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Executive Summary

In this report, we review the FutureTPM requirements and identify effects on design and modelling
targets and challenges. We then review the state of the art in threat and security modelling, in
general and as applied to the TPM and other similar TEEs. We end the report by summarizing
our findings, as well as planning and delimiting the research to be performed.

We find that the Future TPM requirements raise interesting design challenges such as the feasibil-
ity of a secure hybrid design that supports both classical- and quantum-secure cryptography from
the same seeds. Further we identify that simulation-based and universally composable analysis
methodologies are the most likely to usably scale to the whole TPM, but also identify research
challenges to be overcome in order to precisely and securely capture security requirements for
the whole of the TPM-in the presence of either classical adversaries or quantum-capable adver-
saries.

Finally, we identify some longer-term challenges that—although they do not directly contribute to
the design and modelling of security for the FutureTPM—would serve as foundations in supporting
future developments of a similar nature in a more principled way. Those include the development
of robust foundations for quantum-UC, the consideration of low-level adversaries (for example,
those with access to side-channels) in simulation-based and composable settings, and a princi-
pled formal treatment of remote attestation and trusted execution.
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Chapter 1

Introduction

This report reviews the FutureTPM requirements identified in D1.1 FutureTPM Use Cases and
System Requirements, known challenges in modelling security for the TPM, as well as the state
of the art in threat and security modelling. This review aims at identifying engineering challenges
and research gaps to be investigated during the course of the FutureTPM project, in order to en-
sure the successful delivery of the use case demonstrators. We also identify long-term research
objectives of relevance to the project. In particular, we discuss challenges that may arise from
the TPM’s structure and specific deployment mode, and other challenges that may arise from the
need to scale beyond even the largest published cryptographic security proofs.

The main outcome of this Deliverable is to delimit the scope of the security modelling and proof
research to be performed during the course of the project. As such, we also discuss longer-term
challenges in security modelling for hardware-assisted security and quantum-resistant cryptogra-
phy, whose relevance to the use cases is less direct, but whose foundational value is clear.

1.1 Relation to other WPs and Deliverables

The review of existing literature presented in this report is guided by the requirements analysis
performed in D1.1 FutureTPM Use Cases and System Requirements. This report complements
D2.1 First Report on New QR Cryptographic Primitives, whose focus is on security modelling
and concrete candidates for quantum-resistant cryptographic primitives, around which this WP
will be designing a new Quantum-Resistant TPM. This report serves to guide research activities
conducted as part of WP3, and will therefore feed directly into D3.2 Firt Report on the Security
of the TPM and D3.3 Second Report on Security Models for the TPM. Finally, this report high-
lights interactions between threat modelling—which will be used in WP4—and security modelling,
and performs a preliminary review of threat modelling techniques that could be used to identify
reasonable trust and threat models for the FutureTPM in the use cases considered.

1.2 Deliverable Structure

We first analyse the functionalities of the TPM that will be exercised by our use cases, as well
as their interdependencies (Chapter 2). We then identify the main modelling challenges that
arise from these functionalities, and from the TPM as a whole (Chapter 3). We then review the
state of the art in threat modelling and security modelling in general (Chapter 4), and as applied
to the TPM and other hardware roots of trust (Chapter 5). This allows us to identify research
gaps, that will need filled in order to meet the objective of defining security models for the TPM
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functionalities seen as a whole, but also to make progress towards obtaining security proofs in
such models (Chapter 6). Finally, we conclude by summarising the findings of our literature and
technology review and planning activities for the next reporting period of WP3.
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Chapter 2

Analysis of Requirements

In this Chapter, we recall the use case requirements identified in D1.1 FutureTPM Use Cases
and System Requirements, and map them to TPM functionalities, as standardized in TPM 2.0,
and summarized in the overview of TPM functionalities given in D1.1 FutureTPM Use Cases
and System Requirements. Although not strictly related to security modelling, this requirements
analysis is necessary to the design tasks of WP3, which will themselves heavily influence the
requirements placed on the security model and analysis.

2.1 FutureTPM Requirements and TPM Functionalities

In D1.1 FutureTPM Use Cases and System Requirements, the Consortium devised a Minimum
Viable Product (MVP) for the FutureTPM project. The MVP includes 37 technical requirements
to be implemented by the FutureTPM. In this section, we recall these requirements (in the order
shown in Table 11 (D1.1, Section 6.2)), and discuss the TPM functionalities that will be used
to implement these requirements. We adhere to the Trusted Platform Module Library standard
nomenclature, as defined by the TCG to refer to TPM functionalities.

Mandatory Requirements

1 (TR.1.1.3) It should support protocol and algorithm agility.
TCG maintains a registry for the protocols and algorithms supported under TPM 2.0. Another
registry is maintained pertaining to the supported curves for Elliptic Curve Cryptography (ECC).
Each entry has an associated value that can be used as a parameter to TPM commands, to
control which cryptographic primitive is used to realise the command. Therefore, enlarging
the set of supported algorithms may affect the implementation of: session commands; object
commands; duplication commands; asymmetric and symmetric primitives; hash/HMAC/event
sequences; attestation commands; ephemeral EC keys; signing and signature verification;
command audit; integrity collection (PCR); enhanced authorization (EA) commands; hierarchy
commands; miscellaneous management functions; and capability commands. The introduc-
tion of new cryptographic primitives may impose the need to maintain further registries. For
instance, isogeny-based ECC is supported on finite fields with an order that is the square of a
prime number. A registry might be required to keep record of the supported primes.

2 (TR.1.3.6) Allow support for some legacy primitives/protocols.
FutureTPM will strive to adhere to the TPM 2.0 standard as much as possible. Since this stan-
dard includes algorithm agility, support for legacy primitives and protocols can be maintained
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by keeping their entries in the TCG reqistry.

3 (SR.1.2.3) Reach QS-Level 1.
With the exception of Random Number Generators (RNGs), Dictionary Attack Functions, and
Clocks and Timers, the whole TPM architecture will have to be reviewed in order to achieve
QS-Level 1.

4 (SR.1.4.1) Allow the protection of sensitive information.

The TPM may store sensitive user information persistently in its Non-Volatile (NV) memory.
Access to this information might be limited to users who know a specific password (through
password sessions), a specific key (through HMAC sessions) or through more complex poli-
cies (through enhanced authorization). Since NV storage is limited and might wear out quickly,
keys might alternatively be stored in a TPM, with access restrictions, which encrypt data stored
in the user’s disk. One might enforce this key not to be duplicated, thus only allowing the data
to be decrypted when the TPM is present. Nevertheless, duplication to another TPM might
be useful to allow for backups; or on an enterprise scenario, where regulation might require
access to the worker’s data in certain situations.

5 (SR.1.4.2) It should be hard for an adversary to learn the secret information required for
any action.
EA allows for the combination of several policies. Through the usage of EA, access to secret
information may be subject to password controls, HMACs, smart cards providing digital signa-
tures, the state of the PCRs, among others. Each one of these possibilities provides distinct
levels of security; and the combination of several of them makes it harder for an adversary to
learn the secret information required to access the data.

6 (SR.1.4.3) Credentials should be stored on user device and must be protected from
eavesdropping/leakage.
Access to credentials might be bound to a trusted platform state, by sealing the corresponding
encryption key to a specific set of PCR values. When this kind of access control is put in place,
one is guaranteed to have the credentials only available on a system that is in a trusted state—
indicating that no tampering has occurred, and preventing eavesdropping.

7 (TR.1.1.4) It should support enhanced authorization (EA).
EA is a TPM capability that allows specific actions or tests to be required to access a certain
entity. Entities have an associated policy that defines the conditions for its use. For example:
e A policy may limit the use of a key unless selected PCRs have specific values;
e A policy may not allow use of a key after a specific time;
e A policy may require that authorization to change an NV index be provided by two different
entities.
While a policy might be arbitrarily complex, it is expressed as a statistically unique digest. In
order to use its associated entity, a user creates a policy session. The TPM is then given a
sequence of commands that modify the digest in the policy session. After executing all the
commands of the policy, the policy session might be used as an authorization session. When
the accumulated digest matches the one associated with the entity, access is granted.

8 (TR.1.4.1) Provide support for at least one major OS (e.g. Linux).
The code specific to an OS in a TPM implementation should mostly relate to the TPM Com-
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mand Transmission Interface (TCTI), the TPM Access Broker (TAB), the Resource Manager
(RM) and the device driver.

9 (SR.1.1.1) Pseudorandom number generator.
TPM 2.0 specifies an RNG module that is used as a source of randomness in the TPM. It
is used to generate nonces, in key generation, and for randomness in signatures. It typically
contains an entropy source and collector, a state register and a mixing function. The entropy
collector removes the bias from the entropy source. State registers are updated with the col-
lected entropy, which are input into the mixing function to produce the random numbers.

10 (SR.1.1.2) Key generation and storage functionalities.

The TPM 2.0 specifies two manners through which a TPM might generate keys. In the first, an
ordinary key is produced by using the RNG to seed the computation. In the second, which per-
tains to the computation of primary keys, keys are derived from a seed value using an approved
key derivation function (KDF). The seed is permanently stored on the TPM. Moreover, in the
case of a cryptographic primitive having weak keys, the TPM should detect the generation of
those keys, discard them, and restart the key generation process.

TPM 2.0 provides an NV memory module, which might be used to store data persistently.

11 (SR.1.1.3) Hash functions.
Hash functions may be used directly by external software or as the side effect of many TPM
operations (e.g. PCR extension, digest computation). A TPM should implement an approved
hash algorithm that has approximately the same security strength as its strongest asymmetric
cryptographic primitive.

12 (SR.1.1.4) MAC.
TPMs currently implement HMAC as described in ISO/IEC 9797-2. HMACs might be used for
authorization, to protect the integrity of command parameters/responses, to create tickets, as a
pseudo-random function, or used directly by external software. MACs other than HMACs might
be considered in the context of the FutureTPM project.

13 (SR.1.1.5) Symmetric Encryption.
The TPM uses symmetric encryption to protect the confidentiality of some command parame-
ters; and to encrypt protected objects stored outside of it.

14 (SR.1.1.6) Digital Signatures.
A TPM uses digital signature for attestation (e.g. as part of certification, quoting, building poli-
cies) and identification.

15 (SR.1.2.1) Support for possible QR crypto candidates for each category (symmetric,
asymmetric and DAA).
The TPM 2.0 architecture is expandable and provides the mechanisms to extend the list of
supported algorithms to include QR cryptographic primitives.

16 (SR.1.2.2) QR support for signing, key exchange, attestation.
Through algorithmic agility it should be possible to provide the QR primitives supporting sign-
ing, key exchange and attestation.
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17 (TR.1.2.1) It should be feasible to implement the chosen post-quantum algorithms on
platforms with restricted memory, while providing an acceptable performance.
The TPM 2.0 architecture provides several mechanisms to deal with its restricted memory
while maintaining usefulness. For instance, cryptographic methods are used to increase the
effective memory of the TPM by using cryptographic methods to store protected objects out-
side shielded locations in a secure manner. The TPM might generate cryptographic proofs to
prove that it created or checked an externally provided value, instead of storing this information
internally. Another way in which memory usage is reduced is through context management,
wherein, in order to support sharing among many application, the objects, sequences, and
sessions used by an application may be loaded into the TPM when needed and saved when a
different application is using the TPM. When updating cryptographic primitives to a QR setting,
similar challenges may be faced, and the consortium might draw from similar techniques to
reduce memory usage.

