policy Enforcement modules will be based on 
Berkeley Packet Filters, and the Drools expert system, respectively. 

Finally, this document concludes with a proposal of the implementation plan and aspects for the 
overall FutureTPM framework implementation and integration. Based on this plan, FutureTPM 
framework will be realized with two major releases based on implementation cycles, each one 
leading to an improved version of the previous until we reach project’s Month 33, where the final 
release of FutureTPM will be launched. To assure the best quality throughout the project, a 
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continuous integration and continuous delivery pipeline was decided that includes a) source-code-
versioning and management, b) continuous integration, c) quality assurance of generated code, d) 
persistent storage of generated builds (a.k.a. artefacts) and e) issue/bug tracking. The tools that 
have been initially selected to build this pipeline are as follows: a) Git for source code versioning, b) 
Jenkins for continuous integration, c) Sonar for code quality assurance, d) nexus for artefact-
management and e) GitHub for issue/bug tracking. 



D1.2 - FutureTPM Reference Architecture 

FutureTPM D1.2 Public Page 82 of 105 

Chapter 7 List of Abbreviations 

Abbreviation Translation 

AIK Attestation Identity Key 

BIOS Basic Input/Output System 

CFA Control Flow Attestation 

CFB Cipher Feedback 

DAA Direct Anonymous Attestation 

DRTM Dynamic Root of Trust for Measurement 

EK Endorsement Key 

ECC Elliptic-Curve Cryptography 

EPS Endorsement Primary Seed 

ECDH Elliptic-curve Diffie-Hellman 

ESAPI Enhanced System API 

FAPI Feature API 

FPGA Field-Programmable Gate Array 

HMAC Hash-based Message Authentication Code 

IV Initialisation Vector 

I2C Inter Integrated Circuit 

KDF Key Derivation Function 

LPC Low Pin Count 

NV Non-Volatile 

OS Operating System 

OCP Open Core Protocol 

PBAC Policy-based Access Control 

PCR Platform Configuration Register 

PPS Platform Primary Seed 

PRNG Pseudo-Random Number Generator 
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QR Quantum-Resistant 

RA Risk Assessment 

RM Resource Manager 

RNG Random Number Generator 

RPC Remote Procedure Call 

RSA Rivest-Shamir-Adleman 

RTM Root of Trust for Measurement 

RTR Root of Trust for Reporting 

RTS Root of Trust for Storage 

SoC System on Chip 

SPI Serial Peripheral Interface 

SPS Storage Primary Seed 

SRK Storage Root Key 

SAPI System API 

TA Trusted Application 

TAB TPM Access Broker 

TC Trusted Component 

TCTI TPM Command Transmission Interface 

SRTM Static Root of Trust for Measurement 

TCG Trusted Computing Group 

TEE Trusted Execution Environment 

TPM Trusted Platform Module 

TSS TPM Software Stack 

UEFI Unified Extensible Firmware Interface 

XOR Exclusive OR 

 



D1.2 - FutureTPM Reference Architecture 

FutureTPM D1.2 Public Page 84 of 105 

Chapter 8 Bibliography 

 

[1]  The FutureTPM Consortium, “D1.1 - FutureTPM Use Cases and System Requirements,” 2018. 

[2]  Trusted Computing Group (TCG), TCG Glossary (Version 1.1, Revision 1.00), 2017.  

[3]  Trusted Computing Group (TCG), Trusted Platform Module Library - Part 1: Architecture 
(Family 2.0, Revision 01.38), 2016.  

[4]  Intel Corporation, Intel® Trusted Execution Technology: White Paper, 2012.  

[5]  Trusted Computing Group (TCG), Trusted Platform Module Library - Part 2: Structures (Family 
2.0, Revision 01.38), 2016.  

[6]  Trusted Computing Group (TCG), Trusted Platform Module Library - Part 3: Commands (Family 
2.0, Revision 01.38), 2016.  

[7]  Trusted Computing Group (TCG), Trusted Platform Module Library - Part 4: Supporting 
Routines (Family 2.0, Revision 01.38), 2016.  

