
D3.2
First Report on the Security of the TPM

Project number: 779391
Project acronym: FutureTPM

Project title:
Future Proofing the Connected World: A Quantum-Resistant
Trusted Platform Module

Project Start Date: 1st January, 2018
Duration: 36 months

Programme: H2020-DS-LEIT-2017

Deliverable Type: Report
Reference Number: DS-LEIT-779391 / D3.2 / v1.1

Workpackage: WP 3
Due Date: 1st March, 2019

Actual Submission Date: 13th June, 2019

Responsible Organisation: SUR
Editor: François Dupressoir

Dissemination Level: PU
Revision: v1.1

Abstract:

In this report, we discuss issues related to modelling and rea-
soning about trust, usage and authorization policies, and the
TPM’s cryptographic primitives, protocols, and realization of
access control.

Keywords: TPM, trust, authorization

The project FutureTPM has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 779391.

D3.2 - First Report on the Security of the TPM

Editor

François Dupressoir (SURREY)

Contributors (ordered according to beneficiary numbers)

Nada El Kassem, Liqun Chen (SURREY)
Sofianna Menesidou (UBITECH)
José Moreira (UB)
Georgios Fotiadis (UL)
Paulo Martin, Leonel Sousa (INESC-ID)
Nikos Koutoumpouxos (UPRC)
Thanassis Giannetsos (DTU)

Disclaimer

The information in this document is provided as is, and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The content of this document reflects only the author‘s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

FutureTPM D3.2 PU Page I

D3.2 - First Report on the Security of the TPM

Executive Summary

This deliverable reports on current progress towards developing models, proof techniques and
proofs of security for the TPM as a whole and its applications, as embodied in the FutureTPM
use cases. We tackle issues of trust, authorization and usage policies, and of cryptographic
realizations.

We define a framework for trust modelling in complex applications whose security and privacy
requirements are achieved—at least partially—using TPMs. Our approach combines predicate-
and diagram-based trust modelling techniques to capture trust that emanates from components
and their interactions.

We also give an overview of a policy and usage modelling framework that could serve as a bridge
between the trust model, the analysis of applications security at a high-level, and the analysis of
low-level details of the TPM specification.

We report some progress towards the development of provably secure DAA schemes based on
quantum hardness assumptions. However, we do not claim the proposed scheme is appropriate
for inclusion in the FutureTPM, simply using it as evidence of (partial) realizability, and as a record
of relevant proof techniques.

Finally, we use recent analyses of the interactions between the TPM’s session and authorization
mechanisms, backed by older analyses of the TPM’s mechanisms for trust—including the DAA
protocol—and of some privacy-oriented use cases to argue that the TPM as currently specified
provides insufficient functionality to both bootstrap trust in a trustless software environment and
support privacy.

We view these issues with the current specification as opportunities to develop sound and solid
theoretical foundations for Trusted Computing, that could support the principled design of the next
specification, and identify possible directions for these models to develop, in line with the choices
made for trust and usage modelling.

This points to the need for the TPM to be modelled and analysed as a whole, rather than as the
sum of independent parts, in order to properly capture possible interactions between different
uses of the same cryptographic material.

FutureTPM D3.2 PU Page II

D3.2 - First Report on the Security of the TPM

Contents

List of Figures V

List of Tables VI

1 Introduction 1
1.1 Methodology . 1
1.2 Structure of the Report . 2

2 Trust Models 3
2.1 Trust Modelling Languages . 3
2.2 A Trust Modelling Framework for FutureTPM . 4

2.2.1 Trust Assumptions and Security & Safety Requirements 5
2.2.2 Formal Trust Model . 7

2.3 State Diagrams . 14
2.3.1 Reference Scenario 1 — Secure Mobile Wallet and Payments 15
2.3.2 Reference Scenario 2 — Personal Activity & Health Kit Data Tracking . . . 16
2.3.3 Reference Scenario 3 — Device Management 20

3 Policy Modelling 23
3.1 Overview of the Modelling Approach . 23
3.2 Identified Limitations in Current HSA Technology 26

4 Cryptography for the TPM 28
4.1 A Provably-Secure Lattice Based Direct Anonymous Attestation Scheme 28

4.1.1 Results . 29
4.2 Towards Mechanisms for Bootstrapping Trust with Privacy 30

4.2.1 DAA Authentication Attacks . 30
4.2.2 A Hierarchy Authentication Attack . 30
4.2.3 Bootstrapping Trust . 31

5 Conclusion 34

6 List of Abbreviations 35

References 40

A Hardware Security Anchors in Malicious Cloud Scenarios 41
A.1 Use Case: Private Conference Management System 42
A.2 Use Case: a Generic Social Network . 45

FutureTPM D3.2 PU Page III

D3.2 - First Report on the Security of the TPM

B Provably-Secure L-DAA 47
B.1 Lattice-Based Cryptography: Some Notations and Assumptions 47
B.2 Building Blocks . 48
B.3 The Proposed LDAA Scheme . 50

B.3.1 The Proofs θt, θh and π. 54
B.4 Security Model and Proof . 59

B.4.1 The Ideal Functionality F l
daa . 60

B.4.2 Proof Sketch. 64
B.5 Conclusions and Lessons Learned . 68

FutureTPM D3.2 PU Page IV

D3.2 - First Report on the Security of the TPM

List of Figures

2.1 Relationships between the axioms of Table 2.7. 12
2.2 Secure Mobile Wallet and Payments State Diagrams 15
2.3 Activity Tracking State Diagrams . 18
2.4 Device Management State Diagrams . 21

3.1 Policy Abstractions . 24

4.1 Generic TPM-based anonymous attestation. 29

B.1 Universal composability security model. 59

FutureTPM D3.2 PU Page V

D3.2 - First Report on the Security of the TPM

List of Tables

2.1 High-level predicates for trusted TPMs, systems and domains 8
2.2 Intermediate predicates representing abstract states necessary for TPM trust. . . 8
2.3 Intermediate predicates representing abstract states necessary for trust. 9
2.4 Predicates for TPM-specific trust requirements. 9
2.5 Predicates for the OS and the TPM-backed applications. 10
2.6 Predicates for recognition and identification of local and remote TPMs. 10
2.7 Axioms for constructing trusted systems and domains 11
2.8 Trust assumptions in FutureTPM use cases. 13

FutureTPM D3.2 PU Page VI

D3.2 - First Report on the Security of the TPM

Chapter 1

Introduction

In D3.1 First Report on Security Models for the TPM, we identify a number of research challenges.
In this Deliverable, we refine our research methodology on each of them and describe first results
towards security modelling and analysis for the TPM, both as a distinctive whole, and as a part of
larger secure systems.

We tackle three broad challenges in modelling and analysis:

Trust Modelling Our use cases, and applications of the TPM and Trusted Computing more gen-
erally, are supported by complex networks of trust, where resources are shared between
mutually distrustful processes and systems. This complex network of trust is an integral part
of the security model for the TPM, and our security results and proofs should be fine-grained
enough to support—at least—reasoning about the security of our Use Case applications.
The right trust model and modelling language will not only allow us to express fine-grained
trust assumptions about the TPMs, Hosts and third parties in the system, but will also allow
us to verify that trust, through dynamic monitoring or enforcement;

Policy Modelling Interactions with the TPM are subject to complex user-defined policies. Some
usage patterns will be secure, when others will trivially allow an adversary with any soft-
ware access to the platform to extract application secrets from its TPM, or break its integrity.
Defining security for the TPM as a distinctive whole will therefore require us to first identify
usage scenarios we wish to be able to prove security in, where security includes the correct
implementation of the TPM’s policy enforcement. At the same time, even knowing that the
TPM correctly enforces its access control, reasoning about the security of high-level appli-
cations will require the ability to check that a particular policy—or complex set of policies set
by multiple users—do indeed guarantee that secrets remain secret, and that high integrity
data does not get modified without detection.

Cryptography Finally, with the TPM’s interfaces better defined, it is necessary to define secu-
rity models for the whole of the TPM, whose complex functionalities are made even more
complex by their mutual interactions. In addition, there are some interesting challenges
in modelling and proving security for individual functionalities in isolation—especially in a
quantum-resistant setting.

1.1 Methodology

These aspects have so far been investigated by mainly independent teams, supporting fine-
grained interactions with other Work Packages in the project as needed. Since refined models

FutureTPM D3.2 PU Page 1 of 68

D3.2 - First Report on the Security of the TPM

of trust and usage policies—and languages to express them—are necessary to construct the
functionality interface for the TPM, we focus the modelling and proof effort for the TPM itself on
developing models and proofs for its more complex cryptographic components, and its Direct
Anonymous Attestation Mechanism in particular.

Throughout, contributions are mainly guided—initially—by use cases of import to the project.
Other interesting applications, which leverage particular aspects of the feature being modelled
or analysed are sometimes used to ensure all details are captured, and to identify places where
current trusted computing practice can be improved, instead of simply being systematized.

1.2 Structure of the Report

Chapter 2 reviews trust modelling languages and describes a candidate language to serve as the
interface between the monitoring and enforcement activities of WP4, and the security analysis of
WP3. In Chapter 3, we then review policy modelling and start shaping the interactions between
the security models and proofs fo the TPM, and the security models and proofs for systems that
make use of it. Chapter 4 reviews the development of security proofs for core cryptographic
constructions central to the TPM, and considers aspects related to the authorization and trust
mechanisms provided by the TPM as currently specified, and their apparent lack of robustness
against the compromise of a single TPM. Finally, Chapter 5 summarizes our findings, identifies
remaining gaps, and scopes further research to be conducted.

FutureTPM D3.2 PU Page 2 of 68

D3.2 - First Report on the Security of the TPM

Chapter 2

Trust Models

In order to provide the FutureTPM project’s envisioned services with the appropriate levels of
security, privacy and assurance, we need to define trust models that are able to capture the
complex relationships between all involved entities and components. This model must not only
capture the FutureTPM and the applications (and use cases) that rely on it, but also the envi-
ronment in which they operate, which may involve an arbitrary number of untrusted third-party
entities and assets, as described in D1.1 [24]. We leverage several modelling languages and
techniques in combination, to capture assumptions and models of TPM and host operations, and
their interaction with the surrounding entities. This combination allows us to express fine-grained
trust assumptions in a “top-down” manner—starting from the description of the application’s trust
domain, and iteratively refining it to model internal interactions between the entities involved, and
the specific operations performed by each device). Such fine-grained trust assumptions—once
expressed—can be used to precisely delimit the contextual interactions under which the TPM’s
security guarantees are proved to hold (as part of WP3), and can be monitored, or even partially
enforced, through the Control-Flow Attestation Toolkit to be developed as part of WP4.
In particular, the trust models we define here can be refined into attestation policies to be enforced
by the Risk Assessment framework, ensuring that all devices perform all expected operations at
all levels, as has been described in D4.1 [25]. More detail of this refinement process, including
strategies and policies for the enforcement and monitoring of trust in a TPM-backed system, will
be given in D4.2.
We first review existing techniques and languages for trust modelling. We then describe our
framework for modelling trust as part of the FutureTPM project. Finally, we instantiate that frame-
work to all three FutureTPM use cases.

2.1 Trust Modelling Languages

Trust modelling languages are used to formally define the level of trust of each entity in the
operational environment. By this definition, these languages can focus on different aspects of the
overall system execution in an attempt to better express the properties of interest to be achieved.
Based on the requirements of the use cases envisioned in the context of FutureTPM, several
languages have been identified that could be used to formally define the desired notion of trust in
TPM equipped devices.

• Predicate Based Language [51]: This language is based on a predicative system of math-
ematical logic. Firstly, an informal problem statement is created that will define the exact
requirements (i.e., trust assumptions) needed to patch any known problems so that a device

FutureTPM D3.2 PU Page 3 of 68

D3.2 - First Report on the Security of the TPM

can be effectively identified as trusted. Then a set of specific predicates is constructed with
each one of them mapping to a previously defined requirement. With this in hand, a set of
axioms is finally derived from the informal problem statement, that practically glues together
the predicates in a way that best represents the “chain of trust” that needs to ensured. This
way, the problem of identifying the trustworthiness of an entity is modelled and quantified
based only on the properties that are of interest in the specific use cases (that, in turn,
leverage specific TPM functionalities); thus, allowing for a more fine-grained expression of
the trust policies to be deployed.