18 (TR.1.1.2) It should provide a small set of platform configuration registers (PCRs).

PCRs are a fundamental part of the TPM. They allow to verify the integrity of a log wherein
events that might affect the security state of a platform are recorded. When additions are made
to the log, the TPM receives a copy of the log entry or a digest of the data related to the log.
The TPM appends the received data to the contents of a PCR; and stores the hash of the result
in the same PCR. The TPM might attest to the value in a PCR, which, in turn, provides proof
of the integrity of the log.
A TPM might support multiple banks of PCRs, each associated with a different hash algorithm.
Each PCR is typically associated with a different stage of the platform evolution. For instance,
one PCR might be dedicated to recording measurements of the BIOS, a second to the boot
ROM, etc. In addition, certain PCRs may be reset, mostly for development purposes.

19 (SR.1.3.1) Support software measurement (PCR extend) and measurement reporting
(Quote), using QR algorithms.
Through algorithm agility, it should be possible to support the QR hashing and signing primi-
tives necessary to achieve QR software measurement and measurement reporting.

20 (SR.1.3.2) Support remote attestation functionalities.
A TPM might produce a signature over software/firmware measurements in a PCR using an
attestation-key protected by the TPM. A remote entity may verify the signature and inspect the
measurement log to gain confidence about the state of the user's machine.

21 (SR.1.1.7) Public key encryption and key exchange.
Currently the TPM provides support for public-key cryptographic primitives based on the in-
tractability of factoring large numbers and on solving the discrete logarithm problem over elliptic
curves. The FutureTPM will offer alternate QR cryptographic primitives that implement these
functionalities.

22 (TR.1.1.1) It should provide non-volatile random-access memory (NVRAM) storage.
An NVRAM may be used by the TPM to store persistent state. Part of the memory space
should be available for allocation and use by the platform and entities authorised by the TPM
owner.

23 (TR.1.3.3) Development and testing of a software FutureTPM, including adequate sup-

FutureTPM D3.1 PU Page 6 of 45



D3.1 - First Report on Security Models for the TPM Future TPM

port for the Trusted Software Stack (TSS).

The TSS corresponds to the software residing on a platform that supports the TPM. A soft-
ware FutureTPM might prove useful in two ways: it accelerates the development of a proof-of-
concept TPM, enabling the introduction of experimental features; and when implemented on a
secure environment, such as ARM’s TrustZone, it might provide the same security guarantees
as a hardware TPM.

24 (SR.1.3.3) Support sealing and binding operations.
When a data object is sealed to a trusted state, it can only be accessed when PCRs contain
values attesting to that platform state. Policy sessions can be bound to an entity, making the
session-key depend on the authorization value of that entity.

25 (TR.1.2.2) The selected crypto algorithms can be implemented securely on an identi-
fied platform.
The FutureTPM consortium will select QR cryptographic primitives based on a number of char-
acteristics, including the robustness of their implementation against physical attacks, and on
their suitability for the platforms identified in the use-case scenarios.

26 (TR.1.3.1) Selected algorithms should be chosen in such a way that it is possible to
enhance the performance of the cryptographic calculations with a small hardware co-
processor.

The selection of the QR cryptographic primitives should target a small resource consumption.

27 (TR.1.3.1) Selected post-quantum cryptographic primitives should be chosen to allow
for a maximum reuse of hardware accelerator engines.
The sharing of hardware accelerator engines might help in reduce the overall circuit area of the
FutureTPM.

28 (TR.1.3.5) Development and testing of a hardware FutureTPM (evaluation board), in-
cluding adequate support for the Trusted Software Stack (TSS).
A proof-of-concept hardware FutureTPM will be developed on an evaluation board, along with
the necessary software infrastructure to support the targeted use-case.

29 (TR.1.3.6) Allow support for some legacy primitives/protocols.
Addressed in requirement 2 (Repeated in Table 11 of D1.1)

30 (TR.1.3.4) Development and testing of a virtual FutureTPM, including adequate support
for the Trusted Software Stack (TSS).
A virtual FutureTPM corresponds to TPM instances provided to virtual machines (VMs) by a
hypervisor. Each of the secrets handled by a vTPM is sealed to a physical TPM. If the process
for creating the guest VM, the vTPM and the vTPMs manager is trusted, a virtual TPM extends
the chain of trust rooted in the hardware TPM to the virtual machines. Software support to the
virtual FutureTPM will be provided to demonstrate the targeted use-case.

31 (SR.1.2.4) Provide a crypto library with TPM-backed keys implementing TLS with QR
algorithms.
While TLS 1.3 has not yet standardised the usage of QR cryptographic primitives, there are
drafts on Quantum-Safe Hybrid (QSH) Key Exchange for Transport Layer Security (TLS) ver-
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sion 1.3, that might underpin the usage of QR capabilities provided by the TPM.

32 (SR.1.1.8) Direct Anonymous Attestation (DAA) [for SW TPM].
DAA is a signature scheme that provides anonymous signatures (no two signatures from the
same signer can be correlated) or pseudonymous signatures (signatures from the same signer
can be correlated but the signer’s identity cannot be retrieved). The FutureTPM aims at pro-
viding a QR DAA protocol implementation in software.

Desirable Requirements

33 (TR.2.1.1) The efficiency of FutureTPM primitives and protocols should be similar or
better than the ones currently provided by TPM 2.0.
The FutureTPM consortium will aim at maintaining current TPM performance.

34 (TR.2.2.4) Developing a Python based API or library that works with Django REST
framework and integrates the developed TPM.
Django REST framework is a toolkit to develop web APls. By integrating the TPM within this
framework, one might, for instance, require platform identification or require a platform to be in
a trusted state before servicing it.

35 (TR.2.3.3) Easy to port to existing architecture.
The FutureTPM consortium will target at making the developed code easily portable.

36 (TR.2.2.3) Trying to integrate existing APIls with any type of TPM (QR or otherwise).
The FutureTPM will try to adhere to the TPM 2.0 standard as closely as possible; introducing
changes only when required to support post-quantum security.

37 (TR.2.3.2) Easy to support on mobile and loT devices.
First, a large share of the mobile device market is based on the ARM architecture, which might
provide a trusted execution environment (namely through TrustZone). A software TPM might
be implemented therein, ensuring the portability of applications that make use of the TPM to
those platforms. Second, the projected hardware TPM will target low resource consumption,
making it more suitable for 0T devices.

2.2 Analysis of Dependencies between TPM Functionalities

There are 5 basic functionalities that the TPM supports as identified by D1.1 in chapter 2.1 pages
3-5: cryptography, storage, authorization, attestation and privacy. The cryptography functionality
is stand-alone, as it provides basic primitives for other entities to use, there are some internal
dependencies within the cryptography category though and only one external:

e [nternal

— Key generation and derivation rely upon random number generation and message
authentication codes in order to create secure keys.

— Signing schemes require asymmetric cryptography in order to function properly.

— Message authentication codes, need hash functions in order to generate the hashes
that are then encrypted.
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e External

— Random number generation, requires an entropy collector in order to be cryptograph-
ically secure.

We also note that FutureTPM requires the TPM functionality of cryptographic algorithm agility in
order to enable us to install new algorithms. Algorithm agility is defined as the ability of algorithms
being added or subtracted from the specification without requiring that the entire specification be
rewritten.

In terms of the storage functionalities, TPMs provide three kinds of storage: secure storage,
non-volatile storage and platform configuration registers. Secure storage is what TPM facilitates
in order to extend the existing storage that the chip has. In order to achieve this, it encrypts
the data and stores them externally, that is why secure storage depends on cryptography and
more specifically, symmetric cryptography. Non-volatile storage, on the other hand, is a local
and persistent memory that can store very sensitive data that are access protected, so there
is a dependency on the TPM protections mechanism as defined in the TPM 2.0 specification
in chapter 10 [82]. Finally, platform configuration registers, are protected memory registers for
storing integrity measurements or platform software state. This is achieved through checking
hashes and hash chains of the underlying software and data, it is obvious that the cryptographic
primitive of hashing is required. Summing up, the functionality of secure storage depends on:
symmetric cryptography, TPM protections and hash functions.

The authorization functionalities are concerned with how platform software can prove its autho-
rization to call functions of the internal TPM. There are three levels of authorization: password,
HMAC and Enhanced Authorization. In the case of password authorization, a password is sent
in clear with every command and it does not depend on any functionalities. The HMAC solu-
tion, depends on message authentication codes in order to authorize each command separately
by authenticating them using a password. Finally the enhanced authorization, is built on top of
HMAC authorization sessions, and besides being based on a password, this kind of authorization
also depends on TPM state including PCR values, external devices such as fingerprint readers
or smart cards. So we identified the following dependencies for authorization: message authen-
tication codes, PCRs (platform configuration registers) and external authentication devices.
Attestation is one of the crucial services of a TPM. It is the process by which a platform reports
in a trusted way the current status of its configuration. The report can include as much infor-
mation as required. The basis of the attestation are the measurements recorded in PCRs. The
registers can then be read to know the current status of the platform and also be signed to pro-
vide a secure report. The sum of the attestation functionality dependencies are: asymmetric
cryptography/signing schemes and PCRs.

Privacy functionalities are used to prove to third parties (verifiers) that they are communicating
with a genuine TPM. This is done with the use of a unique public/private certified key-pair known
as the Endorsement Key (EK) that every TPM has. However, if this key is used to sign objects,
it will enable verifiers to uniquely identify this TPM and link all transactions it makes. The current
specification solves this issue by providing the TPM with the ability to create as many Attes-
tation Identity Keys (AlIKs) as the user wishes in order to provide anonymity to the TPM. AlKs
are not the only solution, as there is the option of Direct Anonymous Attestation (DAA) that is
a group-oriented signature scheme with the use of RSA or elliptic curves. All in all, the privacy
functionalities depend on: asymmetric cryptography, key derivation (in order to produce the AIKs)
and a Direct Anonymous Attestation implementation. In Table 2.1 we summarize all the depen-
dencies between the identified TPM functionalities. In the special case of cryptography we denote
the internal and external dependencies as aforementioned in the relevant functionality category.

FutureTPM D3.1 PU Page 9 of 45



D3.1 - First Report on Security Models for the TPM

FutureTFPM

Functionalities

Dependencies

Internal

External

¢ Random Number Generation for

e Entropy Collection from a reliable

strong and secure key generation. and high entropy source, in order
for random number generation to be

Message Authentication Codes secure.

for key generation and key deriva-

tion.
Cryptography
Asymmetric Cryptography for
digital signatures.
Hash Functions for the function-
ality of Message Authentication
Codes.
Symmetric Cryptography for secure storage to encrypt sensitive data.
TPM protections that will enforce proper access control on non-volatile

Hash Functions which are used for the calculation of the values in platform
configuration registers.

Authorization

Message Authentication Codes that are used for the authentication of
each command.

PCR Storage that is used to prove the state of the machine while issuing
commands.