[8]  The FutureTPM Consortium, “D2.1 - First Report on New QR Cryptographic Primitives,” 2018. 

[9]  Trusted Computing Group (TCG), TPM Main - Part 1 Design Principles (Version 1.2, Revision 
116), 2011.  

[10]  Trusted Computing Group (TCG), TPM Main - Part 2 TPM Structures (Version 1.2, Revision 
116), 2011.  

[11]  Trusted Computing Group (TCG), TPM Main - Part 3 Commands (Version 1.2, Revision 116), 
2011.  

[12]  Trusted Computing Group (TCG), TCG PC Client Platform - TPM Profile (PTP) Specification, 
2017.  

[13]  Trusted Computing Group (TCG), TPM 2.0 Mobile Reference Architecture, 2014.  

[14]  Trusted Computing Group (TCG), TCG TPM 2.0 Automotive Thin Profile, 2018.  

[15]  W. Arthur, D. Challener and K. Goldman, A Practical Guide to TPM 2.0 - Using the Trusted 
Platform Module in the New Age of Security, Apress Media, 2015.  

[16]  G. Proudler, C. Liqun and C. Dalton, Trusted Computing Platforms - TPM 2.0 in Context, 
Springer, 2014.  

[17]  A. Segall, Trusted Platform Modules - Why, when and how to use them, The Institution of 
Engineering and Technology, 2017.  

[18]  Trusted Computing Group (TCG), TCG TSS 2.0 System Level API (SAPI) Specification, 2018.  



D1.2 - FutureTPM Reference Architecture 

FutureTPM D1.2 Public Page 85 of 105 

[19]  Trusted Computing Group (TCG), TCG TSS 2.0 TPM Command Transmission Interface (TCTI) 
API Specification, 2018.  

[20]  STMicroelectronics, ST33TPM12I2C: Trusted Platform Module with I2C interface based on 32-
bit ARM® SecurCore® SC300™ CPU, 2016.  

[21]  Infineon, Infineon Chip Card & Security ICs Portfolio, Munich, Germany, 2017.  

[22]  Arm Limited, “AMBA 5,” 2013. [Online]. Available: 
https://developer.arm.com/products/architecture/system-architectures/amba/amba-5. 

[23]  International Business Machines (IBM), “IBM Announces Open On-Chip Bus Architecture,” 
International Business Machines, June 1999. [Online]. Available: https://www-
03.ibm.com/press/us/en/pressrelease/2140.wss. 

[24]  W. D. Schwaderer, Introduction to Open Core Protocol, New York: Springer-Verlag, 2012.  

[25]  OpenCores, “Wishbone B4: WISHBONE System-on-Chip (SoC) Interconnection Architecture 
for Portable IP Cores,” OpenCores, 2010. 

[26]  Trusted Computing Group (TCG), TCG TPM I2C Interface Specification, 2016.  

[27]  M. Sabt, M. Achemlal and A. Bouabdallah, “Trusted Execution Environment: What It is, and 
What It is Not,” in 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015.  

[28]  Intel Corporation, “Intel Digital Random Number Generator (DRNG): Software Implementation 
Guide,” 2012. 

[29]  Arm Limited, “ARM TrustZone True Random Number Generator,” Cambridge, England, 2017. 

[30]  L. Torvald, Linux Kernel drivers/char/random.c comment documentation @ 1da177e4, 2014.  

[31]  E. Rescorla, “An Introduction to OpenSSL Programming,” Linux Journal, 2001. 

[32]  Intel Corporation, “Securing the Enterprise with Intel® AES-NI,” 2010. 

[33]  J. Guilbon, “Introduction to Trusted Execution Environment: ARM's TrustZone,” 19 June 2018. 
[Online]. Available: https://blog.quarkslab.com/introduction-to-trusted-execution-environment-
arms-trustzone.html. [Accessed 2018]. 

[34]  S. Berger, R. Caceres, K. Goldman, R. Perez, R. Sailer and L. van Doorn, “vTPM: Virtualizing 
the Trusted Platform Module,” in Security ’06: 15th USENIX Security Symposium, Vancouver, 
Canada, 2006.  