• Diagram Based [18, 45]: Diagram-based models are used to represent trust relationships
between interacting entities. Usually their purpose is to investigate how trust is propagated
throughout a network or a hierarchy of entities by assessing the trust levels of each com-
ponent and by identifying the types of strong trust relations (federations) that need to be
established among the different entities in the system. This enables the representation of a
“Web of Trust”, by leveraging tree-like structures, that needs to be established and contin-
uously monitored and can serve as the basis for concluding on stronger arguments about
the system’s design-level trustworthiness.

• Algebra Based [3, 36]: Algebra-based languages are often used in conjunction with the
previously described diagram-based models. Once again they focus on trust relationships,
that need to be established between interacting entities (rather than the trust modelling of
the execution of a deployed platform), following a more formal modelling approach with
varying levels of detail. These languages aside from static trust relationship estimates also
include protocols to dynamically update the quantitative values used for expressing the
federated trust, among entities, based on experience factors.

2.2 A Trust Modelling Framework for FutureTPM

In the context of FutureTPM, the goal is to observe, model and monitor not only the trust level of
each TPM-equipped platform but also the strong trust relations that must be established among
interacting entities. This requires the consideration of different aspects in each case; for instance,
trusting a TPM first requires trusting that it operates correctly, and in particular that sequences
of TPM commands are executed correctly, while ensuring that the interactions between attested
entities is secure is required in ensure to maintain the trust between them. Thus, the best ap-
proach is to use a combination of appropriate modelling languages; namely, the predicate and
diagram-based languages. The motivation behind this design choice is that predicates can better
serve the modelling of the trusted execution of TPM-equipped devices (at device level), based
on both behavioural properties and low-level concrete properties about the entities’ configuration
and execution, while diagram-based models can enable the expression of the trust federations
(network level) that need to be established and maintained to support trust in distributed appli-
cations. Overall, the goal is to describe the chain of trusted interactions that need to take place
between entities assuming the correct state of each (based on the necessary and sufficient iden-
tified predicates and axioms).

The models we describe here will only provide a high-level representation of the networks of trust
that need to be established as part of the security models for our applications. For instance,
our models (see Section 2.3) contain abstract states, such as “Device Integrity”, that express
high-level assumption on the attestation state of a device that must be fulfilled before making use
of specific TPM functionalities. In order to construct complete application-specific models, such

FutureTPM D3.2 PU Page 4 of 68

D3.2 - First Report on the Security of the TPM

assumptions will need to be refined, using additional predicates that can specify, for instance,
the types of properties that should be attested. We will investigate these low-level predicates,
and express them in detail in the context of WP4 (D4.2) as part of the formal modeling of the
Control-Flow Attestation Toolkit and its internal attestation policies [25].

The remainder of this chapter follows this top-down approach. First, we identify the common
security and safety requirements we aim to achieve with limited trust. Then, we define a semi-
formal and high-level trust model in which to describe security and safety of devices and networks,
using predicates and state diagrams. Finally, we give concrete representation, in this model, of
the FutureTPM use cases. These are expressed as a combination of predicates, axioms and
state diagrams.

2.2.1 Trust Assumptions and Security & Safety Requirements

A number of requirements need to be met in order to establish and maintain strong guarantees
of trust in a platform, both in the context of the envisioned use cases and for trusted computing-
based applications in general. For instance, a common requirement is that each device in the
system must be equipped with hardware support for remote attestation. This requirement serves
to establish a hardware-based root-of-trust, which cannot be compromised withut physical access
to the device, and on which the attestation process will both measure the device’s configuration
and communicate those results securely and privately to other devices in the system. Further-
more, we require that the device is resistant to non-invasive attacks (such as side-channel attacks,
or non-invasive fault injection) while the system should be able to identify nodes that have been
offline for a long time and could be victims of more invasive exploitation attempts [62] (such as
micro-probing or reverse engineering).

Besides the traditional data confidentiality, integrity and availability, trusted systems must fulfill
the following security and trust requirements:

Memory-Safety. Memory safety is a crucial and desirable property for any device loaded with
various software components. Its absence may lead to software bugs but most importantly
exploitable vulnerabilities that will reduce the trust level of the device running the problem-
atic software. In a nutshell, all accesses performed by loaded processes/services in the
underlying memory map of the host device need to be “correct” in the sense that they re-
spect the: (i) logical separation of program and data memory spaces, (ii) array boundaries
of any data structures (thus, not allowing software-based attacks exploiting possible buffer
overflows), and (iii) don’t access the memory region of another running process that they
should not have access to. Memory-safety vulnerabilities can be detected in design-time
with static code analysis techniques [10, 15] and during run-time [57] with the well known
tool Valgrind [50] that is designed to identify memory leaks of an executable binary. For
instance, memory safety will prevent information from leaking in a security sensitive appli-
cation that uses a TPM.

Type-Safety. Type-safety is closely related to memory safety as it also specifies a functionality
that restricts how memory addresses are accessed in order to protect against common
vulnerabilities that try to exploit shared data spaces (i.e., stack, heap, etc.). Type-safety
is usually checked during design-time with most programming languages providing some
degree of correctness (by default) paired with static code analysis tools that might catch
some exceptions not covered by the language compiler (i.e., “fuzzing” tools or concolic
execution engines). However, type-safety can also be checked during run-time with the
possibility of identifying issues that the static method did not identify [14]

FutureTPM D3.2 PU Page 5 of 68

D3.2 - First Report on the Security of the TPM

Control-Flow Safety. Besides the aforementioned static methodologies that check the code and
the binaries for possible vulnerabilities and bugs, the executable binaries should be dynam-
ically checked for their proper functionality and execution during run-time. This is done
through control-flow attestation: All control transfers are envisioned by the allowed pro-
gram. This translates to no arbitrary jumps in the code, no calls to random library routines,
etc. This information is depicted by the allowed control-flow graphs (CFGs) that are cal-
culated prior to the deployment of a service and are used as a baseline of the normal
(trusted) sequence of execution states against which run-time control-flow footprints will be
assessed [2, 40]. The basic attribute that is required here is that the binary monitoring en-
tity (tracer), the attesting entity (prover) and the checking entity (verifier) are all operating
in a trusted mode and are in a state to correctly identify bad behaviour from the monitored
binary.

Operational-Correctness. This concept is an intermediate abstraction of control-flow safety. Be-
sides integrating the control-flow mechanism that was described before, it also checks for
the static state of the system and relies on the fact that a crucial part of the underlying ker-
nel is in a trusted state. The operational-correctness aims to provide a more holistic view of
the system by combining dynamic and static data collected by the FutureTPM Control-Flow
Attestation Toolkit [25] in order to produce guarantees on the operational trust state of the
system.

Cryptography. Having strong cryptographic primitives is a fundamental requirement of any se-
curity oriented system. What is needed towards this direction is a good source of entropy
that will be utilized in a secure pseudo-random number generator (PRNG) so that the keys
generated by the system are secure. To make good use of this source of entropy, we also
must ensure that the cryptographic primitives deployed in the TPM and related systems are
fit for purpose. Although in most cases, the security of cryptographic primitives is a matter
of design, the system’s cryptographically secure pseudo-random generator, which is used
in particular to generate keys, is often left to implementers, with potentially disastrous con-
sequences on the security of the whole system [49]. In the context of the FutureTPM, we
assume security against QS1 adversaries [21]. We note that analysing the cryptographic
primitives and their usage in the TPM and in the FutureTPM use cases is in scope of the
FutureTPM project, and discuss some aspects in Chapter 4.

Physical Security. TPMs are discrete hardware chips that interconnect with the Low Pin Count
(LPC) bus of the system through. The LPC interface can be subject to attacks from eaves-
dropping to injection. Many recent and old attacks [47, 48, 67, 4] have shown that through
the LPC interface, an attacker can spoof PCR values and steal sensitive data (like the
BitLocker disk encryption key), bypassing critical TPM trust guarantees. That is why the
physical security of both the device as a whole and the actual pins that connect the TPM on
the device motherboard should be carefully designed if the TPM is to be trusted. Another
option that has been investigated by [7, 38], is to constantly require each device to provide
a “heartbeat” attestation in a specific frequency. Because hardware attacks are time con-
suming and require that the device is taken offline for a considerable amount of time, the
TPM will not be able to provide the attestation messages timely. In this case, the device
should be considered as untrusted or partially trusted depending on the policies and the
trust requirements that are in place.

Definition 1. System Correctness & Trustworthiness: A system S is at a trusted state if and only
if all of the above requirements are successfully met.

FutureTPM D3.2 PU Page 6 of 68

D3.2 - First Report on the Security of the TPM

For the purpose of the FutureTPM project, some of the requirements are left out of scope, and
will be considered as explicit assumptions.

2.2.2 Formal Trust Model

In this section we will elaborate a formal trust model which directly maps to the requirements
and assumptions described previously. Based on the use of the aforementioned predicate-based
language, this model is split into three components: (i) the predicates which are essentially the
“words” of the language, (ii) the axioms which define how these predicates fit together to produce
meaningful trust statements, and (iii) the assumptions which are the predicates that are out of the
scope of the FutureTPM solution.

The predicates are meant to be the dictionary of the trust model that enlists each statement as a
word and pairs it with its meaning. They are split into six categories. The first one (Table 2.1) aims
to give a set of predicates that represent the final (and trusted) stages of the overall system and
network (trusted domain). These will be satisfied only when the system and the TPM-equipped
devices are trusted; if one precondition of these predicates fails then the system will be in an
untrusted state and no guarantees on the security posture can be verified. The second and
third set of predicates (Tables 2.2 and 2.3, respectively) represent intermediate states of the sys-
tem and the TPM-equipped devices. These intermediate states are meant to group together the
requirements in separate categories based on the previously described security and safety re-
quirements. For instance, the CryptoSafeTPM(T) represents requirements for the cryptographic
security of the TPM while the MSSystem(S) represents requirements related to the memory safety
of the system. Likewise, predicates in the fourth and the fifth categories (Tables 2.5 and 2.4, re-
spectively) represent the actual requirements that were fit into the aforementioned categories.
For example the DynamicAnalysisMS(A, S) predicate translates to the fact that application A
was tested dynamically for memory issues which in turn fits under the MSSystem(S) intermediate
state predicate. Finally, we use a separate category (Table 2.6) to capture such low-level predi-
cates on the configuration and execution properties of the system such as firmware running, the
version of its configuration file or presence of specific hardware properties, ports and network
interfaces, etc. It is separated from the other groups as it aims to cover local and remote identifi-
cation of a TPM with the target of modelling the trust of specific TPM functionalities considered in
the envisioned use cases (i.e., Direct Anonymous Attestation in the context of Personal Activity
and Health Kit Data Tracking).

The axioms (Table 2.7) define exactly how these requirements and their intermediate stages fit to-
gether in an overall model that leads up to the trusted state of a device or network. These axioms
glue together the low-level predicates, the intermediate predicates and the high-level predicates
according to the architecture described above. Each low-level predicate is defined to partially
satisfy the intermediate category it belongs to and each intermediate TPM or System predicate
builds up to the final TrustedTPM(T) and TrustedSystem(S) high-level predicates. For example,
the TrustedTracer(S) that defines the tracer running on system S is trusted, is required by the
intermediate predicate CFSSystem(S) that represents the control-flow safety of the system and
the CFSSystem(S) which in turn is needed by the TrustedSystem(S) predicate. This relationship
between the axioms can be seen in Figure 2.1 where each axiom (labelled by the letter inside
the brackets found in Table 2.7) points to its direct dependencies creating an axiom dependency
tree.