External Authentication Devices which will prove the identity of the user.

Attestation

Asymmetric Cryptography and Sighing Schemes are needed to sign the
values of PCRs in order to prove the valid state of the device.

PCR Storage that hold hash values calculated on the state of the device.

Privacy

Asymmetric Cryptography that is used to sign messages to prove the
authenticity of the TPM.

Key Derivation which will be used to generate Attestation ldentity Keys in
order to ensure the privacy of the device.

Direct Anonymous Attestation that replaces Attestation Identity Keys and
also ensures the privacy of the device.

Table 2.1: Summary of TPM Functionality Dependencies
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Chapter 3
Challenges in TPM Modelling

As briefly illustrated in the previous chapter, the use cases cover all TPM functionalities, and most
of their interdependencies. This allows us to consider and discuss the challenges we will face in
modelling threats, security and functionality for the TPM as a whole, as well as those we will face
in modelling the security of protocols that involve multiple TPMs.

3.1 Trust Assumptions

Generally speaking, the TCG works under the assumption that TPMs should be trusted to with-
stand any software attack. From a security modelling point of view, this means that no TPM
could ever be compromised by a software-based adversary (for example, by revealing its primary
seed). In practice, however, TPMs will be deployed in situations where an adversary can mount
physical attacks—including side-channel and fault attacks—and locally compromise one or several
TPMs. It is important to ensure that such an adversary is not able to break the security or privacy
properties of uncompromised TPMs. It is therefore important for us to consider various models
of trust, especially when analysing the security of functionalities that involve multiple TPMs. In
particular, we will need to consider the following models:

e The TPM is completely trusted;
e The TPM is partially trusted;
e The TPM is subverted.

Such models have recently been considered in formal analyses of the ECC-DAA protocols stan-
dardized in TPM 2.0. (See Chapter 4.)

3.2 Split Operations and Untrusted Hosts

The TPM is a low-cost and relatively slow chip, and has limited resources. Therefore, some
operations, including cryptographic operations, are split between the TPM and the software of its
host platform (referred to as a Host). Further, the TPM relies entirely on the Host to communicate
with remote partners (for example, the privacy-CA or a remote attestation partner). This has a
further effect on security models, and requires careful consideration of the models to enable fine-
grained modelling of trust both for the TPM (as justified above) and the Host (which may be a
compromised platform). For example, the DAA signing operation is split between the TPM and
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the Host, with the TPM being trusted for both security and privacy, but the host being trusted only
to preserve its own privacy.

Defining security models for TPM functionalities will therefore require careful consideration of the
roles played by different parts of the TPM (including its hardware component and various com-
ponents of the TSS), and careful consideration of the appropriate trust assumptions on each of
them. Investigations into refined trust models for split parties will further require careful interac-
tions with the vulnerability analysis being carried out in WP4.

3.3 State, Command and Key Sharing

High-level TPM functionalities often require multiple calls to TPM commands. Due to its limited
resources, the TPM itself rarely maintains state between calls to the commands. This has in the
past been a source of vulnerabilities—that are made harder to find and analyze due to hidden
invariants. Modelling such split functionalities may require a thorough understanding of these
hidden invariants and of all expected uses of the TPM commands being captured by the model.
Since a single command could appear in multiple high-level functionalities—including sharing not
only code, but also cryptographic material-analyzing the security of the TPM as a whole is critical.
In particular, local models for specific functionalities do retain value but need to be carefully
reworked to allow their use in more complex scenarios where part of the computation and the
limited state may be shared with other functionalities that are being accessed concurrently.

3.4 Flexible and Secure Usage Policies

The TPM serves as hardware support for secure software systems, and is therefore meant to be
used by external parties. If some of its security properties must hold independently of the usage
that is made of it (in particular, properties of the Roots of Trust), properties of user objects stored
on the TPM, or of interactions between users and the TPM, can only be guaranteed under certain
conditions, including assumptions of trust in the user (for a particular scenario), and assumptions
that a secure policy of interaction with the TPM was defined and followed. At both extremes,
modelling security of the TPM is straightforward: a TPM that forbids any external interaction is
easy to model and most certainly secure, but prevents any rigorous analysis of the security user
applications; at the other end of the spectrum, a TPM that allows all interactions is also relatively
easy to model, but provides only very limited security guarantees. Ensuring that our security
models are both realizable in practice and usable to support security analysis for applications
that use the TPM will require the careful definition of families of models parameterized by usage
policies.

3.5 Multi-Tenant Security

In practice, TPMs—especially hardware TPMs used to back security in virtualized environments—
will be multi-tenanted, and used by multiple users concurrently. Each of these users may have
a different trust and authorization relationship with the TPM, including various authorization poli-
cies and external authentication factors. Capturing the security requirements of multi-tenanted
scenarios into cryptographic security models is a complex challenge that currently remains open.
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Chapter 4

Threat and Security Modelling

In this Chapter, we review and critically discuss threat and security modelling techniques in gen-
eral.

4.1 Threat Modelling

This section provides an overview of the literature regarding the most known threat models and
threat modelling approaches used and serves as a high level reference point. It is not specifi-
cally dedicated to threat modelling in TPM 2.0, this is the reason why it should be combined with
other documents. Threat model is basically a high level description of how the attacker could
exploit the possible vulnerabilities on the application environment. Threat modelling is designed
as an aligned and systematic approach to detect all possible threats in the early phase of soft-
ware systems and it is used to protect systems from vulnerabilities [63]. More specifically, it is a
structured procedure for identifying and categorizing threats, and enumerating threat scenarios,
which requires in-depth understanding of the architecture and underlying technology stack. One
work that focuses on threat modelling and TPM 2.0 is [91]. This section presents a threat model
for TPM 2.0 constructed using Microsoft’s security development lifecycle threat modelling tool’
and the STRIDE model. This preliminary task, albeit based on simple scenarios, highlights some
potential pitfalls that should be considered when conducting further research into the applications
of TPM. Based on different context, threat modelling approaches can be broadly classified into
three main categories [60]: Asset-centric, Attacker-centric and Software-centric threat modelling
approaches. In addition, various techniques have been published for performing threat mod-
elling. Below, we describe the most popular threat modelling techniques: STRIDE, Attack Tree,
and Attack Libraries.

4.1.1 STRIDE

The STRIDE approach to threat modelling was invented by Loren Kohnfelder and Praerit Garg
in 1999 [58], and introduced by Microsoft as part of its Trustworthy Computing Security De-
velopment Lifecycle. The acronym STRIDE comes from the used threat classification scheme
(Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation of
Privileges). The STRIDE process consists of decomposing an application into constituent com-
ponents on data flow diagrams and analyzing each component against possible threats from

"https://www.microsoft.com/en-us/sdl/adopt/threatmodelling.aspx

FutureTPM D3.1 PU Page 13 of 45


https://www.microsoft.com/en-us/sdl/adopt/threatmodelling.aspx

D3.1 - First Report on Security Models for the TPM FutureTPM

different STRIDE categories, and mitigating the identified risks. The application design is rep-
resented as a Data Flow Diagram (DFD) consisting of Data Flows, Data Stores, Processes,
Interactors and Trust Boundaries. The primary purpose of the STRIDE is to recognize the pos-
sible threats and gather the possible attacks or threats. The categorization is secondary issue
and often users have to select one of multiple choices and do not worry about the right category.
This technique helps in the enumeration of threats based on attack properties. For each of these
attack properties there is set of security themes violated as illustrated in the following table:

Attack Property ‘ Security Theme ‘
Spoofing Authentication

Tampering Integrity

Repudiation Non-Repudiation

Information Disclosure Confidentiality

Denial-of-Service Availability

Elevation of Privilege Authorization

Table 4.1: Attacks and the security themes they violate.

Threats are enumerated by considering each attack property and its corresponding impacted
security theme. The STRIDE approach has two variants: STRIDE-per-Element and STRIDE-
per-Interaction. The Microsoft SDL threat modelling tool applies STRIDE-per-Interaction.
STRIDE is designed to identify threats; however the vulnerabilities and the management of the
vulnerabilities’ coverage is left to others. In particular, to achieve completeness, threat modelling
must identify and design strong countermeasures for the identified threats. Taking this a step
further, and documenting the appropriate implementation countermeasures is not a feature of
this technique.

4.1.2 Attack Tree

Attack tree is a conceptual representation of possible attacks against an application through which
threats are ascertained. Basically, the attacks against a system are represented in a tree struc-
ture, with the goal as the root node and different ways of achieving that goal as leaf nodes [63].
Attack trees designed to represent in a structured way possible attacks on a system from the
perspective of an attacker. The root of an attack tree is the ultimate goal of the attacker and is
further refined through AND/OR decomposition into activities needed to achieve the goal. The
leaf nodes usually denote system vulnerabilities, that an attacker could exploit to execute the
intended attack scenario. Following are the 3 simple steps to construct an attack tree:

¢ |dentify the goals — each goal can be a separate attack tree, in case of large attack vector
even sub-goals can be represented in separate tree structures.

¢ Identify the various categories of attacks required to accomplish the goals.

e If a generic attack tree library exists, it can be plugged into the attack tree being constructed.

Upon identification of the attacks to accomplish the goal, attributes of the attacks have to be con-
sidered. Details such as probability of the attack, cost of the attack, and countermeasures have
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to be documented to achieve completeness. However, it is impossible to capture all those de-
tails, and adding such information will complicate the tree structure at the expense of readability.
Moreover, this model is suited to providing a high-level representation of the attacks, but does not
suit modelling of threats at a more granular level. The attack tree when used independently as a
threat modelling technique does not yield the best results.

4.1.3 Attack Library

Attack Library is a collection of attacks for finding threats against the application being devel-
oped [63]. The structure can be lightweight or highly organized. This is another type of threat
modelling technique available to identify threats by looking from an attacker’s perspective. The
idea is to provide as much details as possible for an attack type to help threat modellers or the
developer community to understand the landscape of threats. Any threat modelling technique
adopting the attacker’s perspective is more of a checklist model, i.e. traverse the library of attacks
applicable in the context of the application, analyse whether the threats are handled, and iden-
tify countermeasures. Organizations can either develop their own library or leverage formal lists
or dictionaries published by the security community or consortium such as Open Web Applica-
tion Security Project (OWASP), Common Weakness and Enumeration (CWE), Common Attack
Pattern Enumeration and Classification (CAPEC) and WASC Threat Classification.

4.1.4 OWASP

The Open Web Application Security Project (OWASP) is an open community dedicated to en-
abling organizations to conceive, develop, acquire, operate, and maintain applications that can
be trusted. The OWASP is a worldwide project that focuses on making security-based decision-
making easier by providing different projects and data. These include the OWASP TOP-10 threats
list, the cheat sheet series or the security testing guide [77, 67]. OWASP-proposed security prac-
tices and methodologies are widely used for web application projects, and it is therefore a suitable
candidate for usage with threat modelling. However, we cannot rely on OWASP as our only source
of security information and data, since its data oes not generally fulfil scientific requirements of
rigour, provenance and transparency.