[35]  Trusted Computing Group (TCG), TCG TSS 2.0 Overview and Common Structures 
Specification, 2018.  

[36]  Trusted Computing Group (TCG), TCG Software Stack Feature API, 2014.  

[37]  Trusted Computing Group (TCG), TCG TSS 2.0 Enhanced System API (ESAPI) Specification, 
2018.  



D1.2 - FutureTPM Reference Architecture 

FutureTPM D1.2 Public Page 86 of 105 

[38]  Trusted Computing Group (TCG), TCG TSS 2.0 TAB and Resource Manager Specification, 
2018.  

[39]  “TPM Failure Tries, Recovery Time and Lockout Recovery,” Dell, 01 April 2018. [Online]. 
Available: https://www.dell.com/support/article/gr/el/grbsdt1/sln304487/tpm-failure-tries-
recovery-time-and-lockout-recovery. [Accessed 18 September 2018]. 

[40]  “Manage TPM lockout,” Microsoft, 01 May 2017. [Online]. Available: 
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/manage-tpm-
lockout. [Accessed 18 September 2018]. 

[41]  Y. Po-Hung and Y. Sung-Ming, “Memory attestation of wireless sensor nodes,” IET Information 
Security, vol. 11, no. 6, pp. 338-344, 2016.  

[42]  W. Wang and D. F. Yu, “Automated Proof for Authorization Protocols of TPM 2.0 in 
Computational Model,” in Information Security Practice and Experience, Springer International 
Publishing, 2014, pp. 144-158. 

[43]  J. Shao, Y. Qin, D. Feng and W. Wang, “Formal Analysis of Enhanced Authorization in the 
TPM 2.0,” in ACM, New York, NY, USA, 2015.  

[44]  Microsoft Corporation, “BitLocker overview,” [Online]. Available: https://docs.microsoft.com/en-
us/windows/security/information-protection/bitlocker/bitlocker-overview. 

[45]  Trusted Computing Group (TCG), TCG Algorithm Registry (Family 2.0, Revision 01.27), 2018.  

[46]  Federal Office for Information Security, “Certification Report BSI-DSZ-CC-1058-2018 for 
Trusted Plattform Module SLB9670_2.0,” Bonn, 2018. 

[47]  National Institute of Standards and Technology (NIST), FIPS PUB 140-2 - Security 
Requirements for Cryptographic Modules, 2001.  

[48]  Atmel Corporation, AT97SC3205T I2C Interface - Summary Datasheet, 2014.  

[49]  E. F. Brickell, J. Camenisch and L. Chen, “Direct anonymous attestation,” in ACM Conference 
on Computer and Communications Security (CCS), 2004.  

[50]  J. Whitefield, L. Chen, T. Giannetsos, S. Schneider and H. Treharne, “Privacy-Enhanced 
Capabilities for VANETs using Direct Anonymous Attestation,” in IEEE Vehicular Networking 
Conference (VNC), 2017.  

[51]  E. Brickell, L. Chen and J. Li, “Simplified security notions of direct anonymous attestation and 
a concrete scheme from pairings,” International Journal of Information Security, 2009.  

[52]  J. Camenisch, L. Chen, M. Drijvers, A. Lehmann, D. Novick and R. Urian, “One TPM to Bind 
Them All: Fixing TPM 2.0 for Provably Secure Anonymous Attestation,” in IEEE Symposium 
on Security and Privacy (S&P), 2017.  

[53]  J. Camenisch, M. Drijvers and A. Lehmann, ““Anonymous Attestation with Subverted TPMs,” 
in Advances in Cryptology - CRYPTO, 2017.  



D1.2 - FutureTPM Reference Architecture 

FutureTPM D1.2 Public Page 87 of 105 

[54]  ISO/IEC, “ISO/IEC 11889:2015, Parts 1-4.,” Retrieved Nov.1, 2017 from 
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=66510, 
2015. 

[55]  S. Goldwasser, S. Micali and C. Rackoff, “The knowledge complexity of interactive proof 
systems,” in SIAM Journal on computing, 1989.  