Finally, Table 2.8 describes the assumptions we do not intend on discharging, as they are our
of the scope of the FutureTPM use cases, where the focus is on specific TPM functionalities as

FutureTPM D3.2 PU Page 7 of 68

D3.2 - First Report on the Security of the TPM

identified in D4.1 [25]. More specifically, these are:

1. The physical security of the hardware;

2. The source of entropy of the system; and

3. The proper identification of the installed TPM.

We leave those as assumptions in this chapter, but note that some may be addressed during
the course of the project. In particular, WP5 may consider some aspects of physical security
(item 1), including hardware and software side-channels, and our analysis of TPM cryptography
will consider how trust can be bootstrapped to avoid impersonation of new TPMs by malicious
entities with access to other TPMs (item 3). We review some recent attacks related to this issue,
and discuss potential solutions to consider during the security analysis of the TPM’s mechanism
in Section 4.2.

Finally, we have to highlight that the security of the BIOS/Kernel/OS of the system is considered
as a prerequisite. If the kernel is approached as a monolithic system, then it should be assumed
that it is trusted in its whole since if even a single component diverges then the entire kernel is
deemed untrusted (TrustedSoft(S)). On the other hand, the kernel in the emerging edge- and
cloud-computing applications where everything is considered as a service, can also be seen as a
set of micro-services where only a specific set of them should be considered trusted in order for
the entire system to be at a correct state. This reduction of the trusted code base of the kernel can
introduce a chance for the tracing capabilities of the FutureTPM Control-Flow Attestation Toolkit
to monitor exactly those functionalities. Thus, the security of the BIOS/Kernel/OS of the system
is caught within the scope of the FutureTPM project depending on how this entity is considered.

Besides these considerations, we will also assume that the TPM itself satisfies memory-safety,
type-safety and control-flow safety. In other words: hardware TPMs are correct, secure and
tamper-resistant. With these given assumptions, the FutureTPM solution should be able to as-
sess, monitor and verify the trust level of a network of devices based on the following model.

Table 2.1: High-level predicates for trusted TPMs, systems and domains

High Level Predicates

TrustedDomain(D) The domain D composed of a set of TPM-enabled devices is trusted

TrustedSystem(S) The system S is trusted

TrustedTPM(T) TPM T is trusted

Table 2.2: Intermediate predicates representing abstract states necessary for TPM trust.

Intermediate TPM State Predicates

PhySecureTPM(T) TPM T is physically secure

MSTPM(T) TPM T has memory safety

FutureTPM D3.2 PU Page 8 of 68

D3.2 - First Report on the Security of the TPM

Intermediate TPM State Predicates (continued)

TSTPM(T) TPM T has type safety

CFSTPM(T) TPM T has control flow safety

CryptoSafeTPM(T) TPM T uses secure cryptographic primitives

VerifiedTPM(T) TPM T is verified and it is resilient against the Cuckoo attack.

Table 2.3: Intermediate predicates representing abstract states necessary for trust.

Intermediate System State Predicates

OPCorrectness(s)
The system S has operational correctness based on specific properties
and functions to be attested through the control-flow property-based attes-
tation toolkit of WP4

PhySecureSystem(s) System S is physically secure

MSSystem(S) System S has memory safety

TSSystem(S) System S has type safety

CFSSystem(S) System S has control flow safety

DatabaseCorrectness(S)
The database measurements of system S are correct and trusted by the
communicating parties.

Table 2.4: Predicates for TPM-specific trust requirements.

TPM Predicates

TrustedComm(T) The communication of TPM T with the TSS is trusted

TPM2Compliant(T) TPM T is compliant with the latest TPM2.0 specification

PhySecureLPC(T) The pins (LPC) connecting TPM T with the system are physically secure

SecurePRNG(T) The PRNG that TPM T uses is secure

PQCryptoAsymmetric(T)
The asymmetric cryptographic primitives that TPM T uses are post-
quantum secure

PQCryptoSymmetric(T)
The symmetric cryptographic primitives that TPM T uses are post-
quantum secure

FutureTPM D3.2 PU Page 9 of 68

D3.2 - First Report on the Security of the TPM

Table 2.5: Predicates for the OS and the TPM-backed applications.

System Predicates

TrustedSoft(S)
The (monolithic) BIOS/Kernel/OS that runs on a system S are
trusted

PartTrustedSoft(S)
Specific parts of the BIOS/Kernel/OS (ie microservices) that runs
on a system S are trusted

TrustedCFPA(S)
The attestation toolkit checking the control flow integrity of System
S is trusted

IntegrityCode(A, S)
In a system comprising of multiple applications, application A run-
ning on system S and using a TPM, has been checked for its
authenticity & integrity.

CompilerOpsTS(A, S)
All type safety related compiler options for application A running
on system S are enabled

StaticAnalysisMS&TS(A, S)
In a system comprising of multiple applications, application A run-
ning on system S and using a TPM has been put through static
code analysis for memory safety and type safety issues

DynamicAnalysisMS(A, S)
In a system comprising of multiple applications, application A run-
ning on system S and using TPM has been put through dynamic
analysis for memory safety issues

StaticAnalysisState(S)
The state of system S is checked against a set of policies for
allowed components to be installed in the device.

PhySecureCircuit(S) The circuits of the system S are adequately physically secure

Table 2.6: Predicates for recognition and identification of local and remote TPMs.

Local/Remote TPM Predicates

InstalledTPM(S, T) TPM T is installed on system S

ProvisionedTPM(S, T)

TPM T has been initialized and setup for system S (TPM Provisioning
includes: turning the TPM on, making sure it has an endorsement
key, making sure it has an endorsement credential, taking ownership
of the TPM, creating any initial keys and certifying these keys.)

IdentifiedLocal(T)

The local TPM T is securely identified and recognized as a legit TPM
by the end user. The TPM must be checked by the end user that it is
indeed installed on the system in order to prevent the Cuckoo attack
[51].

FutureTPM D3.2 PU Page 10 of 68

D3.2 - First Report on the Security of the TPM

Local/Remote TPM Predicates (continued)

TPMCredentialCert(T, I)
A TPM T is certified by issuer I during the join phase of the DAA
protocol.

Table 2.7: Axioms for constructing trusted systems and domains. The axioms directly map to the
informal model of the previous section.

Axioms

Ax01 R[t ← T], R[Sri ← Sr], R[s ← D] : TrustedSystem(s) ∧ TrustedTPM(t, Sri) ⇔
TrustedDomain(D), where ∀(si, tj) ∈ D

For every TPM t, from a set of secure TPMs T, the services Sri it provides, installed in all systems, and for every sys-
tem s (hosting a TPM) that belong to domain D: The domain D (comprising of all si hosting TPMs tj) is considered
trusted if and only if every system si and TPM tj are both trusted. This does not include the communication channel
between the devices.

Ax02 PhySecureSystem(S) ∧MSSystem(S) ∧ TSSystem(S)⇔ TrustedSystem(S)

A System S is trusted if and only if it has physical security, memory safety, type safety, control-flow safety and
operational correctness.

Ax03 DatabaseCorrectness(S) ∧ MSSystem(S) ∧ TPMCredentialCert(T, I) ∧ R[Sri ← Sr] :

PhySecureTPM(T) ∧ CryptoSafeTPM(T) ∧ V erifiedTPM(T)⇔ TrustedTPM(T, Sri)

A TPM T and the services Sri (encryption, signing, key management etc.) it provides, are trusted if and only if T
has physical security, secure cryptography and it is properly identified. These services include the functionality of
the FutureTPM reference scenarios.

Ax04 OpCorrectness(S) ∧ IntegrityCode(A, S) ∧ StaticAnalysisMS&TS(A, S) ∧
DynamicAnalysisMS(A, S)⇔MSSystem(S)

A system S has memory safety if and only if its applications (Ai) have operational correctness, code integrity and
they have been undergone static and dynamic analysis. Each application (Ai) is quantified and represented through
its internal control-flow path (CFPi). The collection of (CFPi∀Ai) constitute the overall control-flow graph of system
S (CFGS). Check Ax06.

Ax05 CompilerOpsTS(A, S)∧IntegrityCode(A, S)∧StaticAnalysisMS&TS(A, S)⇔ TSSystem(S)

A system S has type safety if and only if proper compiler options are set, the code is checked for its integrity and it
has also been undergone static analysis. Check Ax06.

Ax06 (R[cfpi ← CFP], CFG : cfpi ∈ CFG) ∧ CFSSystem(S) ∧ StaticAnalysisState(S) ∧
PartTrustedSoft(S)⇔ OpCorrectness(S)

A system S has operational correctness if and only if each monitored control-flow path CFPi, of a process i, is at-
tested against the set of expected and measured control-flow paths in the overall graph. The system must also have
control-flow safety, a partially trusted kernel (for verifying the correctness of the local control-flow attestation service)
and it should be checked for its currents state.

FutureTPM D3.2 PU Page 11 of 68

D3.2 - First Report on the Security of the TPM

Axioms (continued)

Ax07 TrustedCFPA(S)⇔ CFSSystem(S)

A system S has control flow safety if and only if the attestation toolkit is in a trusted state

Ax08 PhySecureCircuit ⇒ PhySecureSystem(S)

A system S is physically secure if its circuits are properly protected against tampering.

Ax09 PhySecureLPC(T)⇒ PhySecureTPM(T)

A TPM T is physically secure if its interface is properly protected.

Ax10 SecurePRNG(T)∧PQCryptoAsymmetric(T)∧PQCryptoSymmetric(T)⇔ CryptoSafeTPM(T)

A TPM T is cryptographically secure if and only if it has a secure PRNG and it uses safe PQ symmetric and asym-
metric primitives with the required configurations.

Ax11 ∀S, T ∈ LocalTPM : InstalledTPM(S, T)∧ProvisionedTPM(S, T)∧IdentifiedLocal(T)⇒
V erifiedTPM(T)

A TPM T is verified if and only if it is installed on system S, provisioned and identified by the end user.

Ax01

Ax02 Ax03

Ax08 Ax09

Ax06

Ax07

Ax10Ax05 Ax04 Ax11

General Axioms

RS Axioms

Figure 2.1: Relationships between the axioms of Table 2.7. The axioms are divided in general
axioms (yellow) and FutureTPM reference scenario axioms (green).

As is depicted in Figure 2.1, the axioms are categorized in “general” and “reference scenario”
(RS) axioms. This categorization provides further clarity in the defined trust models, and helps us
better describe the subsets of axioms that best express the requirements of the specific (TPM)
functionalities that each reference scenario requires. The arrows represent the trust chain that

FutureTPM D3.2 PU Page 12 of 68

D3.2 - First Report on the Security of the TPM

needs to be established in order to achieve the required trust assumptions; this trust chain com-
prises the general axiom representing the final (and trusted) stage of the overall system and
network (trusted domain), as the root node, and the intermediate predicates/axioms (as tree and
leaf nodes) required to be fulfilled for this general axiom to be true. As is also evident from Ta-
ble 2.7, in order to have the necessary guarantees that an axiom is true in a system, a number of
intermediate axioms need to also be valid. For instance, in order for a domain, (D), to be trusted
(Ax01) then all systems comprising this domain, (∀si ∈ D), must be trusted (Ax04) which in turns
requires that each system, si, has memory safety (Ax04), type safety (Ax05), operational correct-
ness (Ax06) and contro-flow safety (Ax07). Based on this approach, the following trust chains need
to be established for each reference scenario:

1. Reference Scenario 1 — Secure Mobile Wallet and Payments: This scenario requires
device integrity which is covered by OpCorrectness — Ax06, execution integrity which is cov-
ered by MSSystem(S) — Ax04 and symmetric cryptographic security which is covered by
PQCryptoSymmetric — Ax10.

2. Reference Scenario 2 — Personal Activity and Health Kit Data Tracking: This sce-
nario requires device integrity which is covered by OpCorrectness — Ax06, execution in-
tegrity which is covered by MSSystem(S) — Ax04, cryptographic security for both symmet-
ric and asymmetric cryptography which is covered by CryptoSafeTPM(T) — Ax10 and
DatabaseCorrectness(S) which is covered by TrustedTPM(T, Sri) — Ax03.

3. Reference Scenario 3 — Device Management: This scenario requires device integrity
which is covered byOpCorrectness — Ax06, execution integrity which is covered byMSSystem(S)
— Ax04 and cryptographic security for symmetric cryptography which is covered by
PQCryptoSymmetric — Ax10.