4.1.5 CWE

Common Weakness Enumeration is a formal list or dictionary of common software weaknesses
that can occur in software architecture, design, code or implementation that may lead to ex-
ploitable security vulnerabilities. More specifically, CWE has identified critical programming er-
rors that may lead to software vulnerabilities. CWE serves as a standard measuring parameter
for software security tools targeting these weaknesses. The purpose is to provide a common
baseline standard for weakness identification, mitigation, and prevention efforts. Details provided
in each CWE include: description, applicable platform, common consequences, demonstrative
example, observed examples, and related attack patterns.

4.1.6 CAPEC

CAPEC is an attack library and taxonomy of known attacks maintained by MITRE Corporation
from USA. It is sponsored by the U.S. Department of Homeland Security and is under active main-
tenance [64]. It takes the form of a publicly available, community-developed list of common attack
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patterns along with a comprehensive schema and classification taxonomy. The CAPEC can give
more results regarding attacks than STRIDE’s security properties but the CAPEC techniques are
far more complex [77]. Velez and Morana [87] state that the library is one of the best and truly
comprehensive attack library available. MITRE’s records shows that the library currently contains
over 517 attack patterns that are available through different interfaces such as Google-based
search or a CAPEC ID search. CAPEC is the only big and clear attack pattern library. Moreover,
CAPEC can also be obtained as an XML formatted file, which can be used locally to support more
complex analyses. In particular, this offers the possibility of combining CAPEC data with domain
and system-specific knowledge, as well as other threat modelling techniques, without having to
interact with a remote database or server. However, if aggregation of the CAPEC XML data with
other standard attack libraries is possible, its large size makes it a time-consuming process [87].

4.1.7 WASC Threat Classification

The WASC Threat Classification is an attack library by the Web Application Security Consortium.
Its latest version, v2.0, was released in 2010, and presents threats in grid view or tree view. |t
categorizes vulnerabilities depending on whether they arise during the design, implementation or
deployment of a system [43].

4.1.8 FutureTPM Threat Modelling

FutureTPM will build on-top of existing upper models and will propose a holistic approach for risk
management in use cases of Trusted Computing. A more thorough description of the FutureTPM
threat model will be provided in D4.1 Threat Modelling and Risk Assessment Methodology.

4.2 Security Modelling

The threat modelling techniques discussed in Section 4.1, although they capture threats to the
overall architecture as well as implementation threats and vulnerabilities on software and hard-
ware, cannot be used to analyze the security of the cryptographic primitives, schemes and pro-
tocols used to implement TPM functionalities. To define the expected security and privacy prop-
erties of TPM functionalities, we will rely on—and may need to extend—standard techniques for
modelling cryptographic security. We now review these standard techniques, which cover both
computational and symbolic notions of cryptography.

Symbolic cryptography (as initiated by Dolev and Yao [53]) models cryptographic operations as
constructors in an algebra of terms (rather than functions on bitstrings), and restrict the adversary
to only be able to act as specified by a particular set of functions and equational theories in order
to gain knowledge or attempt to violate security properties. Symbolic models of security are often
said to model cryptography as perfect and unbreakable, and are often well-suited to proving that
a protocol does not misuse its cryptographic primitives.

Conversely, computational notions of cryptography capture cryptography—in a much finer-grained
way—as probabilistic computations; defining the adversary only by its complexity and its access to
the system—often based on oracles whose specification forms part of the security model. There
are three main families of computational models of cryptographic security: game-based mod-
els (Section 4.2.1), simulation-based models (Section 4.2.2) and composable models (such as
universal composability), discussed in Section 4.2.3. We explore them first, before discussing
symbolic notions of security (Section 4.2.4).
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4.2.1 Game-Based Models

Goldwasser and Micali [55] led the development of the modern way of thinking and reasoning
about the security of cryptographic systems, defining a theoretical framework for this task, based
on techniques from complexity theory. Their framework allows the cryptographer to precisely
define the cryptographic problem being solved, identifying what the adversary can do (or how
she can interact with the system under study) and when she is deemed to have successfully
broken its security. A potential solution (scheme or protocol) is then proposed for the problem, as
a set of algorithm, and evidence for the security of the high-level protocol can then be provided
in the form of a reduction: any adversary that breaks the scheme or protocol can also solve
another—less complex—problem which is widely believed to be hard.

Game-based models of security are well-understood, and have evolved since their inception
to capture more practical aspects of cryptographic security. In particular, security claims have
moved away from the asymptotic claims that were initially stated in these models, and towards
concrete security claims that support precise parameter selection [21, 72]. In addition, some
progress has been made by the real-world cryptography movement towards capturing imple-
mentation issues in proofs, instead of simply focusing on algorithms, leaving complex and often
dangerous implementation details to non-implementers [69, 49, 27].

Despite their advantages, game-base models of security suffer from three major drawbacks, that
are especially problematic when considering applications to cryptographic objects and construc-
tions of the scale and complexity of the FutureTPM:

Inflexibility game-based security definitions often embed in the games themselves the condition
the adversary has to meet in order to claim a cryptographic break; this makes it difficult, in
cases where such conditions may depend on the application or on user-defined policies, to
clearly list all conditions that may lead to a cryptographic break;

Lack of intuition game-based security definitions are often unintuitive an difficult to interpret.
This makes it difficult to understand if a security property-as stated and proved—-is indeed
the property that is needed in order to secure a given application;

Non-composability game-based security definitions are highly non-composable: composing
two game-based secure constructions to form a third is almost never guaranteed to yield a
secure construction.

Mechanizing Game-Based Proofs As the best understood methodology for provable secu-
rity, and thanks to its developments towards more practical security, game-based definitions and
reasoning have enjoyed the most scrutiny from the formal methods community apart from the
symbolic models we discuss in Section 4.2.4. First efforts in the direction of formal computational
proofs in the computational model led to the development of CryptoVerif [26], a tool that automat-
ically or semi-automatically searches for sequences of games and probability bounds that form
a security reduction. Although CryptoVerif has enjoyed high profile successes—with applications
to SSH [32] and, more recently, TLS1.3 [24]-its focus on providing a semi-automated verifica-
tion solution makes it somewhat inflexible in modelling new protocols, or formalising new kinds of
proofs.

CertiCrypt [14] is a library for the Coq proof assistant 2, whose goal is to support the man-
ual formalisation—and automated machine-checking—of code-based game-playing proofs. Unlike
previous efforts in using Coq to formalize computational security proofs, its goal is to design

2https://coq.inria.fr
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and develop a framework that supports the systematic construction of machine-checked security
proofs. Being a Coq library means it enjoys the same strong soundness guarantees that Coq of-
fers, but makes it difficult to develop, refine and use without deep expertise in interactive theorem
proving and type theory. This leads to a lack of modularity in proofs that makes CertiCrypt proofs
even less composable than pen-and-paper game-based proofs, and severely limits its applicabil-
ity to large proofs, although it was used to verify security proofs for simple primitives [93, 15].
EasyCrypt [12, 11] is a fresh implementation of the programme logics implemented in CertiCrypt
that is not encumbered by Coq’s limitations, and also makes use of SMT solvers to discharge
simple goals resulting from proof verification. The additional flexibility offered by EasyCrypt al-
lows the tool to better support abstract and modular reasoning, and the development of formal
proofs for more complex objects, with formal game-based security proofs for complex asymmet-
ric schemes such as OAEP [13] and PSS [10], and larger protocols such as authenticated key
exchange [9] and electronic voting protocols [45, 46].

FCF [70] reimplements CertiCrypt's programme logics for reasoning about game-based proofs
in Coq, leaving some of its more complex aspects (for example, the obligation to formally prove
complexity bounds on constructed adversaries) informal. CryptHOL [19] is a framework for for-
malizing game-based cryptographic proofs in the Isabelle-HOL proof assistant. Neither tool has
been used extensively in practice.

4.2.2 Simulation-Based Models

Following from the inflexibility and lack of intuition of game-based definitions, Goldreich, Micali
and Wigderson [54] propose a new paradigm for specifying cryptographic security. Rather than
specifying a precise condition the adversary has to break as part of the game which also bounds
her interactions with the system, simulation-based definitions use a game to represent the al-
lowed interactions, and an ideal functionality—often expressed as a simple protocol relying on a
trusted third-party—to represent the adversary’s goal: distinguishing a concrete construction from
the ideal functionality. This technique has several advantages over game-based definitions of
security.

First, the real world-ideal world paradigm allows for very flexible definitions of cryptographic se-
curity: it is not necessary (although it is useful) for the ideal functionality to be "secure” (for some
separately-defined notion of security). In particular, simulation-based claims simply state that the
real construction is "equivalent from the point of view of the adversary” to some idealized con-
struction. In general, the security of such ideal functionalities is clear from construction. (For
example, in the case of Multi-Party Computation [54], it is simply a trusted third-party that com-
municates with all other parties via private channels; in the case of pseudo-randomness, the
ideal functionality will often be a truly random equivalent.) In some cases, the ideal functional-
ity could have insecure modes of operation, allowing for some insecurity, but also supporting a
more detailed analysis of these sources of insecurity on a simpler object that does not involve
cryptography.

Second, in most cases, the ideal functionality by itself gives a reasonably clear intuition of what it
means for the construction to be secure—not only as a proof goal, but also as a usable definition
of security that can be use to analyze applications that make use of the construction.

This improvement to the intuition of security definition also takes some steps towards composi-
tional reasoning about security—and particularly supports the modular construction of provably-
secure schemes in layers.

These advantages come at a cost, however: proofs in the simulation-based setting are often
much more involved than in the game-based setting. This also makes such proofs more difficult
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to trust.

Mechanizing Simulation-Based Proofs Although efforts in mechanizing game-based security
proofs have yielded significant results, the same issues that arise from pen-and-paper proofs still
apply, and prevent precise reasoning about more complex cryptographic functionalities, or more
complex constructions.

As discussed, some of the tools developed for the mechanical verification of game-based proofs
(for example, EasyCrypt [11], but also FCF [70]) afford some modularity in the construction of
security proofs—even those that are game-based. This is due to the fact that the programming
language and logic techniques used in those tools can in fact be used almost in the same way to
formalize simulation-based cryptographic notions and proofs. For example, EasyCrypt was used
without modification to produce simulation-based proofs for 2-Party and Multi-Party Computa-
tion [3, 57]—quintessentially simulation-based cryptographic functionalities—and for some secret-
sharing-based side-channel countermeasures whose security is defined in a simulation-based
setting [8].

However, if those tools can indeed capture simulation-based notions and do support the formal
verification of proofs for realizations of those security functionalities, the proof techniques they
use are not always adapted to ease the development of those formal proofs. The F* program-
ming language [81] is a dependently-typed functional programming language that has been used
extensively to prove simulation-based properties of cryptographic protocols—including very high-
profile formal proofs (and attacks) on TLS1.2 and TLS1.3 [52]. Their security modelling approach,
based on ideal functionalities and simulations, is very close to the basic principles of simulation-
based security (and have inspired new perspectives on simulation-based cryptography, such as
state-separating proofs [31]) and afford the same advantages (modular construction of proofs)
while also supporting the automatic verification of side-conditions to composition theorems. How-
ever, the approach suffers from the same drawbacks as traditional simulation-base cryptographic
techniques and cannot easily support parallel compositions with shared state-requiring the use
of hand-proved meta-theorems. In addition, some of the standard simulation-based abstractions
for basic cryptographic primitives cannot be expressed readily in their language.