[56]  K. E. Defrawy, G. Holland and G. Tsudik, “Remote Attestation of Heterogeneous Cyber-
Physical Systems: The Automotive Use Case,” in ESCAR, 2015.  

[57]  R. Sailer, X. Zhang, T. Jaeger and L. v. Doorn, “Design and implementation of a TCG-based 
Integrity Measurement Architecture,” in 13th USENIX Symposium, 2004.  

[58]  N. Asokan, F. Brasser, A. Ibrahim, A. Sadeghi, M. Schunter, G. Tsudik and C. Waschmann, 
“SEDA: Scalable Embedded Device Attestation,” in Proceedings of the 22nd ACM SIGSAC 
Conference on Computer and Communications Security, 2015.  

[59]  European Union Agency for Network and Information Security (ENISA), “Inventory of Risk 
Management / Risk Assessment Tools,” [Online]. Available: 
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-
risk/risk-management-inventory/rm-ra-tools. 

[60]  J. Y. Yap and A. Tomlinson, “Threat Model of a Scenario Based on Trusted Platform Module 
2.0 Specification,” in Workshop on Web Applications and Secure Hardware (WASH), London, 
United Kingdom, 2013.  

[61]  M. Gebai and M. R. Dagenais, “Survey and Analysis of Kernel and Userspace Tracers on Linux: 
Design, Implementation, and Overhead,” ACM Computing Surveys (CSUR), vol. 51, no. 26, 
2018.  

[62]  X. Wu, K. Suo, Y. Zhao and J. Rao, “A Side-channel Attack on HotSpot Heap Management,” 
in USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18), Boston, MA, 2018.  

[63]  S. Han, W. Shin, J.-H. Park and H. Kim, “A Bad Dream: Subverting Trusted Platform Module 
While You Are Sleeping,” in USENIX Security Symposium, Baltimore, MD, 2018.  

[64]  NIST National Vulnerability Database (NVD), “CVE-2017-15361,” 10 October 2017. [Online]. 
Available: https://nvd.nist.gov/vuln/detail/CVE-2017-15361. 

[65]  H. Shahriar and M. Zulkernine, “Mitigating Program Security Vulnerabilities: Approaches and 
Challenges,” ACM Comput. Surv., vol. 44, no. 3, pp. 11:1-11:46, 2012.  

[66]  I. Welch and R. J. Stroud, “Using Reflection as a Mechanism for Enforcing Security Policies in 
Mobile Code,” in European Symposium on Research in Computer Security (ESORICS), 
Toulouse, France, 2000.  

[67]  S. M. Ghaffarian and H. R. Shahriari, “Software Vulnerability Analysis and Discovery Using 
Machine-Learning and Data-Mining Techniques: A Survey,” ACM Comput. Surv., vol. 50, no. 
4, pp. 56:1-56:36, 2017.  



D1.2 - FutureTPM Reference Architecture 

FutureTPM D1.2 Public Page 88 of 105 

[68]  M. Jacobs Jr., “The quantification and aggregation of model risk: perspectives on potential 
approaches,” International Journal of Financial Engineering and Risk Management , vol. 2, no. 
2, pp. 124-154, 2015.  

[69]  National Institute of Standards and Technology (NIST), “NISTIR 8105 - Report on Post-
Quantum Cryptography,” 2016 . 

[70]  J. Jonsson and B. Kaliski, RFC 3447 - Public-Key Cryptography Standards (PKCS) #1: RSA 
Cryptography Specifications Version 2.1, Internet Engineering Task Force (IETF), 2003.  

[71]  S.-L. Gazdag, D. Butin and J. Buchmann, “Let Live and Let Die: Handling the State of Hash-
based Signatures,” in Workshop on Cybersecurity in a Post-Quantum World, Gaithersburg, 
Maryland, 2015.  

[72]  AlephOne, “Smashing the Stack for Fun and Profit,” Phrack Magazine, vol. 49, no. 14, 1996.  

[73]  H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-libc Without Function 
Calls (on the x86),” in ACM Conference on Computer and Communications Security, 2007.  