Table 2.8: Trust assumptions in FutureTPM use cases.

Trust Assumptions on Trusted Computing

PhySecureLPC(A) TrustedComm(A)

PhySecureCircuit(A) TrustedSoft(A)

SecurePRNG(A) InstalledTPM(S,A)

ProvisionedTPM(S,A)

Based on this trust modeling, we then proceed to also extract the state diagrams that best cap-
ture the trust relationships that need to be established between all interacting entities in each
reference scenario. Recall that the intuition behind using both types of trust modeling languages
(predicate- and diagram-based) is to be able to have a better representation of the trust assump-
tions in a “top-down” manner - starting from the description of the application’s trust domain, and
iteratively refining it to model internal interactions between the entities involved, and the specific
operations performed by each device. For the latter, the use of predicates (and the extraction of
the subsequent axioms) is better suited for capturing all the low-level system and behavioral prop-
erties that need to be guaranteed, in order for a system (hosting a TPM) to be trusted, whereas
for the former the use of state-based diagrams is more appropriate for expressing the (trust)

FutureTPM D3.2 PU Page 13 of 68

D3.2 - First Report on the Security of the TPM

relationships that need to be established between this hierarchy of systems/entities.

Thus, an inherent assumption is that both both categories (general & reference scenario axioms)
are needed in order for a TPM and in turn a domain of systems to be trusted; each state of the
following diagrams also assumes the trust level of each system which is expressed through the
aforementioned predicates and axioms. This information is derived by and provides a meeting
point with the next chapter where the functionalities of each reference scenario is analysed in
state diagrams. (Figures 2.2, 2.3, 2.4).

2.3 State Diagrams

We can now discuss instantiations of the modelling language discussed so far to the three Fu-
tureTPM reference scenarios. The discussions below focus mainly on modelling the trust re-
lations between the different entities in each of the system, with the specifics of device-level
low-level predicates to be defined in D4.2. Thus, the state diagrams shown below, model the
reference scenarios’ environment based on the core functionalities and the TPM commands (per
use case) identified in D4.1 [25].

As depicted in the following diagrams, we capture trust relations and the mechanisms through
which they are measured a sequence of states that best reflect the correct sequential execution
of core TPM functionalities of interest. Depending on the scenario, this may be sealing, unseal-
ing, trusted communication with third-parties, DAA, . . . These states are used to represent the
incremental construction of complex trust relations between multiple TPM-equipped platforms
and third-party servers, thus enabling the establishment of “chains of trust” among all conceptual
components and entities. In order to support the secure provision of the service under study, all
architectural entities must meet the requirements of their current states if overall security is to be
guaranteed; if any of the desired state is not achieved then overall security cannot be assured.

Furthermore, the “Execution Integrity” state, identified with a black colour, reflects the continuous
run-time monitoring and verification of the integrity of a software-based service running in the
deployed platforms. It essentially captures the requirement for TPM-based services to securely
attest to their integrity. This is achieved through the advanced remote attestation functionalities
offered by the Control-Flow Property-based Attestation Toolkit (CFPA) described in D4.1 [25] and
to be further refined in D4.2. This state, intuitively, serves to guarantee the integrity of the TSS
execution during run-time, especially against attacks that attempt to maliciously tamper with the
program’s control-flow [63, 31]. These types of attacks often try to exploit memory- [32] and
data-related vulnerabilities [20] to alter the execution path of the underlying system processes;
either by injecting new malicious code or by dynamically generating malicious programs based on
already existing benign code snippets [55]. Such Remote Code Execution vulnerbilities are mong
the most devastating, with pticularly significant consequences in the world of Trusted Computing,
since they can bypass static attestation techniques (whose application is depicted through the
“Device Integrity ”) by allowing the adversary full control of a platform after measurement of an
uncompromised configuration. The mechanisms that will be leveraged by the CFPA toolkit and
the trust models that will further refine the sufficient and necessary behavioural and execution
properties that need to be attested per use case, will be detailed in D4.2

FutureTPM D3.2 PU Page 14 of 68

D3.2 - First Report on the Security of the TPM

2.3.1 Reference Scenario 1 — Secure Mobile Wallet and Payments

Figure 2.2 below presents the two state diagrams of the main functionalities (i.e. sealing, unseal-
ing) of the Secure Mobile Wallet and Payments reference scenario.

Figure 2.2: Secure Mobile Wallet and Payments State Diagrams

The Sealing Operation (Figure 2.2 (a)):

Device Integrity: Integrity calculations of the applications installed on the TPM-equipped de-
ployed platform. Applications need to be attested against a whitelist of allowed and trusted
application instances; any deviation will result in the TPM not allowing the further execution
of the system operations.

Start Session: Start a trial session in order to calculate the Digest Policy (based on the cor-
rect state of the installed applications) and then create the necessary authorization key for
connecting to the Free POS server.

Calculate Digest Policy (PCR): Checks the policy digest with the Device Integrity values of the
application whitelist and the password to be provided by the user.

Execution Integrity: Integrity of the execution of the TPM command flow by monitoring the
Trusted Software Stack (TSS); i.e., invocations made by what applications, command con-
figurations, parameters passed, etc. It reflects the continuous monitoring and attestation
of the low-level system and behavioural properties to be performed by the Control-Flow
Attestation toolkit (more information to be included in D4.2).

TPM Create: Creates a password protected key (ppAuth key) for the authorized communication
of this TPM-equipeed device with the Free POS server.

ppAuth key: The password protected authorization key.

Seal: Seal the ppAuth key, in order to be used only when the password-based authorization
policy is met. The key is sealed based on a) the authorization policy, that express the device
integrity requirements through the whitest of allowed applications and b) the password to
be provided by the user.

FutureTPM D3.2 PU Page 15 of 68

D3.2 - First Report on the Security of the TPM

TPM EvictControl (persistent key): Make the key persistent by storing it in the volatile memory
of the TPM and not allowing its usage outside of the TPM environment. This secure storage
is associated with the TPM and, when authorized by the user, the TPM allows access to
the stored secrets. The TPM does this via the Protected Storage Hierarchy (PSH), a tree of
keys containing: (i) a root key, (ii) sets of user keys and identity keys as leaf keys, and (iii) a
set of encrypting keys (in the middle) between the root and leaf keys. However, we have to
highlight that this trust assumption may be weakened in the case where secure migration
of the keys is required. This will allow the transferring of the “key wallets” from one TPM of
a user to another using means like TPM key migration in order to allow users to maintain
multiple “key wallets”. This trusted migration service allows users to access the Free POS
server from any device they are using being confident that they “key wallet” has not been
tampered with or changed in anyway.

The Unsealing Operation (Figure 2.2 (b)):

Device Integrity: Integrity calculations of the applications installed on the TPM-equipped de-
ployed platform. Applications need to be attested against a whitelist of allowed and trusted
application instances; any deviation will result to the TPM not allowing the further execution
of the system operations.

Start Session: Start a trial session in order to calculate the Digest Policy (based on the correct
state of the installed applications).

Execution Integrity: Integrity of the execution of the TPM command flow by monitoring the
Trusted Software Stack (TSS); i.e., invocations made by what applications, command con-
figurations, parameters passed, etc. It reflects the continuous monitoring and attestation
of the low-level system and behavioural properties to be performed by the Control-Flow
Attestation toolkit (more information to be included in D4.2).

Load ppAuth key: Loads the password protected authorization key. This state will be used if we
decide to remove the TPM EvictControl state form the previous state diagram.

Calculate Digest Policy (PCR): Checks the policy digest with the Device Integrity values of the
application whitelist and the password.

Unseal: Unseals the ppAuth key.

TPM Auth operations to server: Authentication operations to the server based on the ppAuth
key.

2.3.2 Reference Scenario 2 — Personal Activity & Health Kit Data Tracking

As has been described in D1.2 [23] and D4.1 [25], this reference scenario attempts to implement:
(i) data transfer preserving anonymity and privacy, using the Direct Anonymous Attestation
(DAA) functionality, (ii) attestation of the correct state of the S5 Tracker Analytics Engine that
will store the user (anonymously) provided data in a verified and attested database, and (iii) the
establishment of a secure and anonymous communication channel between the user devices
and the S5 Tracker. Thus, the derived trust model captures the necessary requirements for the
correct execution of these services:

FutureTPM D3.2 PU Page 16 of 68

D3.2 - First Report on the Security of the TPM

R1. Correctness: Valid DAA signatures are verifiable, and linkable, where needed. This also
requires the correct execution of the protocol even in the presence of an adversary having
compromised part of the host PLATFORM . For instance, only valid and trustworthy TPMs
can join the system by ensuring that the endorsed TPM keys have not been previously
compromised;

R2. User-controlled anonymity: Identity of the user cannot be revealed from the DAA signa-
ture. This means that an adversary who does not know the PLATFORM ′s private key
cannot link a signed message to the TPM of this platform;

R3. User-controlled linkability: Users control whether signatures can be linked. A user has
control over its DAA credential and can decide whether or not to “blind” it through the use
of a single or different basenames bsn;

R4. Non-frameability: Adversaries cannot produce signatures originating from a valid trusted
component. Essentially, this represents that no combination of dishonest ISSUERS and
PLATFORMS can create a valid signed message m unless this signature was produced
by an honest PLATFORM Di.

Figure 2.3 depicts the state diagrams for the aforementioned functionalities: The first one denotes
the correct execution of the core DAA phases [21], namely the SETUP and JOIN phases (upper
branch), for certifying the TPM used by a host platform from the ISSUER, and the SIGN (or
VERIFY) phases (lower branch) for signing/verifying message digests, mi, originating from the
users. The second diagram denotes the establishment of a secure communication channel be-
tween a user device and the S5 Tracker Analytics Engine capturing such a TLS key establishment
(e.g., based on the execution of a Diffie-Hellman protocol) that can be anonymously signed by
the host PLATFORM using its DAA key. Finally, the third one denotes the attestation and ver-
ification of the correct state of the S5 Tracker and its database that will store the provided data
(through quoted PCR values generated by the TPM component of the S5 Tracker). Overall, the
light green colour represents a state of the host PLATFORM (and not the TPM itself), the light
blue colour represents a state of the S5 Tracker and the light grey colour represents a state of the
TPM.

State Diagram of the DAA Protocol Execution (Figure 2.3 (a)):

Device Integrity: Integrity calculations of the applications installed on the TPM-equipped PLATFORM .
Applications need to be attested against a whitelist of allowed and trusted application in-
stances. The S5 Tracker will be responsible for managing such whitelists in order to deter-
mine whether the DAA key generated by the TPM of a PLATFORM is associated to a
good software configuration. This property will be achieved by the TPM that can securely
store the current system state in its Platform Configuration Registers (PCRs) and it will al-
low certain crypto operations to be performed with the DAA key only if the current state is
the same as when the key was created.

Start Session: PLATFORM applications to start a session with the TPM in order to create
the DAA key and activate its credentials (SETUP and JOIN phases) and then execute a
range of signing/verification operations: SETUP: The system parameters must be chosen
and the ISSUER needs to generate its keys. These parameters and the ISSUER′S
public keys are then published and available to anyone who wants to verify the validity of a
signature. JOIN: a user PLATFORM using a TPM obtains an Attestation Key Credential
(from the ISSUER) for the DAA key create by the TPM.

FutureTPM D3.2 PU Page 17 of 68

D3.2 - First Report on the Security of the TPM

Figure 2.3: Activity Tracking State Diagrams

Execution Integrity: Integrity of the execution of the TPM command flow by monitoring the
Trusted Software Stack (TSS); i.e., invocations made by what applications, command con-
figurations, parameters passed, etc. It reflects the continuous monitoring and attestation of
the low-level system and behavioral properties to be performed by the Control-Flow Attes-
tation toolkit (more information to be included in D4.2). The control-flow path (CFP) associ-
ated with this specific session can be “binded” to the TPM session ID. This will provide the
necessary guarantees that the tracing of this CFP is trusted as it has been signed by the
TPM itself, thus, weakening the requirements on the trustworthiness of the BIOS/Kernel
(in the case of micro-service oriented architecture - see Section 2.2.2).