4.2.3 Composable Models

If simulation-based notions of security take some steps towards compositional approaches to
cryptographic security, they are often focused on modularity rather than general composition. In
particular, simulation-based definitions rarely capture concurrent compositions of protocols and
constructions that may share some state or underlying oracle.

Universal Composability [38] (UC) is a framework that supports the specification of almost any no-
tion of cryptographic security in a unified an systematic way, and in which security is maintained
under a general "protocol composition” operation, called universal composition. In this model,
in addition to the construction, adversary, ideal functionality and simulator, an environment is
used as part of the specification of security, and a construction is said to be UC-secure when-
ever, for any computationally-bounded environment and any computationally bounded adversary,
the environment cannot distinguish between the “real” world, where the adversary interacts with
the construction, and an “ideal” world, where the adversary interacts with a simulator-which it-
self interacts with the ideal functionality. The simple addition of the environment allows one to
reason about the security of the protocol in any context, and enables support for more general
composition—including arbitrary concurrent instances of a protocol.
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Still, if this framework provides very strong security guarantees, obtaining trustworthy proofs of
UC security is quite complex, and even modelling—regardless of proofs—complex cryptographic
objects such as the FutureTPM would be a significant undertaking, as it would require modelling—
to the finest detail-all possible interactions between an idealized TPM and its environment.

The original paper [38] proposing UC as a framework is regularly updated to reflect new flavours
of the framework, and it was still updated as recently as 2017. We now discuss some of the
extensions to UC that are of most potential value to the FutureTPM project.

Responsive Environments

The original UC framework [38] does not distinguish between interactions that are part of the
protocol, and interactions that are part of the problem specification and are meant to provide
meta-information to protocol parties (for example, the algorithm to be executed by a party, or
messages meant to signify dynamic corruption). For the latter kind of messages, it would often
be reasonable to assume that the adversary (or environment) responds immediately to such
meta-messages and releases control back to the communicating party. However, the original UC
framework is highly non-responsive. Although it is possible to artificially enforce responsiveness,
this still requires the protocol designer—as a security modeller—to understand the framework and
why attacks that leverage these meta-messages are not admissible in practice.

Camenisch et al. [37] propose a variant of the UC framework that includes new concepts of
responsive environments adversaries, which must provide valid responses to modelling-related
queries before activating any new protocol or functionality. The concept of responsivity proposed
by Camenisch et al. [37] is general, and applies to many prior variants of UC.

Global Setup

Cryptographic protocols are often designed and analyzed under some assumption that all partic-
ipants have access to some global state that is trusted to have some basic security properties.
For example, the common reference string (CRS) and random oracle (ROM) [20] models are
such global trusted setup assumptions. The UC framework, however, fails to provide expected
security guarantees in the present of such trusted setup, with some natural protocols that meet
the strongest known composable security notions, and are still vulnerable to bad interactions with
rogue protocol that use the same setup.

Canetti et al. [39] extend the notion of UC security to recover its original intuitive guarantees
even in the presence of globally available setup. The new notion prevent bad interactions even in
the presence of adaptively chosen protocols that share the global setup. However, this extension
proves too strong, and realizing Zero Knowledge or commitment functionalities becomes provably
impossible even in the CRS model.

In an attempt to circumvent these impossibility results, Canetti, Jain and Scafuro [40] propose a
global-but non-programmable—random oracle in the Generalized UC framework, and show that
some basic cryptographic primitives with composable security can be efficiently realized in their
model.

Although this is a step towards recovering composability with trusted setup, the non-programmable
nature of their random oracle prevents many practical protocols from being proven secure in their
framework—for example, the canonical randomize-and-hash commitment scheme. Camenisch
et al. [34] study alternative definitions of a global random oracle, and show that these allow
the provably GUC-secure realization of a number of essential cryptographic primitives, including
public-key encryption, non-committing encryption, commitments, Schnorr signatures, and hash-
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and-invert signatures. Some of these results hold generically for any suitable scheme proven
secure in the traditional ROM, whereas others hold for specific constructions only. The results
include many highly practical protocols, for example, the folklore commitment scheme H (m|r)
(where m is a message, and r is the random opening information), which is far more efficient
than the construction Canetti et al. [40] could prove secure.

Quantum UC

The question of whether Universal Composability-style results hold in the presence of a quantum
adversary remains open. Unruh [86] first investigated it and proposes a quantum version of
the UC model which enjoys the same compositionality guarantees. The framework is given first
in terms of computational quantum UC security (restricted to BQP adversaries, environment,
and simulator), and then lifted to the statistical quantum UC case. Unruh further shows that
composition theorems analogous to the classical ones still work in this setting. Furthermore,
it is shown that every statistically classically UC secure protocol is also statistically quantum UC
secure. Such implications are not known for other quantum security definitions. As an application,
the authors prove that in this model statistically quantum UC secure oblivious transfer protocols
can be constructed from commitments and, as a corollary, we get that computationally quantum
UC secure protocols for general multi-party computation can be constructed from commitments.

4.2.4 Symbolic Models

Symbolic models, also known as Dolev-Yao models from their initial formulation by Dolev an
Yao [53] following Needham and Schroeder’s seminal work [65], have been an object of study
for more than 30 years. This family of models have demonstrated their usefulness in supporting
the design of protocols, by developing confidence and trust in their security, and enabling the
discovery of several attacks in widely-deployed protocol. The contents of this section are based
on [1, 44, 47, 23], and we refer the reader to these works for a further discussion.

Symbolic Models: A Primer

Unlike the computational model of cryptography, in which messages are broken down into their
constituent bits, and adversaries are probabilistic Turing machines (or similar low-level models of
computation, in the case of composable models), symbolic models instead consider messages
as elements in an algebra of terms, possibly refined by an equational theory. This essentially has
the effect of specifying the adversary not by how it can compute, but by what it can compute.
For a set of function symbols F, a set of names \ and a set of variables X, the set of valid terms
T(N, X, F) in that algebra is inductively defined as the set of names, variables, and function
symbols applied to other terms. Cryptographic primitives are regarded as perfect black boxes
modelled as function symbols in that algebra. Messages exchanged by the different parties in
a protocol are terms on these primitives (instead of bit strings), and the inference rules define
which messages can be computed (or derived) from an a priori given set of messages. Security
properties are also modelled formally.

As a simple example, consider the inference system shown in Figure 4.1, that contains 5 deriv-
ability rules corresponding to a symmetric encryption scheme, where = and y are terms.

The function symbols senc and conc denote symmetric encryption and (injective) concatenation,
respectively. This simple set of derivability rules encode that, for example, given two terms x and
y, the adversary can derive their concatenation conc(z,y) (rule CoNcl). Conversely, derivation
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Figure 4.1: Derivability rules encoding adversary knowledge in a symmetric encryption scheme.

rules CONCE-L and CONCE-R let the adversary derive each of the two subterms of a concatena-
tion from the concatenation itself (i.e. concatenation must be reversible). Rule SENC states that
an adversary that has knowledge of two terms = and y can derive the encryption of x under y.
Importantly, this model states (through the absence of a rule allowing the adversary to perform
the operation) that there is no way to recover neither = nor y from senc(z,y) alone. However,
the last derivation rule, SDEC, models the fundamental requirement that the message = can be
recovered, given its encryption senc(z, y) and the key v.

Inference systems such as the above model what an attacker can compute. However, the set of
inference rules does not always suffice to accurately model cryptographic primitives (and what
the adversary can learn from them). For example, in cases where the adversary gains informa-
tion not by learning new values but by observing the difference between two behaviours. For
example, the bitwise XOR operator or modular exponentiation are standard cryptographic primi-
tives that cannot be properly modelled by an inference system alone. Modern symbolic models
therefore extend the term algebra with a set of equations. For example, in the inference system
above, symmetric decryption can be modelled by introducing an explicit destructor sdec through
the following straightforward equation.

sdec(senc(x,y),y) = x.

In symbolic models, it is assumed that the adversary has access to all public information, and
can actively interfere with the communication between honest parties by blocking, intercepting,
modifying, delaying, or injecting messages . This is informally stated as “the adversary is the net-
work.” Any message sent by an honest party is assumed to have been received by the adversary,
and then dropped or forwarded to another party, possibly after modification. Also, any message
received is assumed to have come from the adversary. Furthermore, the adversary can imper-
sonate any party, as identities are assumed to be public. Of course, the adversary is restricted to
only compute terms that can be derived from the set of terms that are publicly known using the
rules of the specified term algebra and equational theory. The adversary can neither manipulate
the encryption’s bit representations nor guess ground terms.

Though less realistic than the computational model, the symbolic model is more manageable,
and well suited to show that a protocol is broken under the given assumptions about the attackers
capabilities. Most importantly, it makes it easier to build automatic verification tools.

Comparison with Computational Models

By treating cryptography and network messages as abstractly as they do, symbolic models intro-
duce an additional gap between model and reality. As such, security proofs in symbolic models
provide weaker real-world guarantees. If symbolic attacks often translate into practical real-world
attacks on protocols, symbolic proofs of security may very well miss practical attacks due to the
additional abstraction.
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In some cases, however, it can be shown, via computational soundness results for particular
symbolic models (for example, starting with Abadi and Rogaway’s seminal work [1]), that symbolic
guarantees imply computational guarantees under somewhat reasonable assumptions on the
cryptography. In most cases, however, fulfilling these additional assumptions (for example, that
encryption hides plaintext length) entails a practical cost that protocol designers are not willing to
take on.

Symbolic Models for Mechanized Security Reasoning

A paramount question in the field of symbolic modelling consists in determining if an adversary
can derive a certain term ¢, given an equational theory E and the set of terms S that she observes.
This derivability property is often denoted as S g t. The derivability problem is undecidable in
the general case, as the adversary can build an infinite set of terms: he can build terms of
unbounded size, and the protocol can be executed any number of times. However, the derivability
problem is easily decidable (in PTIME) for a very particular class of inference systems called local
inference systems. These systems satisfy that whenever S 5 t, then there exists a derivation of
t that only uses subterms in S U {t¢}.

There exist many automatic verification tools that can be used to evaluate the security of protocols
under the symbolic model, and they take different approaches to solve the derivability problem.

Bounded Model-Checking Tools. By bounding both the size of messages that the adversary
can generate and the number of executions of the protocol, it is possible to make the search
space finite in order to apply standard model-checking techniques. This allows the technique to
benefit from the fact that model-checking is fully automated an produces counterexamples if the
system fails to satisfy the specified property—illustrating the failure with an attack. The following
tools fall within this category.

FDR [66] This tool is a refinement checker for the communicating sequential processes (CSP)
algebra. It allows processes to be defined in a machine-readable version of CSP, and is
then able to check various assertions about these processes.