[74]  S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham and M. Winandy, “Return-
oriented Programming Without Returns,” in ACM Conference on Computer and 
Communications Security, 2010.  

[75]  IOVisor, “BCC - Tools for BPF-based Linux IO analysis, networking, monitoring, and more,” 
2018. [Online]. Available: https://github.com/iovisor/bcc#tools. [Accessed 27 September 2018]. 

[76]  R. Yavatkar, D. Pendarakis and R. Guerin, “RFC 2753 - A Framework for Policy-based 
Admission Control,” 2000.  

[77]  The JBoss Drools team, “Drools Expert User Guide v5.4.0.Final,” 13 May 2012. [Online]. 
Available: https://docs.jboss.org/drools/release/5.4.0.Final/drools-expert-docs/pdf/drools-
expert-docs.pdf. 

[78]  “Jenkins,” [Online]. Available: https://jenkins.io/. 

[79]  “SonarQube,” [Online]. Available: https://www.sonarqube.org/. 

[80]  “Sonartype Nexus,” [Online]. Available: https://www.sonatype.com/nexus-repository-sonatype. 

[81]  P. McDaniel and A. Prakash, “Security Policy Enforcement in the Antigone System,” 2005. 

[82]  Trusted Computing Group (TCG), Trusted Platform Module 2.0: A Brief Introduction, 2018.  

 
 



D1.2 - FutureTPM Reference Architecture 

FutureTPM D1.2 Public Page 89 of 105 

Appendix A  

Table 21: FutureTPM QR TPM-related command updates. 

Command | Description | Parameters | Response Changes Needed 

TPM2_GetRandom 

This command returns the next bytesRequested octets from the random number generator (RNG). 

 

NO 

 

If bytesRequested is more than will 
fit into a TPM2B_DIGEST on the 
TPM, no error is returned but the 

TPM will only return as much data 
as will fit into a TPM2B_DIGEST 

buffer for the TPM. 

 

The maximum amount of data 
returned by this command is TPM 

implementation-dependent 

 

TPM2_StirRandom 

This command is used to add "additional information" to the RNG state. 

 

NO 

 

The inData parameter may not be 
larger than 128 octets. 
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Command | Description | Parameters | Response Changes Needed 

TPM2_ECDH_KeyGen 

This command uses the TPM to generate an ephemeral key pair. 

 

YES 

 

DH is broken need to be updated 
with another algorithm 

 

TPM2_HashSequenceStart 

This command starts a hash or an Event Sequence. 

 

NO 
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Command | Description | Parameters | Response Changes Needed 

TPM2_SequenceUpdate 

This command is used to add data to a hash or HMAC sequence. The amount of data in buffer 
may be any size up to the limits of the TPM. 

 

NO 

 

TPM2_SequenceComplete 

This command adds the last part of data, if any, to a hash/HMAC sequence and returns the result. 

 

NO 
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Command | Description | Parameters | Response Changes Needed 

TPM2_EventSequenceComplete 

This command adds the last part of data, if any, to an Event Sequence and returns the result in a 
digest list. 

 

NO 

 

TPM2_HMAC_Start 

This command starts an HMAC sequence.  

 

NO 
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Command | Description | Parameters | Response Changes Needed 

TPM2_HMAC 

This command performs an HMAC on the supplied data using the indicated hash algorithm. 

 

NO 

 

TPM2_EncryptDecrypt 

This command performs symmetric encryption or decryption using the symmetric key referenced 
by keyHandle and the selected mode. 

 

NO 

 

keyHandle input should be of an 
appropriate length 
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Command | Description | Parameters | Response Changes Needed 

TPM2_EncryptDecrypt2 

This command is identical to TPM2_EncryptDecrypt, except that the inData parameter is the first 
parameter. This permits inData to be parameter encrypted. 

 

NO 

 

keyHandle input should be of an 
appropriate length 

 

TPM2_Hash 

This command performs a hash operation on a data buffer and returns the results. 