TPM Create: Creates a restricted key blob, in order to create the DAA key.

Activate Attestation Key Credential in JOIN Phase:

TPM Load: The TPM loads the created ECC −DAA key. This key must be fixed to this
TPM , fixed to this TPM ′s key hierarchy and restricted to sign only message digests
been created by itself (once data have been forward by the use PLATFORM hosting
the TPM).

TPM Activate Credential: Enables the association of a credential with an object (provided
by the ISSUER) in a way that ensures that the TPM has validates the provided
system parameters. In a nutshell, this TPM call is used to convince the ISSUER that
the ECC − DAA key that it has received, has been generated by a TPM whose
endorsement key has already been checked.

Activity Tracker Response TLS key: Establishing a secure communication Channel from
the S5 Activity Tracker Server to the PLATFORM .

FutureTPM D3.2 PU Page 18 of 68

D3.2 - First Report on the Security of the TPM

TPM Sign: In the context of the JOIN protocol and in order to successfully complete the
TPM activate credential command, it is necessary to perform one TPM sign based on
the created DAA key.

The SIGN Operation:

TPM Load: The TPM loads the required keys for the signing operation

TPM Hash: Compute hash digests for the data bunches produced by the host PLATFORM
after being forwarded to the internal TPM . This operation provides the necessary
guarantees that the message digest to be later signed have been created by the TPM
itself. The results of the hash will be used in the signing operation that uses the re-
stricted DAA key and the ticket returned by this command can indicate that the hash
is safe to sign.

TPM Commit: After the attestation key certificate has been randomised, this command is
used for preparing the parameters for the subsequent signing operation. It basically
provides the required anonymity level by using either different or the same basename
for the signing.

TPM Sign: After the execution of all previous states, the DAAkey can now be used for any
signing operation.

State Diagram of the TLS Key Establishment (Figure 2.3 (b)):

Device Integrity: Integrity calculations of the applications installed on the TPM-equipped PLATFORM .
Applications need to be attested against a whitelist of allowed and trusted application in-
stances. The S5 Tracker will be responsible for managing such whitelists in order to deter-
mine whether the DAA key generated by the TPM of a PLATFORM is associated to a
good software configuration. This property will be achieved by the TPM that can securely
store the current system state in its Platform Configuration Registers (PCRs) and it will al-
low certain crypto operations to be performed with the DAA key only if the current state is
the same as when the key was created.

Start Session: PLATFORM applications to start a session with the TPM in order to establish
a secure and anonymous communication channel with the S5 Tracker (through the TLS
establishment functionality)

TLS Handshake Operation:

Execution Integrity: Integrity of the execution of the TPM command flow by monitoring
the Trusted Software Stack (TSS); i.e., invocations made by what applications, com-
mand configurations, parameters passed, etc. It reflects the continuous monitoring
and attestation of the low-level system and behavioral properties to be performed by
the Control-Flow Attestation toolkit (more information to be included in D4.2). The
control-flow path (CFP) associated with this specific session can be “binded” to the
TPM session ID. This will provide the necessary guarantees that the tracing of this
CFP is trusted as it has been signed by the TPM itself, thus, weakening the require-
ments on the trustworthiness of the BIOS/Kernel (in the case of micro-service oriented
architecture - see Section 2.2.2).

FutureTPM D3.2 PU Page 19 of 68

D3.2 - First Report on the Security of the TPM

Host Create TLS key: In the case that we also want confidentiality when it comes to es-
tablishing a secure communication Channel from the PLATFORM to the S5 Activity
Tracker Server, we need to be able to establish a symmetric encryption key (e.g. Diffie-
Hellman).

Activity Tracker Response TLS key: Establishing a secure communication Channel from
the S5 Activity Tracker Server to the PLATFORM .

TLS key: The established session key.

Encrypt Message: Symmetric encryption with the session key established.

Execution Integrity: Integrity of the TPM command flow (see previews one).

Sign handshake key: Signing of the established session key using the DAAkey created
by the TPM hosted by the PLATFORM .

TPM Hash: Compute a hash digest with different message lengths. The results of the hash will
be used in a signing operation that uses a restricted signing key and the ticket returned by
this command can indicate that the hash is safe to sign.

TPM Commit: Performs the first part of an ECC signing operation.

TPM Sign: Signing with the DAA key.

TPM Flush: Unload unnecessary loaded keys.

State Diagram of the S5 Tracker Analytic Engine Attestation & Verification (Figure 2.3 (c)):

Device & Execution Integrity: Integrity of the TPM command flow.

Start Session: Start a trial session in order to calculate the Digest Policy (based on the correct
state of the installed applications) and then create the necessary TPM keys for signing the
quoted PCR values representing the correct state of the S5 Tracker’s Database.

Calculate DB Digest (PCR): Checks the PCR values representing the correct state of the tracker
entity before making any transactions to the Database. Each time the Activity tracker re-
ceives new data from the users and before making the actual updates to the underlying DB,
we check the PCR values so that we make sure that the server is at an allowed state.

TPM Quote: This is the quote that is provided to the host devices for attesting the integrity of
the Activity Tracker database. The quote is basically containing the PCR values (i.e. the
database digest).

2.3.3 Reference Scenario 3 — Device Management

The goal of this use case is to protect the communication keys that that are used between network
devices and the Network Management System (NMS), and to prevent that user data is processed
by compromised devices. Thus, the derived trust model captures the necessary requirements for
the correct execution of mainly the TPM sealing and unsealing functionalities. Figure 2.4 captures
the trusted relations (federations) that need to be established among the Network Management
System (NMS), the trusted device itself (PLATFORM) and the TPM.

FutureTPM D3.2 PU Page 20 of 68

D3.2 - First Report on the Security of the TPM

Figure 2.4: Device Management State Diagrams

The Sealing Operation (Figure 2.4 (a)):

Device Integrity (whitelist): Integrity calculations of the applications installed on the TPM-equipped
PLATFORM . Applications need to be attested against a whitelist of allowed and trusted
application instances. The NMS will be responsible for managing such whitelists in order
to determine whether the keys generated by the TPM of a PLATFORM are associated
to a good software configuration. This property will be achieved by the TPM that can se-
curely store the current system state in its Platform Configuration Registers (PCRs) and it
will allow certain crypto operations to be performed with the TPM keys only if the current
state is the same as when the key was created.

Start Session: Start a trial session in order to calculate the Digest Policy (based on the correct
state of the installed applications) and then create the necessary TPM keys for connecting
to the NMS.

Calculate Digest Policy (PCR): Checks the policy digest with the Device Integrity values of the
application whitelist.

Execution Integrity: Integrity of the execution of the TPM command flow by monitoring the
Trusted Software Stack (TSS); i.e., invocations made by what applications, command con-
figurations, parameters passed, etc. It reflects the continuous monitoring and attestation
of the low-level system and behavioural properties to be performed by the Control-Flow
Attestation toolkit (more information to be included in D4.2). The main goal of this state is
to protect against ROP attacks [55] that try to exploit the loaded software and TSS (and
subsequently the created TLS key) without altering its state; thus, it will not be captures by
the Device Integrity state.

TPM Create: Generate a new TLS key to establish a trusted channel.

TLS Key: TLS key is created and never leaves the TPM.

TPM Create: Generate a new random HMAC key.

HMAC Key: HMAC key is created.

FutureTPM D3.2 PU Page 21 of 68

D3.2 - First Report on the Security of the TPM

Unload Key: HMAC key is not stored in the PLATFORM .

The Unsealing Operation (Figure 2.4 (b)):

Device Integrity (whitelist): Integrity calculations of the applications installed on the TPM-equipped
PLATFORM . Applications need to be attested against a whitelist of allowed and trusted
application instances. The NMS will be responsible for managing such whitelists in order
to determine whether the keys generated by the TPM of a PLATFORM are associated
to a good software configuration. This property will be achieved by the TPM that can se-
curely store the current system state in its Platform Configuration Registers (PCRs) and it
will allow certain crypto operations to be performed with the TPM keys only if the current
state is the same as when the key was created.

Start Session: Start an authorization (policy) session.

Execution Integrity: Integrity of the execution of the TPM command flow by monitoring the
Trusted Software Stack (TSS); i.e., invocations made by what applications, command con-
figurations, parameters passed, etc. It reflects the continuous monitoring and attestation
of the low-level system and behavioural properties to be performed by the Control-Flow
Attestation toolkit (more information to be included in D4.2). The main goal of this state is
to protect against ROP attacks [55] that try to exploit the loaded software and TSS (and
subsequently the created TLS key) without altering its state; thus, it will not be captures by
the Device Integrity state.

Load HMAC Key: Load the HMAC key, since it is not loaded automatically

Calculate Digest Policy (PCR): Update the policy digest with the correct PCR values. The PCR
values are related with the whitelist of the installed applications.

Unseal: TPM evaluates the session’s policy digest and compares it against the key’s expected
authPolicy digest. If they match, the sealed data is returned to the user, otherwise, it fails
with an error.

TPM Cryptographic Operations: Perform a cryptographic operation during the establishment
of the trusted channel.

FutureTPM D3.2 PU Page 22 of 68

D3.2 - First Report on the Security of the TPM

Chapter 3

Policy Modelling

In Chapter 2, we discuss strategies to describe trust in a TPM-backed system and its hierarchy of
components. In particular, we describe a predicate-based language to describe trust, and identify
high-level mechanisms—to be refined in WP4 and D4.2 FutureTPM Risk Assessment Framework
– First Release—for the enforcement and monitoring of trust in TPM-backed platforms.

In this Chapter, we discuss strategies to describe and analyse the security of high-level applica-
tions that make use of the TPM. In this first model, we assume that all components involved in
the application are trusted, but take care to choose a modelling approach that interacts well with
the trust modelling techniques of Chapter 2, in order to later capture the low-level trust monitoring
and enforcement mechanisms to be developed as part of WP4. We briefly outline our modelling
approach, which uses the ability to perform TPM operations as the building blocks for describ-
ing trust domains at application level. Finally, we discuss some interesting applications, beyond
those considered as part of the FutureTPM project, for which we believe the current TPM and
policies are insufficient, and argue that a more principled design of trust computing components
is needed.

3.1 Overview of the Modelling Approach

We aim to define a modelling language a framework that enables us to separate concerns into
different layers without inducing too much cost at abstraction interfaces. In theory, this should
enable us to provide application designers and developers who wish to make use of the TPM
with the ability to quickly check that they use the TPM appropriately for their security functional
requirements, while also allowing lower-level library developers—including the partners involved
in WP4—to precisely reason about the guarantees their libraries provide in lower-level adversary
models. Figure 3.1 presents the abstraction layers we are currently considering.

Application Security The highest level of abstraction considers a TPM-backed application’s
high-level security goals of confidentiality, integrity and availability. Although we do not
consider these concerns in scope of the FutureTPM project, defining a policy framework
that supports reasoning about application-level security may lead to more impactful results
in the long term, ensuring that the TPM can be reasonably used to build “secure-by-design”
systems. We also note that the high-level security requirements of the FutureTPM use
cases were indeed taken into account, as part of D1.1 [24] and D4.1 [25] to tease out some
of the TPM security requirements.

FutureTPM D3.2 PU Page 23 of 68

D3.2 - First Report on the Security of the TPM

Application Security

TPM Usage


Basic Usage

Context Management

Low-Level Trust

TPM Cryptography Trust Monitoring

Figure 3.1: Policy Abstractions

TPM Usage The second most abstract layer considers usage policies on the TPM and its objects
and capabilities. This layer is the main focus of the discussions in this Deliverable, and will
serve as a three-way bridge between the Application Security layer, the Trust Monitoring
layer, and the TPM Cryptography layer. Although we divide the TPM Usage layer in three—
separating Context Management and Low-Level Trust from Basic Usage—this separation
is purely made for the purpose of simplifying early discussions.