SATMC [84, 6] The SAT-based Model-Checker for Security Protocols and Security-sensitive Ap-
plications (SATMC) stems from a successful combination of encoding techniques originally
developed for planning with techniques developed for the analysis of reactive systems.
It has been successfully applied in a variety of application domains (security protocols,
security-sensitive business processes, and cryptographic APIs) and for different purposes
(design-time security analysis and security testing). SATMC strikes a balance between
general purpose model checkers and security protocol analyzers. It provides a number of
distinguishing features, including the ability to check the protocol against complex temporal
properties (e.g. fair exchange) or analyze protocols (e.g. browser-based protocols) that
assume messages are carried over secure channels (e.g. SSL/TLS channels).

General Model-Checking Tools. These tools bound only the number of executions of the pro-
tocol, and allow terms of arbitrary size to be manipulated by the adversary. Derivability in this
case is generally decidable—albeit NP-complete. The following tools fall within this category.

CL-AtSE [83] The main idea in the Constraint Logic-based ATtack SEarcher (CL-AtSE) consists
in running the protocol or set of services in all possible ways by representing families of
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traces with positive or negative constraints on the adversary knowledge, on variable values,
on sets, etc. Thus, each run of a service step consists in adding new constraints on the
current intruder and environment state, reducing these constraints down to a normalized
form for which satisfiability is easily decidable, and decide whether some security property
has been violated up to this point. CL-AtSE does not limit the service in any way except
for bounding the maximal number of times a protocol can be iterated, in the case such an
iteration is allowed in the specification. Otherwise, the analysis might be non-terminating on
secure services and only heuristics, approximations, or restrictions on the input language
could lift this limitation.

If a security property of the input specification is violated then CL-AtSE outputs a warning
(UNSAFE), some details about the analysis (e.g. whether the considered model is a typed
or an untyped one), the property that was violated (secrecy, for instance), statistics on the
number of explored states, and, finally, an ATTACK TRACE that gives a detailed account
of the attack scenario. If no attack was found then similar information is provided (but the
ATTACK TRACE).

OFMC [18] The On-the-fly model checker (OFMC) combines two ideas for analyzing security
protocols based on lazy, demand-driven search. The first is the use of lazy data types as
a simple way of building efficient on-the-fly model checkers for protocols with very large,
or even infinite, state spaces. The second is the integration of symbolic techniques and
optimizations for modelling a lazy Dolev—Yao adversary whose actions are generated in a
demand-driven way. The tool has proven useful to find all known attacks and discovered a
new one in a test suite of 38 protocols from the Clark/Jacob library in a few seconds of CPU
time for the entire suite.

Semi-Automated Verification. As discussed, the derivability problem becomes undecidable
when both the message size and number of sessions is unbounded, so no fully-automated tool
can perform symbolic analysis in the general case. However, other approaches—interactive or
semi-automated—can be used to provide partial support—either through user hints (or full inter-
action), or through the use of a ternary Secure/Don’t Know/Insecure output. The following tools
have been used to perform symbolic analysis. Some of these tools are general-purpose tools.

Isabelle [85] Isabelle is a generic proof assistant. It allows mathematical formulas to be ex-
pressed in a formal language and provides tools for proving those formulas in a logical
calculus. The main application is the formalization of mathematical proofs and in partic-
ular formal verification, which includes proving the correctness of computer hardware or
software and proving properties of computer languages and protocols.

Tamarin prover [16] The Tamarin prover is a security protocol verification tool that supports both
falsification and unbounded verification in the symbolic model. Security protocols are spec-
ified as multiset rewriting systems and analysed with respect to (temporal) first-order prop-
erties and a message theory that models Diffie-Hellman exponentiation combined with a
user-defined subterm-convergent rewriting theory.

TA4SP [17] The Tree automata based verification of security protocols (TA4SP) tool approxi-
mates the adversary knowledge by using regular tree languages and rewriting. For se-
crecy properties, TA4SP can show whether a protocol is flawed (by under-approximation)
or whether it is safe for any number of sessions (by over-approximation).
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Maude-NRL Protocol Analyzer (Maude-NPA) [71] Maude-NPA is an analysis tool for crypto-
graphic protocols that takes into account many of the algebraic properties of crypto-systems
that are not included in other tools. These include cancellation of encryption and decryp-
tion, Abelian groups (including exclusive-or), exponentiation, and homomorphic encryption.
Maude-NPA uses an approach similar to the original NRL Protocol Analyzer; it is based on
unification, and performs backwards search from a final state to determine whether or not it
is reachable. Unlike the original NPA, it has a theoretical basis in rewriting logic and narrow-
ing, and offers support for a wider basis of equational theories that includes commutative
(C), associative-commutative (AC), and associative-commutative-identity (ACU) theories.

ProVerif [25] This protocol verifier is based on a representation of the protocol by Horn clauses.
It can handle many different cryptographic primitives, including shared- and public-key cryp-
tography (encryption and signatures), hash functions, and Diffie-Hellman key agreements,
specified both as rewrite rules or as equations. It can handle an unbounded number of
sessions of the protocol (even in parallel) and an unbounded message space. This result
has been obtained thanks to some well-chosen approximations. This means that the ver-
ifier can give false attacks, but if it claims that the protocol satisfies some property, then
the property is actually satisfied. The considered resolution algorithm terminates on a large
class of protocols (the so-called “tagged” protocols). When the tool cannot prove a property,
it tries to reconstruct an attack, that is, an execution trace of the protocol that falsifies the
desired property.

StatVerif [73, 5] This automated verifier for security protocols extends ProVerif with construc-
tions which may used to model security protocols with global mutable state. In particular,
the kind of security properties which may be verified is the same as ProVerif, and the syntax
of StatVerif processes is an extension of the syntax for ProVerif processes with constructs
for modelling states.

Scyther [48] This tool is fully automatic, always terminates, and can provide three different re-
sults: verification for an unbounded number of sessions, attack, or verification for a bounded
number of sessions. It supports only a fixed set of cryptographic primitives (symmetric and
asymmetric encryption and signatures). It proves secrecy and authentication properties. A
version named scyther-proof generates Isabelle proofs of security of the verified protocols.

We note that SATMC, CL-AtSE, OFMC and TA4SP are back ends of the AVISPA framework
(AVISPA stands for Automated Validation of Internet Security Protocols). The AVISPA project
aims at developing a push-button, industrial-strength technology for the analysis of large-scale
Internet security-sensitive protocols and applications. It is a platform that offers different protocol
verification back-ends. In addition to the four tools mentioned above, the AVISPA framework also
comprises a translator tool, from a high-level specification language into a common intermediate
format to all the verification tools.

4.2.5 Beyond Black-Box Security

So far, we have discussed techniques and tools for modelling and security proofs in black-box
models, where the adversary has only limited access to a system—usually delimited by a set
of oracles (in the computational setting) or a set of derivability rules (in the symbolic setting).
Practical adversaries, however, may have access to much more information about a system than
their input-output behaviour, for example through side-channels [61, 62] or fault attacks [28].
Models in which the adversary has such powers are often called grey-box models.
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Although such attacks have been known to work in practice for a long time, formal models that
support reasoning about security in their presence are relatively recent. The development of au-
tomated, semi-automated, and interactive tools to reason about cryptographic security has been
partially motivated by—and is increasingly successful in—obtaining concrete security guarantees
on implementations and in models that take side-channels and perhaps other low-level attacks
into account. This aligns somewhat with the recent developments in real world cryptography [49]
mentioned above.

Almeida et al. [2] present a definitional framework for extending game-based security definitions
to account for potential leakage in any given model, and demonstrate how existing proofs for the
black-box game-based security notion can be extended into the corresponding grey-box model
by discharging only additional proof obligations about the leakage itself—rather than having to
consider a brand new proof. As part of this methodology, which has been applied to various con-
structions in various grey-box models (focusing mainly on timing and power side-channels), the
identification of a precise but reasonable model of what leaks during a cryptographic computation
is crucial.

In the context of FutureTPM, this leakage model would depend on the kind of TPM being consid-
ered, with a software TPM possibly offering the contents of its whole memory to a compromised
OS, and a hardware TPM being only vulnerable to the most advanced (and costly) physical at-
tacks.
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Chapter 5
Security modelling for TPM (and TEE)

We finally review existing (partial) security models for the TPM and other TEEs. We organise
this review by the functional components they cover, then by the threat and security model they
consider. We focus our review on literature that presents precise security models for the function-
alities they analyze. In most cases, unfortunately, the TPM and the functionalities it is meant to
provide have been modelled only informally, with little mathematical rigour. Many of the models
that we did find are designed to support machine-checking, rather than pen-and-paper proofs.
This gives our literature review an apparent bias towards formal methods, and reveals a signifi-
cant gap in the research literature. This gap also explains the apparent dearth of deep analyses
of TPM functionalities (other than those that require the development of novel cryptography, such
as DAA): it is difficult to analyse the security of the TPM if its security objectives have never been
clearly defined. We discuss this gap further in our discussion of the work to be performed as part
of Work Package 3. Ryan [74] presents a short survey of automated analyses of select TPM1.2
functionalities, many of which were carried out in the symbolic model.

5.1 Cryptography, Storage and Key Management

At the core of the TPM lies its collection of cryptographic primitives, which both rely on and sup-
port its key hierarchies—including its storage hierarchy. This section reviews models and analyses
of these two components.

Shao, Feng and Qin [75] develop a type-based framework to analyse the security of the TPM’s
Protected storage API in the same scenario where authorization is not used. They use it to show
that (part of) the TPM API cannot be misused to extract from the TPM the value of keys whose
FixedTPM attribute is set. The framework is defined to provide symbolic security guarantees, and
is limited to a very small subset of the TPM’s commands.

Zhang et al. [94] use Tamarin to model a large subset of the TPM’s key management API, in-
cluding key duplication and import, and search for proofs of symbolic secrecy and integrity for
duplicated and imported blobs. They find simple attacks. In particular, they note that the raw
TPM mechanisms cannot provide identification of the destination on duplication, or of the origin
of a blob import, which allows for breaks in authentication and secrecy. These attacks, rather than
identifying a break in the TPM specification, illustrate the need to consider fine-grained security
policies in the security models of TPM components.

Wang et al. [89] describe a formal game-based model of the TPM’s cryptographic support com-
mands in CryptoVerif, and a CryptoVerif-based proof of the fact that honestly-generated keys can
be used to securely encrypt or authenticate messages, even if the adversary can otherwise in-
teract with the TPM, including to create his own keys and to request encryptions under user keys
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(thereby modelling a worst-case scenario). Their model does not allow duplication, and considers
a single TPM (and therefore does not consider problems related to the migration of keys).

5.2 Sessions and (Enhanced) Authorization

If the articles discussed above focus on modelling the core properties of the TPM’s hierarchies,
they abstract away the TPM’s authorization mechanisms, which enforce usage control on TPM-
protected objects. Instead, the articles above place themselves in a pessimistic scenario where
all keys can be used by the adversary. If this is a good abstraction to analyse the security of
the protected storage mechanism in isolation, it does very little to support the verification of
applications that make use of that protected storage. In particular, such an abstraction lacks the
flexibility needed to allow controlled usage of cryptographic functionalities in larger protocols. We
now review existing models of the TPM'’s authorization mechanisms, for TPM1.2 and 2.0.