 

NO 

 

  



D1.2 - FutureTPM Reference Architecture 

FutureTPM D1.2 Public Page 95 of 105 

Command | Description | Parameters | Response Changes Needed 

TPM2_VerifySignature 

This command uses loaded keys to validate a signature on a message with the message digest 
passed to the TPM. 

 

NO 

 

TPM2_Sign 

This command causes the TPM to sign an externally provided hash with the specified symmetric 
or asymmetric signing key. 

 

NO 
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Command | Description | Parameters | Response Changes Needed 

TPM2_Commit 

TPM2_Commit performs the first part of an ECC anonymous signing operation.  

 

YES 

 

ECC is broken need to be updated 
with another algorithm 

 

TPM2_RSA_Encrypt 

This command performs RSA encryption using the indicated padding scheme according to IETF 
RFC 3447 (PKCS#1) [70].  

 

YES 

 

RSA is broken need to be updated 
with another algorithm 
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Command | Description | Parameters | Response Changes Needed 

TPM2_RSA_Decrypt 

This command performs RSA decryption using the indicated padding scheme according to IETF 
RFC 3447 (PKCS#1) [70]. 

 

YES 

 

RSA is broken need to be updated 
with another algorithm 

 

TPM2_ECDH_ZGen  

This command uses the TPM to recover the Z value from a public point and a private key. 

 

YES 

 

EDCH and ECC are broken need to 
be updated with other algorithms 
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Command | Description | Parameters | Response Changes Needed 

TPM2_ECC_Parameters  

This command returns the parameters of an ECC curve identified by its TCG-assigned curveID. 

 

YES 

 

ECC is broken need to be updated 
with another algorithm 

 

TPM2_EC_Ephemeral  

TPM2_EC_Ephemeral creates an ephemeral key for use in a two-phase key exchange protocol. 

 

YES 

 

ECDH is broken need to be updated 
with another algorithm 
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Command | Description | Parameters | Response Changes Needed 

TPM2_ZGen_2Phase 

This command supports two-phase key exchange protocols. The command is used in combination 
with TPM2_EC_Ephemeral. TPM2_EC_Ephemeral generates an ephemeral key and returns the 
public point of that ephemeral key along with a numeric value that allows the TPM to regenerate 
the associated private key. 

 

YES 

 

EDCH and ECC are broken need to 
be updated with other algorithms 

 

TPM2_Certify 

The purpose of this command is to prove that an object with a specific Name is loaded in the TPM. 

 

YES 

 

ECC is broken need to be updated 
with another algorithm 
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Command | Description | Parameters | Response Changes Needed 

TPM2_CertifyCreation 

This command is used to prove the association between an object and its creation data. 

 

YES 

 

ECC is broken need to be updated 
with another algorithm 

 

TPM2_Quote 

This command is used to quote PCR values. 

 

NO 
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Command | Description | Parameters | Response Changes Needed 

TPM2_GetSessionAuditDigest 

This command returns a digital signature of the audit session digest. 

 

NO 

 

TPM2_GetCommandAuditDigest 

This command returns the current value of the command audit digest, a digest of the commands 
being audited, and the audit hash algorithm.  

 

NO 
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Command | Description | Parameters | Response Changes Needed 

TPM2_GetTime 

This command returns the current values of Time and Clock 

 

NO 

 

TPM2_Create 

This command is used to create an object that can be loaded into a TPM using TPM2_Load.  

 

NO 
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TPM2_Load 

This command is used to load objects into the TPM.  

 

NO 

 

TPM2_Unseal 

This command returns the data in a loaded Sealed Data Object 

 

NO 
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TPM2_Duplicate 

This command duplicates a loaded object so that it may be used in a different hierarchy.  

 

NO 

 

TPM2_Rewarp 

This command allows the TPM to serve in the role as a Duplication Authority 

 

NO 

 

TPM2_Import 
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This command allows an object to be encrypted using the symmetric encryption values of a 
Storage Key. After encryption, the object may be loaded and used in the new hierarchy.  

 

NO 

 

TPM2_LoadExternal  

This command is used to load an object that is not a Protected Object into the TPM. 

 

NO 
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