TPM Cryptography and Trust Monitoring Finally, the bottom most layers consider the TPM
Cryptography—or how well-defined usage policies are in fact enforced by the TPM (or a
network of TPMs); and the Trust Monitoring mechanisms to be developed in WP4. These
two layers form the foundation of security in the FutureTPM: the former reduces security to
hardness assumptions, in a well-defined trust model, while the latter monitors or prevents
breaches of trust.

We now give an overview of the TPM Usage layer, focusing for now on its Basic Usage—which
assumes that application components are always trustworthy (from the point of view of the ap-
plication), and that the application performs its own context management as needed; and on the
TPM Usage layer’s interfaces with the TPM Cryptography and Trust Monitoring layers.

We note that, even though we consider here that all components of an application are always
trusted by the application itself, we do consider scenarios where one or several TPMs interact
with both a (single) trusted application and an adversary that has the same access to the TPM.
In particular, we wish to be able to deem insecure an application that uses the TPM to manage
a cryptographic key (or, more generally, any secret) as a protected blob, but interacts with the
TPM without making use of encrypted sessions (thereby leaking the blob through the TPM’s I/O
bus). On the other hand, we wish—in this first instance—to be able to deem secure the same
application which uses encrypted sessions correctly to ensure that the key could only be extracted
through a deeper compromise (for example, the application itself, or the capture of a password
through a keylogger installed on the platform).

In order to achieve this, while still articulating smoothly with the underlying layers, we consider
a framework for access control that revolves around trust domains (which can be seen as dis-
tinct applications and interactions between them, but also as more atomic components such as
particular TPMs, or platforms). In order to connect trust domains to the underlying cryptography,
but also to enable the modelling of fine-grained trust for distributed applications, we use a party’s
ability to perform a particular sequence of TPM operations as the definition of a trust domain.

FutureTPM D3.2 PU Page 24 of 68

D3.2 - First Report on the Security of the TPM

This aligns particularly well with several trusted computing concepts that are core to the TPM
trust model, for example:

platform trust, which aims at proving that the platform (the TPM and its host, including its low-
level software) are in a known configuration, is demonstrated by measuring platform com-
ponents into the TPM’s PCRs, and quoting them;

ownership, which represents authorization from the platform’s owner, can be demonstrated
through the ability to load the Storage Primary Seed (which is protected by owner autho-
rization) into the TPM;

enhanced authorization policies, which allow combinations of authorization factors to be used
as authorization to operate on protected objects, are constructed component by component
through TPM calls; and

audit session-based authorization, which aims at measuring a subset of interactions with the
TPM to be ued as authorization, locally or remotely, is immediately and flexibly captured as
the fact that a sequence of TPM commands can be called within a session.

Importantly, this allows us to capture without too much difficulty the large flexibility afforded by the
TPM’s authorization mechanisms. This is useful at all 3 interfaces of the TPM Usage layer:

• This ensures that unseen application scenarios can be analysed without modifying the
policy framework;

• This provides the most fine-grained way of describing the current TPM state for use in the
TPM Cryptography layer, where security can only be guaranteed when the state follows
certain invariants (for example, that keys used for session encryption are TPM-resident, or
that particular keys were never unsealed outside a session); and

• This coincides neatly with the mechanisms being developed in WP4 for Trust Monitoring,
which rely on measuring interactions with the TPM. Captured interaction traces can then
be analysed for membership to the set of interaction traces under which security has been
proved. At the extreme, and provided sufficient performance can be obtained, it may even
be possible to prevent interactions with the TPM that would lead the system to a state under
which security can no longer be guaranteed.

A complete formalization of this framework is progressing along with the modelling of the TPM’s
cryptographic systems, which we discuss briefly in Chapter 4.

We note, however, that our focus is no longer on developing models and proofs of security for the
TPM as currently specified, although that remains an objective of the project. However, devel-
oping strong foundations to support the sound and principled development of new specifications
for trusted computing is more promising in the long term than analysing the existing–organically
grown—designs.

Indeed, we discuss in Appendix A two use cases that, similarly to extensions of the FutureTPM’s
Activity Tracking use case identified in D1.1 [24] (also see Figure 2.2, rely on cloud-side TPMs to
protect the privacy of user data.

FutureTPM D3.2 PU Page 25 of 68

D3.2 - First Report on the Security of the TPM

3.2 Identified Limitations in Current HSA Technology

As discussed in Appendix A and argued, among others, by van Dijk and Juels [64], access
to an HSA is necessary for the full implementation of privacy guarantees in untrusted clouds.
Developing such solutions remains an active area of research [26, 11, 46], especially in settings
where data is shared among users whose relationships should remain private.

HSAs generally fall within one of two categories: fixed-API HSAs, and programmable HSAs.
TPMs fall into the former category: a tamper-proof device with protected storage where the only
possible interactions with the “outer world” is through a set of pre-specified commands. Intel
SGX, on the other hand, can be seen as a programmable HSA, as it allows (almost) arbitrary
programs to establish secure enclaves on general-purpose CPUs.

This flexibility, however, comes at a price: the resource-sharing entailed by having enclaves and
general-purpose code running on the same hardware leads to rather vague security claims, and
devastating attacks through side-channels [13], some of which can be triggered from very high-
level applications. Discrete programmable HSAs (or Hardware Security Modules) exist, but are
often too costly to be deployed in all but the highest-assurance scenarios.

On the other hand, while fixed-API HSAs are not immune to attacks, attacks against them are
naturally less impactful. Indeed, attacks against TPM specifications [19] or specific TPM im-
plementations [35] usually assume specific and hard-to-obtain adversary capabilities, such as
physical access to power management, which makes them more difficult to exploit. However,
while the rigidity of fixed-API offers significantly more security than its programmable counter-
part, it also poses severe constraints on its practicality for implementing arbitrary protocols, as
we have discussed in the sections above.

We summarize here the main limitations and challenges for current fixed-API HSAs (such as TPM
2.0) that prevent them from more fully supporting privacy-friendly implementations of communi-
cation protocols.

Lack of support for Trusted Execution. Technologies like Intel Trusted eXecution Technology
(TXT) exist. In conjunction with a TPM, these enable the execution of arbitrary trusted code
outside the enclave. Unfortunately this technology does not provide the full set of security
properties we require here [68].

Limited internal resources. TPM devices have very limited internal memory. This can be over-
come by allowing the TPM to store information in the cloud memory using its protected
storage hierarchy. However, any algorithm or functionality that relies on this assumption
must necessarily ensure an oblivious access of such memory. This also requires to min-
imize the amount of information that the TPM has to process and communicate. Some
approaches to solve this issue might require, for example, several calls to a single stateful
method. For example, in order to obtain a random, uniform permutation, a naive approach
needs N/M calls, where N is the number of items to be permuted, and M is the number
of items the TPM can store in memory.

Limited throughput. As resource-constrained devices, TPMs are slow, especially when dealing
with public-key operations. This requires efforts to minimize the usage of cryptography
within the TPM, and relying on collaboration from the host (here the cloud) cloud to execute
certain operations that do not compromise the privacy requirements (for example, by using
homomorphic properties of some supported schemes). Cryptography operations should
be delegated to the cloud where possible, minimizing (especially) the usage of public key
operations inside the TPM.

FutureTPM D3.2 PU Page 26 of 68

D3.2 - First Report on the Security of the TPM

Accountability of external operations. While the TPM provides an audit session mechanism
which allows a platform to attest to a sequence of commands being executed in order (with
their inputs and outputs) it is still unclear if this can be extended to capture also sequences
of commands that implement only part of the functionality, supported by computations per-
formed on the host.

These lacks in the TPM’s functionalities are significant barriers to its adoption in privacy applica-
tions. We will thus consider minimal extensions to the TPM commands, in light of the use cases
discussed in Appendix A, but also those put forward as part of WP6, some of which include ex-
tensions for which the features discussed above may be needed. We note, in particular, that
minimal trusted execution support could be used, in conjunction with audit sessions—seen as
providing an immutable append-only record of interactions between TPM and host, to construct
functionalities similar to those provided by state-channel networks [28].

FutureTPM D3.2 PU Page 27 of 68

D3.2 - First Report on the Security of the TPM

Chapter 4

Cryptography for the TPM

In this Chapter, we review recent contributions by consortium members and collaborators in the
domain of provable security for TPM mechanisms. In developing these contributions, we follow
both bottom-up and top-down approaches.

• Bottom-up contributions—here a proof of security, and the underlying proof techniques, for
a lattice-based DAA protocol—contribute to a better understanding of the building blocks
that are put together in the TPM, and of their security properties.

• Top-down contributions—here a discussion on the limitations of extant mechanisms for
bootstrapping trust in an unknown TPM—can be used to guide an exploration of the ways in
which the TPM’s low-level cryptographic mechanisms are combined to implement high-level
security requirements such as secrecy, integrity or—in this case—authentication.

Combining both approaches therefore allows us to gain a better understanding of the way in which
the TPM functionalities are constructed, at the same time as we gain a sufficient understanding of
the security guarantees their construction is meant to guarantee. However, the top-down inves-
tigation is very closely linked to a high-level understanding of the TPM, both as a self-contained
whole and as a component of complex secure systems.

4.1 A Provably-Secure Lattice Based Direct Anonymous At-
testation Scheme

D2.1 [21] describes choices for QR primitives, and discusses potential design choices for lattice-
based DAA, based on informal security and performance arguments. In this section, we describe
a security proof for one of these proposals. It makes use of an honest-TPM variant of the UC
model of Camenisch, Drijvers and Lehmann [17] in a QR0 setting. (See D2.1 [21] for a description
of Quantum-Resistance levels.)

Figure 4.1 gives an overview of DAA parties and usage. In general, a DAA scheme consists of an
issuer, a set of signers and a set of verifiers. The issuer creates a DAA membership credential
for each signer. In practice, a DAA credential corresponds to a signature of the signer’s identifier
produced by the issuer. A DAA signer, or platform, is composed of a Host (usually a general
purpose computing platform), and a TPM. The primary role of the DAA scheme is to prove, or
attest to, the fact that a platform belongs to the DAA community, composed of platforms for which
the issuer has issued a DAA credential, without revealing which platform it is. In addition, DAA

FutureTPM D3.2 PU Page 28 of 68

D3.2 - First Report on the Security of the TPM

Platform

Boot Loaders

UEFI Se-
cure Boot

OS Loader

Kernel &
Boot Drivers

Other Software

TPM

Platform
Configuration
Registers
(PCRs)

Issuer

Verifier

DAA credentials

DAA signature of PCRs

Figure 4.1: Generic TPM-based anonymous attestation. As software is loaded, the TPM builds a
representation of the platform state. When access is requested to a resource, a DAA signature
attesting to platform and TPM state is sent to the resource

can be used to attest to the state of the platform, including the version of software running on the
Host, and internal TPM state.

The DAA signature includes a zero-knowledge proof-of-knowledge, which is used to convince the
verifier that the signer possesses a valid membership credential, but without the verifier learning
anything else about the identity of the signer. This mechanism provides both unforgeability and
anonymity.

In contrast to other privacy-preserving constructs, like group signatures [27, 42, 44], a DAA
scheme is not traceable. In fact, even when the DAA issuer also plays the role of a verifier,
the issuer does not obtain more information from a given signature than any arbitrary verifier.
However, to prevent a malicious signer from abusing anonymity, DAA provides two alternative
properties to traceability: rogue signer detection and user-controlled linkability.

Firstly, it is possible to detect rogue signers: given a signer’s private key, it is possible for anyone to
check whether a particular DAA signature was created by this signer. Therefore, if a private key is
somehow extracted from a TPM and leaked, it can be efficiently revoked and all past signatures
invalidated. In addition, the scheme supports user-controlled linkability: two DAA signatures
created by the same signer may or may not be linked from a verifier’s point of view. The linkability
of DAA signatures is controlled by an input parameter called the basename. If a signer uses the
same basename in two signatures, they are linked; otherwise they are not.

4.1.1 Results

El Kassem et al. [39] propose a new scheme for DAA, that relies on lattice operations. They prove
their scheme secure in the Universally Composable security model developed by Camenisch,
Drijvers and Lehmann [17], reducing its security to standard lattice problems. We do not detail the

FutureTPM D3.2 PU Page 29 of 68

D3.2 - First Report on the Security of the TPM

construction and proof in detail here, but include overviews in Appendix B, referring the interested
reader to El Kassem et al. [39] for full detail.