Chen and Ryan [42], in the first attempt at defining security for (part of) the TPM, model TPM1.2’s
authorization mechanisms and find that a naive treatment of the authentication data (authdata)
used to access objects can lead to complete usurpation of the TPM’s secure storage in multi-
tenant scenarios, even when encrypted sessions are used. They also prove using ProVerif sym-
bolic security properties (authentication and secrecy) of a modified version of the protocol, which
is used as part of TPM2.0’'s Enhanced Authorization mechanism. Delaune et al. [51] propose
more general notions of authentication for TPM1.2’s session mechanism as properties of its API,
and show that they are sufficient to capture known attacks and verify fixed APIs.

Wang, Qin and Feng [88] formalize TPM2.0’'s HMAC-based authorization sessions in CryptoVerif
and prove that they provide the expected authenticity properties: that the TPM only executes pro-
tected commands when called by a user who possesses the appropriate secret, and that callers
engaged in a protected sessions with a TPM can trust that execution of the commands indeed
occurred on the TPM upon receiving results. The contributions are limited to only HMAC-based
authorization sessions, and abstract away much of the complexity due to the TPM’s session
mechanisms being used for various purposes.

Shao et al. [76] produce a SAPIC model for a larger subset of TPM2.0’s Enhanced Authorization
mechanism, which includes a large subset of the policies (including PCR-based authorization,
policies based on counters stored in NVRAM, signature-based authorization), but abstracts some
of the object management away. They use Tamarin to obtain proofs of symbolic authentication
for most modes of authorization, and identify some cases where misuse is possible and needs to
be managed by careful usage of the TPM’s API.

5.3 Direct Anonymous Attestation

Direct Anonymous Attestation is the only cryptographic functionality that was developed specif-
ically for the TPM, which otherwise reuses standard cryptography wherever possible—although
sometimes in novel and somewhat untested ways. As such, DAA—taken in isolation—has been
the focus of much more attention than the rest of the TPM, leading to the development and re-
finement of complex models for its security. We describe this evolution below.

Brickell, Camenish and Chen [29] propose a security model of DAA, as well as its RSA-based
realization for TPM1.2. The proposed model is game-based, and is therefore difficult to use in
security proofs for larger systems that may involve parallel DAA instances, or compositions. A
ProVerif-based analysis by Backes, Maffei and Unruh [7], which considers the protocol’s security
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properties (and in particular the authentication guarantees it is meant to provide) finds possible
attacks on the join protocol, whereby anonymous credentials can be delivered to the wrong TPM.
A proposal for ECC-based DAA [30]-a version of which was to be included in the TPM2.0
specification—was formalized in ProVerif and its privacy properties analyzed in the symbolic model
under an additional symbolic assumption by Smyth, Ryan and Chen [78, 79]. This symbolic anal-
ysis was among the main drivers for the development of equivalence-based notions of symbolic
security—needed to express strong secrecy properties (equivalent to IND-CPA) and privacy prop-
erties such as anonymity and unlinkability. This analysis, which focuses on privacy properties
for which the host is trusted, is performed on a model of the cryptography that does not con-
sider the fact that DAA operations in the real TPM are split between the Host and the TPM
itself. Xi and Feng [90] formalize the TPM2.0 DAA-related APls in ProVerif and verify that all ex-
pected properties of the API are indeed met. They also propose a new notion of privacy—forward
anonymity—and show that, although it is not met by the API as specified—a small modification to
the API enhances the protocol to meet it. In particular, this failure of forward anonymity is in fact
related to a weakness that prevents reductions to the more standard assumptions [33].

However, these positive symbolic security results—by the very nature of the models they are
obtained in—fail to capture some important realistic attacks. Indeed, Bernard et al. [22] show that
existing models of security for DAA—including new simulation-based models introduced to analyze
the ECC-based version of Brickell, Chen and Li [30]-can be used to deem secure protocols that
are fully insecure. Bernard et al. [22] propose game-based security models for pre-DAA—usable
in a setting where the Host is trusted. A more flexible and realistic trust model is recovered
by Camenisch, Drijvers and Lehmann [35], who propose a UC-based security model for Direct
Anonymous Attestation. This shift to UC-based security models further enabled refinements of
the trust model, such as the consideration of the effect of compromised TPMs on the security of
uncompromised TPMs [36]. Camenisch et al. [33] propose modifications to the specification of
DAA in TPM2.0 that improves the overall security of TPM2.0 DAA (by weakening the assumption
on which the proof relies), and prove their security—including forward anonymity—in a UC-based
setting.

5.4 Applications of Trusted Computing

The main focus of the contributions discussed above was to develop security models for specific
TPM functionalities, and provide evidence that the TPM as specified meets those definitions of
security (or identify weaknesses). Although care is usually taken to ensure that the security
models and specified functionalities can be used to construct secure applications that rely on
TPM, those works discussed above do not discuss the suitability of the defined models to perform
such analyses. In this Section, we provide an overview of published works on models developed
to support this kind of analysis, both for general applications of trusted computing, and for specific
high-profile applications—such as BitLocker.

5.4.1 Applications of TCG TPM

Gurgens et al. [56] develop an automata-based model of TPM1.2’s functionalities—abstracting
away its cryptography—and use simulation-based techniques to explore the state space to iden-
tify security and practicability issues in four TPM-based scenarios: secure boot, secure storage,
remote attestation and data migration. The work focuses on defining and analysing the secu-
rity of applications that use the TPM, but the authors’ findings led to the identification of some
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usability issues and the addition of guidance notes and recommendations to the TPM specifica-
tion. The issues identified also guided design decisions during the development of the TPM2.0
specification.

Delaune et al. [50] propose a framework for the analysis of protocols that make use of the TPM’s
PCRs, and apply it to two PCR-based case studies: Microsoft’s BitLocker use of sealing to a
PCR value and a digital envelope protocol that allows a user to choose whether to perform a
decryption, or to verifiably renounce the ability to perform said decryption. The models devel-
oped are application-specific, but do illustrate the use of cryptography-aware verification tools in
applications where multiple TPM functionalities interact (in the case of BitLocker: PCRs, the stor-
age hierarchy, and Enhanced Authorizations). Yu et al. [92] develop a formal model of TPM2.0’s
HMAC-based authorization, and formally analyze its application to a DRM scenario. They find
that, although TPM2.0’s mechanism resists some of the attacks identified in this DRM context on
TPM1.2, other attacks are still present and require care on the application side.

5.4.2 Remote Attestation and Secure Execution

Fine-grained modelling of trust is needed to provide meaningful security guarantees in scenarios
that involve multiple TPMs—for example when considering key migration. Establishing such fine-
grained trust requires a remote attestation mechanism. Making use of it in security proofs and
arguments requires models that capture attestation mechanisms as part of the functionality. As far
as we are aware, no such models exist for the TPM itself-other than those developed by Glirgens
et al. [56] for the verification of remote attestation applications (rather than for the verification
of realisations of the underlying functionalities). We therefore review related literature for other
Trusted Execution Environments (TEEs), such as Intel SGX. This also includes models for Trusted
Execution.

Pass, Shi and Tramer [68] develop a formal model for a generic “attested execution” functionality,
and explore the expressive power of such functionalities. Based on this formalisation, they obtain
strong possibility and impossibility results on the kind of secure functionalities that can be realized
based on such attested execution processors. Although their definitions of attested execution is
in general not supported by the TPM, it may be possible to restrict the set of supported attested
functionalities to capture the TPM and reuse some of their formalism and results. Similarly, Sub-
ramanyan et al. [80] present a Cog-based formalization of ‘trusted abstract platforms’ (TAPs)
and formally show that TAPs implement secure remote execution, and that both Intel SGX and
Sanctum—two processors that support enclaves and secure execution—are indeed TAPs. Again,
the target of the formalization effort is not the TPM, but rather a TEE that does provide a secure
execution mechanism similar to enclaves.

5.5 Towards Quantum-Resistant TPMs

Ando et al. [4] take steps towards making the TPM quantum-resistant by integrating a QR hash
primitive into its design. In particular, they show how a stateful hash-based signature scheme
could be integrated into existing TPM designs as a drop-in replacement for currently supported
asymmetric signature algorithms using a reasonable amount of secure storage on the TPM to
prevent rollback attacks, where the adversary could roll the state back to force the reuse of a
one-time signing key. The paper presents security models for TPM cryptographic functionalities
that offload some of the storage to main memory. These models may be interesting as a basis to
further extend the security analysis in a quantum-resistant setting.
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Chapter 6

Conclusions and Planned Research

In Chapter 5, we have reviewed existing security models for the TPM and its functionalities and
applications. We have shown that a holistic security definition for the whole of the TPM func-
tionalities has not been provided so far. In other words, although formal security definitions for
some concrete TPM functionalities do exist, as well as for direct anonymous attestation protocols,
currently there is no security definition for the TPM as a whole, i.e., there is no formal security
definition for TPMs that describes all the security properties that a TPM must provide for each of
its functionalities.

Therefore, the provision of the first holistic security definition for the TPM is one the major goals
of the FutureTPM project. We note that such a security definition will be useful not only for
the analysis of quantum-resistant TPMs, but also for the security analysis of the current TPM
standard. Indeed, the security properties provided by the current TPM standard have mainly
been analyzed by considering each of its cryptographic functionalities in isolation. However, as
described in Chapter 2, interactions and interdependencies between the different functionalities
provided by a TPM exist, and therefore the security objectives of a TPM must be defined by
considering the TPM as a whole—and even considering multiple TPMs in some cases. Having
this holistic TPM security definition will subsequently allow us to reason about the security of
concrete TPM instantiations and to work towards providing a proof of their combined security.

In Section 6.1, we discuss the modelling techniques that can be used to create our TPM secu-
rity definition. As pointed out already in Chapter 3, providing such a security definition, as well
as analyzing and proving the security of a concrete TPM implementation, is not trivial. We dis-
cuss the main difficulties in Section 6.2. Finally, in Section 6.3, we discuss longer-term research
challenges related to TPM security modelling.

6.1 Modelling techniques to be used for FutureTPM

In Chapter 4, we have reviewed threat and security modelling techniques. Although threat mod-
elling (as reviewed in Section 4.1) is not directly relevant to the modelling challenges we face
in developing a holistic security model for the TPM, it is important to precisely understand the
threats each of the TPM instantiations will face in order to ensure that the developed security
model precisely captures those properties applications may rely upon. In particular, the threat
models identified in WP4 (using the techniques reviewed in Section 4.1 should inform the kind
of trust models (for example, whether some hosts can be trusted, or if some TPMs must be con-
sidered insecure in specific scenarios) and leakage models (for example, in some settings, the
adversary may have access to precise power consumption measurements that would be inac-
cessible in others) to be considered when defining what it means for a TPM to be secure.
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In order to create our TPM security definition, the FutureTPM project could use a symbolic or
a computational security model. As pointed out in Section 4.2, symbolic models of security are
often said to model cryptography as perfect and unbreakable, and are often well-suited to proving
that a protocol does not misuse its cryptographic primitives. A symbolic model does not imply a
guarantee of security, due to the gap between the formal model and the concrete implementation
of a protocol. Although an attack shown on the symbolic model directly translates to an attack
in the computational model, the converse is not generally true. Computational models capture
cryptography in a more fine-grained way as probabilistic computations and define the adversary
only by its complexity and its access to the system, but proofs in those models are much more
complicated. Our review of existing models for parts of the TPM shows that, where symbolic
models are used, combinations of TPM functionalities can often be considered (although none
of the models capture all functionalities at once). On the other hand, all studies carried out in
a computational model of cryptography consider only a single functionality, without considering
its interactions with any of the TPM’s other parts—even when interactions are significant, such as
between the Storage and Enhanced Authorization functionalities.