4.2 Towards Mechanisms for Bootstrapping Trust with Pri-
vacy

Past and recent applications of formal analysis techniques to some of the TPM’s mechanisms,
including DAA [8, 66] and encrypted sessions [61], have revealed that using the TPM securely
requires special care, beyond what would be expected from a security-oriented device.

We will now review these issues specifically, demonstrating that they are in fact symptoms of
a singular and deep design problem. We then discuss potential solutions for these symptoms,
including in light of Parno’s early wrk on the topic of bootstrapping trust [51], and identify ways in
which these consierations can be included in the modelling and analysis work.

4.2.1 DAA Authentication Attacks

As discussed in Section 4.1, the TPM’s Direct Anonymous Attestation protocol includes a Join
phase, during which a platform obtains credentials from an issuer after demonstrating that it
belongs to that issuer’s network. As captured in the security model, and discussed in the relevant
standards, the security of the protocol assumes that the channel between the platform’s TPM and
the issuer is authenticated (that is, the issuer can trust that it is interacting with the specific TPM
it believes it is interacting with).

Backes et al. [8] use ProVerif to highlight the need for strong authentication on this channel for the
TPM1.2 version of DAA, and demonstrate an attack through which a rogue TPM can convince an
issuer to issue credentials for a third party without that third party’s participation. Although such
credentials cannot, then, be used to produce valid signatures, a strict issuer may then refuse
to issue valid credentials to that third party TPM’s platform, which would constitute a Denial-of-
Service. Although newer standards propose additional mechanisms to establish this authenti-
cated channel [1], Whitefield et al. [66] demonstrate, using Tamarin, that these mechanisms are
insufficient when issuers can be involved in concurrent Join phases.

Both Backes et al. [8] and Whitefield et al. [66] propose and formally verify protocol fixes, that
simply involve binding Join sessions to TPM secrets the issuer can verify, the TPMs’ endorsement
keys, which are pre-loaded into all TPMs, and for which manufacturers provide certificates. If the
fix is simple, the existence of the problem highlights a deeper issue of bootstrapping trust in a
privacy-preserving way: the goal of the DAA protocol is to enable platforms to produce signatures
that only reveal the involvement of a recognised TPM, without revealing any more about that
TPM’s identity. Any use of a TPM secret in the protocol, although it contributes to the protocol’s
security goals, may put at risk its privacy goal, and needs to be carefully reviewed in light of other
uses of that TPM secret.

4.2.2 A Hierarchy Authentication Attack

The weakness of authentication in DAA’s Join discussed above is only known to lead to a Denial-
of-Service. However, Shao, Qin and Feng [61] identify a weakness in the TPM’s session mech-
anism, which can lead to the authValue of protected objects becoming known to an adversary

FutureTPM D3.2 PU Page 30 of 68

D3.2 - First Report on the Security of the TPM

even when they are meant to be protected by an encrypted session. This allows the adversary
to load and use these objects as if authorized to do so, regardless of intended security. We now
describe the weakness and the countermeasure proposed by Shao, Qin and Feng [61]. We note
before giving details that the weakness is in the trust model, rather than the cryptography, and
that the countermeasure is based on constraining slightly how the TPM is used, rather than on
deep changes to the specification.

Assume a freshly cleared (or acquired) TPM, on which the Primary Seed’s authValue and au-
thPolicy are clear, allowing anyone with access to the TPM to load it into a TPM handle and
make use of it. Shao, Qin and Feng [61] consider a scenario where a caller attempts to create a
protected object, whose use would be protected by a password (using the HMAC authorization
policy), and show that it is impossible to do so without an adversary learning the authValue for
the freshly created object. Indeed, the TPM provides both symmetric and asymmetric options to
protect the secrecy of command parameters and outputs such as the new authValue, but is not
equipped with any mechanism (beyond that discussed in the countermeasure, which we argue
here is inadequate) for the caller to verify that interactions are indeed occuring with the target
TPM. In the case of symmetric mechanisms, a freshly cleared TPM is not equipped with any
secrets that can be shared with the caller. Creating such a secret on the TPM and outputting it to
the caller would reveal it to an adversary with simple eavesdropping access to the TPM bus. Con-
versely, having the caller create a secret and load it into the TPM would be impossible without the
adversary learning it through the command parameters. In the case of asymmetric mechanisms,
any adversary could intercept communication betwen the TPM and caller, and present their own
public key instead of the TPM’s, allowing them to decrypt sessions.

As in the case of DAA, the problem here is in establishing an authenticated channel between the
TPM and the caller. This is sufficient to bootstrap trust and support the desired use case, and the
futher construction of complex and secure object hierarchies. Shao, Qin and Feng [61] suggest
using the endorsement key, and its certificate to establish this trusted channel using the existing
session mechanism.

4.2.3 Bootstrapping Trust

Note that both issues discussed above are in fact instances of a deeper problem: that of boot-
strapping trust in an unknown TPM, which was already discussed by Parno [51]. Indeed, in the
case of the DAA attacks, the Issuer does not know a priori which TPM she is interacting with, un-
less this interaction is carried out over an authenticated channel which binds to an identity known
to the Issuer. Similarly, encrypted sessions can be circumvented when the session is established
between an application and a TPM it has never before interacted with, and therefore does not
share any knowledge with.

In both cases, using the endorsement key in naive ways simply ensures that a TPM’s endorse-
ment key was involved in the protocol. (And in fact, DAA does already guarantee this without
requiring an authenticated channel.) This is sufficient if one assumes that no TPM endorsement
key can ever be compromised. However, in both cases, a single TPM becoming compromised
leads to all trust being lost until it is detected and added to revocation lists.

In the case of DAA, the solutions proposed by Backes et al. [8] and Whitefield et al. [66], which
consist in binding the TPM’s specific endorsement key to the session, is sufficient to convince the
issuer that:

1. the other party is a member of its group (based on a certificate over an endorsement key);
and

FutureTPM D3.2 PU Page 31 of 68

D3.2 - First Report on the Security of the TPM

2. the other party is indeed in possession of the private key corresponding to the certified
public key.

This is a relatively weak form of authentication, which does not require a specific TPM to identify
itself and be authenticated.

In the case of the hierarchy authentication attacks by Shao, Qin and Feng [61], such a weak form
of authentication is insufficient: the caller needs to be convinced it is interacting with a specific
TPM, namely the one installed in its platform. For this purpose, proving simple knowledge of a
specific private key whose public counterpart has been certified is insufficient when other certified
keys are compromised: an adversary could simply present a different certificate to the caller and
retrieve all session data, including the authValue for the new object.

Bootstrapping Trust in a Specific Local TPM

A naive solution to this problem would be to include, in the manufacturer certificates, information
identifying the specific TPM. This could be verified—perhaps by physical inspection—by the caller
or its user, even if the rest of the platform is compromised. This approach is not suitable for two
main reasons:

1. The relation between a platform and its endorsement key is not meant to be public; and

2. In practice, endorsement certificates are given only to issuers, instead of being publicly
broadcast.

These concerns also extend to existing security proofs. Camenisch, Drijvers and Lehmann [17]
model the TCG scenario where only the issuer is given the TPM public keys, and properties
proved in their model (or its variations) may no longer hold when public endorsement keys and
their relations to specific TPMs are broadcast. The relation between a platform and an endorse-
ment key is not communicated to the issuer in the model. Modifying the TPM in such a way as to
require certificates, including links between endorsement keys and physical TPMs, to be publicly
broadcast will therefore require new models to be devised, and new proofs developed.

In addition, further concerns arise from the repeated use of the endorsement key—a long-lived
asymmetric encryption key—in normal TPM usage. Indeed, the TPM’s endorsement key is a
simple asymmetric decryption key, and using it as discussed in both scenarios above would put
significant pressure on its security, by essentially providing a relatively weak adversary with a
decryption oracle despite the fact that the endorsement key cannot be renewed. Further, re-
peated use of the endorsement key raises privacy concerns, as noted in the specification: “[t]he
uniqueness of an [Endorsement Key] and its cryptographic verifiability raises the issue of whether
direct use of that identity could result in aggregation of activity logs. [...] TCG encourages [...]
restrictions on the use of the [Endorsement Key].” [34, Part 1-9.4.3.4].

In practice, mechanisms do exist that bind a TPM’s endorsement key to the TPM’s host (for
example, Platform Certificates [34, Part 1-9.5.3.1], whose implementation is not yet defined for
TPM 2.0 [33]). These may be used, when available, to bootstrap trust for local interactions.
Models and proofs for security and privacy currently do not take the existence of such certificates
into account, and it is unclear what security requirements should be imposed on them. Our
modelling will aim to clarify this, and to incorporate discussions of some of the solutions proposed
by Parno [51], allowing us to also consider their privacy implications.

In addition, it is still important to ensure that the endorsement key itself does not have to be used
repeatedly everytime the TPM is turned on. We will define, analyse and evaluate a “best practice”

FutureTPM D3.2 PU Page 32 of 68

D3.2 - First Report on the Security of the TPM

approach to using bootstrapped sessions to construct chains of trust that provide more resilience
with only limited loss of performance.

FutureTPM D3.2 PU Page 33 of 68

D3.2 - First Report on the Security of the TPM

Chapter 5

Conclusion

In this report, we define a framework for trust modelling in complex applications whose security
and privacy requirements are achieved—at least partially—using TPMs.

We also give an overview of a compatible policy and usage modelling framework that could serve
as a bridge between the trust model, the analysis of applications security at a high-level, and
the analysis of low-level details of the TPM specification. This includes the specification of TPM
cryptography, but also the TPM’s cryptographic realization of authorization and trust mechanisms.

About the former, we report some progress towards the development of provably secure DAA
schemes based on quantum hardness assumptions. We use recent analyses of the interac-
tions between the TPM’s session and authorization mechanisms, backed by older analyses of
the TPM’s mechanisms for trust—including the DAA protocol—and of some privacy-oriented use
cases to argue that the TPM as currently specified provides insufficient functionality to both boot-
strap trust in a trustless software environment and support privacy.

We view these issues with the current specification as opportunities to develop sound and solid
theoretical foundations for Trusted Computing, that could support the principled design of the next
specification, and identify possible directions for these models to develop, in line with the choices
made for trust and usage modelling. All still points to the need for the TPM to be modelled and
analysed as a whole, rather than as the sum of independent parts, in order to properly capture
possible interactions between different uses of the same cryptographic material, the prime exam-
ple of which is the use of Endorsement Keys for demonstrating group membership anonymously
in DAA while also having to rely on them for individual authentication of a specific TPM in other
settings.

FutureTPM D3.2 PU Page 34 of 68

D3.2 - First Report on the Security of the TPM

Chapter 6

List of Abbreviations

Abbreviation Translation
CFPA Control-Flow Properties Attestation

CMS Conference Management System

DAA Direct Anonymous Attestation

HMAC Hash based Message Authentication Code

HSA Hardware Security Anchor

ISIS Inhomogeneous Short Integer Solution

LPC Low Pin Count

LWE Learning With Error

NMS Network Management System

PCR Platform Configuration Register

PQ Post Quantum

PRNG Pseudo-Random Number Generator

QR Quantum Resistant

SIS Short Integer Solution

TPM Trusted Platform Module

TSS TPM Software Stack

UC Universal Composability

WP Work Package

FutureTPM D3.2 PU Page 35 of 68

D3.2 - First Report on the Security of the TPM

References

[1] ISO/IEC 20008-2:2013. Information technology – Security techniques – Anonymous digital
signatures – Part 2: Mechanisms using a group public key. Standard ISO/IEC 20008-2:2013,
International Organization for Standardization, 2013. Last revised 2019.

[2] Tigist Abera, N Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew Paverd,
Ahmad-Reza Sadeghi, and Gene Tsudik. C-FLAT: control-flow attestation for embedded
systems software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 743–754. ACM, 2016.

[3] Alessandro Aldini. A formal framework for modeling trust and reputation in collective adaptive
systems. arXiv preprint arXiv:1607.02232, 2016.