As described in Section 4.2, computational models can be game-based, simulation-based or
composable. The main advantage of composable models is precisely that they guarantee security
under composition, i.e., if the conditions specified in the model are fulfilled, once a protocol is
proven to realize an ideal functionality for a certain task, the protocol will still provide the security
properties defined by that ideal functionality when executed in arbitrary contexts. The composition
property is particularly relevant to define security for TPMs. We expect TPMs to be used in
different contexts and as building blocks of many different cryptographic protocols. Consequently,
it is vital that the security analysis and proof of a TPM remains valid when used in all those
contexts.

On the other hand, it must be remarked that the choice of one model to provide a TPM security
definition does not exclude the use of other models to define the security of TPM building blocks.
For example, consider that the security of a cryptographic task is defined in a composable model
by an ideal functionality, and consider a protocol that uses several cryptographic primitives as
building blocks. When analyzing the security of this cryptographic protocol and proving that it
realizes that functionality, typically one assumes that those building blocks fulfil their respective
security definitions, and these security definitions do not need to use a composable model like
the TPM security definition, i.e., they can use the game-based or the simulation-based model.
Therefore, it is likely that, when proving that a TPM fulfils our TPM security definition, we will use
security definitions for its building blocks in any of the computational models.

In short, we will likely develop both symbolic and computational models, the former providing a
quick way of testing theories an validating design choices on abstractions of the TPM, and the
latter allowing for a more precise modelling of cryptographic functionalities. Our holistic secu-
rity model for the TPM will likely be expressed in a composable framework (either UC or one
of its variants), in order to more easily support reasoning about parallel compositions of TPMs
and about the security of arbitrary applications. However, we will likely also develop simulation-
based notions of security for parts of the TPM that can be considered independently. Indeed,
simulation-based notions provide a way of reasoning about security in a modular way, are very
lightweight compared to fully composable technique. In addition, there is significant tool support
for the development of semi-automated and interactive proofs in simulation-based settings, which
is currently lacking for fully composable models.
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6.2 Main Research Challenges

With this in mind, there are significant research challenges to be faced before a full security model
can be produced for the TPM, but also when designing the FutureTPM.

6.2.1 Design Challenges

First, we examine the Mandatory Requirements (as listed in Section 2.1 to identify research chal-
lenges that we will face in designing the FutureTPM to integrate quantum-resistant cryptography
in its operations.

Secure Hybrid Hierarchies

Considering Mandatory Requirement 2, the Future TPM should allow support for some classically-
secure primitives and protocols. This poses an interesting design challenge if we are to keep the
FutureTPM as close as possible to current designs while supporting both classically-secure and
quantum-resistant cryptography: keys in the hierarchies are generated from seeds installed on
the TPM during fabrication, that cannot—except for the Storage seed-be replaced. However,
using the same seed as the root of trust for both classical and quantum-resistant hierarchies
may become problematic if not carefully managed. Indeed, a quantum-capable adversary with
platform access may be able to perform classical cryptographic operations based on the seed
and extract its value from observed results.

Designing and analyzing—in isolation—the security of a hybrid hierarchy mechanism will be nec-
essary in order to meet Mandatory Requirement 2 fully.

FutureTPM-backed Quantum-Resistant TLS

Mandatory Requirement 31 requires that the FutureTPM project "provide a cryptographic library
with TPM-backed keys implementing TLS with QR algorithms.” Although a draft exists for a
quantum-safe version of TLS 1.3 exists, it may be necessary for members of the project to get
involved in designing or refining proposals to ensure they are compatible with the choices of
primitives made for FutureTPM, or at least to stay aware of the directions taken by the wider
community of interest surrounding cryptographic standards.

6.2.2 Modelling Challenges

The task of defining the security of a TPM will face challenges of scale. However, it will also face
concrete challenges related to the specific nature of the TPM.

Trust levels. As explained in Chapter 3, our TPM security definition will need to give the adver-
sary the ability to corrupt a TPM. There can be different levels or states of corruption, from
a fully corrupt TPM to a fully trusted TPM. The security definition must state the security
properties that the TPM must provide under each of the states of corruption. Because a
TPM provides a large number of cryptographic functionalities, we foresee that our security
definition will need to consider the case in which the adversary corrupts one or more of the
functionalities while the remaining ones remain uncorrupted. We note that some compos-
able frameworks have specific provisions to model different levels of trust. For example,
GNUC [59] defines trust hierarchies and hierarchical corruptions.
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Split parties. As explained in Chapter 3, in some cryptographic protocols that use a TPM, the
TPM is embedded into a host party that performs some operations on its behalf. In the
security definition for that protocol, it is necessary to give the adversary the ability to (fully
or partially) corrupt the host, while the TPM remains trusted. On the other hand, the host
and the TPM should not be considered fully independent parties. The main reason is that
typically, when two parties are independent, both of them have access to the network inde-
pendently of each other, while a TPM relies on the host in order to be able to access the
network and communicate with other parties. Consequently, the host and the TPM consti-
tute a “split party”. In order to model security for split parties, the FutureTPM project could
follow some of the security definitions for DAA protocols, which are reviewed in Section 5.3.

Shared State. Some cryptographic functionalities provided by the TPM may share some infor-
mation internally, such as secret keys or state information. Some of them may also use
a common global setup. If two cryptographic protocols share state, and their security has
been proven considering each of them in isolation, their security properties may no longer
hold. The obvious solution to this problem would be to redo the security analysis for those
two protocols combined. Ideally, cryptographic protocol design should be modular, and
a protocol should be built by composing other cryptographic primitives and protocols as
subroutines. Modular design facilitates security analysis, but shared state remains an is-
sue. Some composable models describe sufficient conditions for protocols to be securely
composed even in the presence of shared state [41, 39]. It remains to see whether these
general composability results will apply to the TPM, or whether novel, more precise notions
will be needed.

Multi-user setting and policies. The TPM security definition must take into account that a sin-
gle TPM can be used by multiple users concurrently. Furthermore, there may be different
categories of users regarding how they can use the TPM. In general, each user may have
its own authorization policy towards the TPM. Therefore, the security definition will need to
incorporate a family of usage policies.

This list of challenges is not complete. It is difficult to foresee in advance all the possible ob-
stacles that the FutureTPM project will encounter when defining and analyzing the security of
TPMs. Addressing these challenges will require in part the use of existing techniques, but it could
also need the extension or enhancement of existing security models, particularly for the case of
protocols that share state.

6.3 Other Research Questions

In addition to the main research challenges discussed in Section 6.2, the following research
problems could also be explored: although answering them is not critical to the successful de-
velopment of a security model for the TPM, they would provide robust foundations for future
developments of a similar nature, and support—through a deeper understanding of security for
trusted computing in the presence of quantum-capable adversaries—a more sustainable way of
developing security standards.

6.3.1 Quantum UC

As noted in Section 4.2.3, the question of whether the composition theorems provided by com-
posable models still hold in the presence of a quantum adversary remains open. A natural and
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very ambitious research direction would be to give an answer to this question, by providing a
composable model that considers quantum adversaries with a composition theorem similar to the
ones provided by composable frameworks that consider classical adversaries. Such a compos-
able model would benefit research on quantum-resistant cryptographic protocols in general, not
only quantum-resistant TPMs.

We remark that this could also impact the level of quantum security that our FutureTPM is proven
to achieve. As can be seen, even if each of the cryptographic primitives implemented in the
FutureTPM are proven to attain superposition-based quantum security (QS2, as defined in Sec-
tion 2.3 of deliverable 2.1), if our TPM security definition is not in a security model that con-
siders the adversaries used in superposition-based quantum security definitions, then our proof
that the FutureTPM fulfils our TPM security definition will not be a proof that our TPM provides
superposition-based quantum security.

6.3.2 Tool support for mechanized UC proofs

Although some UC proofs have been formalized (for example, by Haagh et al. [57]), this was
achieved by first proving, with pen-and-paper, a reduction stating that a simulation-based result
was sulfficient.

In general, general proof assistants—or even those specialized to cryptography such as EasyCrypt
or FCF—should be able to capture UC notions, at a significant cost in proof complexity. At present,
there is no tool for mechanizing cryptographic security proofs that supports UC natively.
Developing such a tool would be a valuable contribution in itself, and could greatly contribute to
the success of the analysis of a significant part of the FutureTPM design. However, another viable
alternative would be to encode details of UC frameworks in such proof assistants in a systematic
way—which would enable the mechanized proving of generic reductions such as the one used by
Haagh et al.

6.3.3 Security models with side-channels

Leakage-resilient cryptography is an active research area that aims at bringing the abstract mod-
els and definitions that are commonly used to define security of cryptographic tasks closer to the
real world where the cryptographic algorithms and protocols are run by capturing side-channels
in security definitions.

In many FutureTPM deployments, considering attackers that are able to perform side-channel
attacks on a TPM is reasonable. Therefore, providing a leakage-resilient definition of security
for TPMs is an interesting goal. This security definition could consider leakage-resilience for
one or more of the TPM functionalities. To realize such a definition, the FutureTPM will require
cryptographic primitives and protocols that are both quantum-resistant and leakage-resilient for
those functionalities.

6.3.4 Minimal hardware support for advanced trusted computing function-
alities

The TPM—-and the FutureTPM—do not support secure execution in general. ARM TrustZone, Intel
SGX and Sanctum are architectures that support secure execution, but are also much more com-
plex, and suffer from a much thinner interface between the adversary and the secure processor—
with the same chip and shared resources being used for the execution of trusted and untrusted
code.
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An interesting research question would then be to identify a minimal set of functionalities that
would enable the TPM to support secure execution of arbitrary code—in the same sense as real-
ized by Intel SGX, but with much stronger isolation guarantees.
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FUtureTPM

Chapter 7

List of Abbreviations

Abbreviation
AlIK

Translation
Attestation ldentity Key

CAPEC Common Attack Pattern Enumeration and Classification
CRS Common Reference String

CSP Communicating Sequential Processes
CWE Common Weakness and Enumeration
DAA Direct Anonymous Attestation

DFD Data Flow Diagram

EA Enhanced Authorization

ECC Elliptic Curve Cryptography

EK Endorsement Key

KDF Key Derivation Function

MVP Minimum Viable Product

NV Non-Volatile

NVRAM Non-Volatile Random-Access Memory
OFMC On-the-fly model checker

OWASP Open Web Application Security Project
PCR Platform Configuration Registers

QR Quantum-Resistant

QSH Quantum-Safe Hybrid

RM Resource Manager

RNG Random Number Generator

TAB TPM Access Broker

TAP Trusted Abstract Platform

TCTI TPM Command Transmission Interface
TEE Trusted Execution Environment

TLS Transport Layer Security

TPM Trusted Platform Module

TSS Trusted Software Stack

uc Universal Composability

VM Virtual Machine
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