[4] Denis Andzakovic. Extracting bitlocker keys from a TPM. https://pulsesecurity.co.nz/
articles/TPM-sniffing, 2019.

[5] Myrto Arapinis, Sergiu Bursuc, and Mark Ryan. Privacy supporting cloud computing: Con-
fichair, a case study. In Principles of Security and Trust (POST, volume 7215 of LNCS,
pages 89–108, Tallinn, Estonia, March 2012. Springer.

[6] Myrto Arapinis, Sergiu Bursuc, and Mark Ryan. Privacy-supporting cloud computing by
in-browser key translation. Journal of Computer Security, 21(6):847–880, December 2013.

[7] N Asokan, Ferdinand Brasser, Ahmad Ibrahim, Ahmad-Reza Sadeghi, Matthias Schunter,
Gene Tsudik, and Christian Wachsmann. Seda: Scalable embedded device attestation.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 964–975. ACM, 2015.

[8] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the applied pi-
calculus and automated verification of the direct anonymous attestation protocol. In 2008
IEEE Symposium on Security and Privacy (S&P 2008), 18-21 May 2008, Oakland, Califor-
nia, USA, pages 202–215, 2008.

[9] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peik-
ert. Efficient commitments and zero-knowledge protocols from ring-sis with applications to
lattice-based threshold cryptosystems. Cryptology ePrint Archive, Report 2016/997, 2016.
https://eprint.iacr.org/2016/997.

[10] Josh Berdine, Byron Cook, and Samin Ishtiaq. SLAyer: Memory safety for systems-level
code. In International Conference on Computer Aided Verification, pages 178–183. Springer,
2011.

FutureTPM D3.2 PU Page 36 of 68

https://pulsesecurity.co.nz/articles/TPM-sniffing
https://pulsesecurity.co.nz/articles/TPM-sniffing
https://eprint.iacr.org/2016/997

D3.2 - First Report on the Security of the TPM

[11] Andrea Bittau, Bernhard Seefeld, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth
Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, and Julien Tinnes. Prochlo:
Strong privacy for analytics in the crowd. In Symposium on Operating Systems Principles
(SOSP), pages 441–459, Shanghai, China, October 2017. ACM.

[12] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short
signatures and more. In Public Key Cryptography – PKC 2010, pages 499–517, 2010.

[13] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order execution. In
USENIX Conference on Security Symposium, pages 991–1008, Baltimore, MD, August
2018. USENIX.

[14] Michael Burrows, Stephen N Freund, and Janet L Wiener. Run-time type checking for binary
programs. In International Conference on Compiler Construction, pages 90–105. Springer,
2003.

[15] Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for memory
safety of C programs. In NASA Formal Methods Symposium, pages 459–465. Springer,
2011.

[16] Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick, and Rainer Urian.
One TPM to bind them all: Fixing TPM 2.0 for provably secure anonymous attestation. In
2017 IEEE Symposium on Security and Privacy (SP), pages 901–920, 2017.

[17] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally composable direct anony-
mous attestation. In Public-Key Cryptography – PKC 2016, pages 234–264, Berlin, Heidel-
berg, 2016. Springer Berlin Heidelberg.

[18] M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic networks.
In First International Conference onSoftware Engineering and Formal Methods, 2003.Pro-
ceedings., pages 54–61, Sep. 2003.

[19] Liqun Chen and Mark Ryan. Attack, solution and verification for shared authorisation data
in TCG TPM. In International Workshop on Formal Aspects in Security and Trust, volume
5983 of LNCS, pages 201–216, Eindhoven, The Netherlands, November 2009. Springer.

[20] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-control-
data attacks are realistic threats. In Proceedings of the 14th Conference on USENIX Security
Symposium - Volume 14, SSYM’05, pages 12–12, 2005.

[21] The FutureTPM Consortium. First report on new qr cryptographic primitives. Deliverable
D4.1, September 2018.

[22] The FutureTPM Consortium. First report on security models for the TPM. Deliverable D3.1,
September 2018.

[23] The FutureTPM Consortium. FutureTPM reference architecture. Deliverable D1.2, October
2018.

[24] The FutureTPM Consortium. FutureTPM use case and system requirements. Deliverable
D1.1, June 2018.

FutureTPM D3.2 PU Page 37 of 68

D3.2 - First Report on the Security of the TPM

[25] The FutureTPM Consortium. Threat modelling & risk assessment methodology. Deliverable
D4.1, February 2019.

[26] Hung Dang, Tien Tuan Anh Dinh, Ee-Chien Chang, and Beng Chin Ooi. Privacy-preserving
computation with trusted computing via scramble-then-compute. In Privacy Enhancing Tech-
nologies Symposium (PETS, pages 21–38, Minneapolis, MN, July 2017.

[27] Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based group signatures
and zero-knowledge proofs of automorphism stability. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 574–591, 2018.

[28] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel net-
works. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 949–966,
2018.

[29] Anna Lisa Ferrara, Georg Fuchsbauer, Bin Liu, and Bogdan Warinschi. Policy privacy in
cryptographic access control. In IEEE 28th Computer Security Foundations Symposium,
CSF 2015, Verona, Italy, 13-17 July, 2015, pages 46–60, 2015.

[30] Anna Lisa Ferrara, Georg Fuchsbauer, and Bogdan Warinschi. Cryptographically enforced
RBAC. In 2013 IEEE 26th Computer Security Foundations Symposium, New Orleans, LA,
USA, June 26-28, 2013, pages 115–129, 2013.

[31] Thanassis Giannetsos and Tassos Dimitriou. Spy-sense: Spyware tool for executing stealthy
exploits against sensor networks. In Proceedings of the 2Nd ACM Workshop on Hot Topics
on Wireless Network Security and Privacy, HotWiSec ’13, pages 7–12, 2013.

[32] Thanassis Giannetsos, Tassos Dimitriou, Ioannis Krontiris, and Neeli R. Prasad. Arbitrary
code injection through self-propagating worms in von neumann architecture devices. Com-
put. J., 53(10):1576–1593, December 2010.

[33] Trusted Computing Group. TCG EK credential profile for TPM family 2.0; level 0, November
2014. Revision 14.

[34] Trusted Computing Group. Trusted platform module library, September 2016. Revision 1.38,
as amended by Errata Version 1.4.

[35] Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun Kim. A bad dream: Sub-
verting trusted platform module while you are sleeping. In USENIX Conference on Security
Symposium, pages 1229–1246, Baltimore, MD, August 2018. USENIX.

[36] Munirul M Haque and Sheikh I Ahamed. An omnipresent formal trust model (FTM) for
pervasive computing environment. In 31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), volume 1, pages 49–56. IEEE, 2007.

[37] Jeffrey Hoffstein, Jill Pipher, and J.H. Silverman. An Introduction to Mathematical Cryptog-
raphy. Springer Publishing Company, Incorporated, Springer-Verlag New York, 1 edition,
2008.

[38] Ahmad Ibrahim, Ahmad-Reza Sadeghi, Gene Tsudik, and Shaza Zeitouni. Darpa: Device
attestation resilient to physical attacks. In Proceedings of the 9th ACM Conference on Se-
curity & Privacy in Wireless and Mobile Networks, pages 171–182. ACM, 2016.

FutureTPM D3.2 PU Page 38 of 68

D3.2 - First Report on the Security of the TPM

[39] Nada EL Kassem, Liqun Chen, Rachid El Bansarkhani, Ali El Kaafarani, Jan Camenisch,
Patrick Hough, Paulo Martins, and Leonel Sousa. More efficient, provably-secure direct
anonymous attestation from lattices. Future Generation Computer Systems, 99:425–458,
2019.

[40] Nikos Koutroumpouchos, Christoforos Ntantogian, Sofia-Anna Menesidou, Kaitai Liang,
Panagiotis Gouvas, Christos Xenakis, and Thanassis Giannetsos. Secure edge computing
with lightweight control-flow property-based attestation. In International Conference Network
Softwarization (NetSoft), 2019.

[41] Russell W. F. Lai, Henry K. F. Cheung, and Sherman S. M. Chow. Trapdoors for ideal lattices
with applications. In Information Security and Cryptology, pages 239–256, 2015.

[42] Benoı̂t Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang. Signature
schemes with efficient protocols and dynamic group signatures from lattice assumptions. In
Advances in Cryptology – ASIACRYPT 2016, pages 373–403, 2016.

[43] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-knowledge
proofs of knowledge for the ISIS problem, and applications. In Public-Key Cryptography –
PKC 2013, pages 107–124, 2013.

[44] San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from lattices: Simpler,
tighter, shorter, ring-based. In Public-Key Cryptography – PKC 2015, pages 427–449, 2015.

[45] Michael E Locasto, Steven J Greenwald, and Sergey Bratus. Trust distribution diagrams:
Theory and applications. In Proceedings of the 4th Layered Assurance Workshop (LAW
2010), Austin, TX, 2010.

[46] Sinisa Matetic, Moritz Schneider, Andrew Miller, Ari Juels, and Srdjan Capkun. Delega-
TEE: brokered delegation using trusted execution environments. In USENIX Conference on
Security Symposium, pages 1387–1403, Baltimore, MD, August 2018. USENIX.

[47] Lawson Nate. TPM hardware attacks. https://rdist.root.org/2007/07/16/

tpm-hardware-attacks/, 2007.

[48] Lawson Nate. TPM hardware attacks (part 2). https://rdist.root.org/2007/07/17/

tpm-hardware-attacks-part-2/, 2007.

[49] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek Matyas. The return
of coppersmith’s attack: Practical factorization of widely used rsa moduli. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages
1631–1648. ACM, 2017.

[50] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In ACM Sigplan notices, volume 42, pages 89–100. ACM, 2007.

[51] Bryan Parno. Bootstrapping trust in a ”trusted” platform. In Proceedings of the 3rd Con-
ference on Hot Topics in Security, HOTSEC’08, pages 9:1–9:6, Berkeley, CA, USA, 2008.
USENIX Association.

[52] Chris Peikert. A decade of lattice cryptography. Foundations and Trends R© in Theoretical
Computer Science, 10(4):283–424, 2016.

FutureTPM D3.2 PU Page 39 of 68

https://rdist.root.org/2007/07/16/tpm-hardware-attacks/
https://rdist.root.org/2007/07/16/tpm-hardware-attacks/
https://rdist.root.org/2007/07/17/tpm-hardware-attacks-part-2/
https://rdist.root.org/2007/07/17/tpm-hardware-attacks-part-2/

D3.2 - First Report on the Security of the TPM

[53] Guillaume Poupard and Jacques Stern. Short proofs of knowledge for factoring. In Public
Key Cryptography, pages 147–166, 2000.

[54] Oded Regev. The learning with errors problem (invited survey).

[55] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented pro-
gramming: Systems, languages, and applications. ACM Trans. Inf. Syst. Secur., 15(1):2:1–
2:34, March 2012.

[56] Sasha Romanosky, Rahul Telang, and Alessandro Acquisti. Do data breach disclosure laws
reduce identity theft? Journal of policy analysis and management, 30(2):256–286, March
2011.

[57] Grigore Roşu, Wolfram Schulte, and Traian Florin Şerbănuţă. Runtime verification of c mem-
ory safety. In International Workshop on Runtime Verification, pages 132–151. Springer,
2009.

[58] Mark D. Ryan. Cloud computing privacy concerns on our doorstep. Communications of the
ACM, 54(1):36–38, January 2011.

[59] Lalitha Sankar, S. Raj Rajagopalan, and H. Vincent Poor. Utility-privacy tradeoffs in
databases: An information-theoretic approach. IEEE Transactions on Information Theory,
8(6):838–852, March 2013.

[60] Ravi Sen and Sharad Borle. Estimating the contextual risk of data breach: An empirical
approach. Journal of Management Information Systems, 32(2):314–341, August 2015.

[61] Jianxiong Shao, Yu Qin, and Dengguo Feng. Formal analysis of HMAC authorisation in the
TPM 2.0 specification. IET Information Security, 12(2):133–140, 2018.

[62] Sergei Skorobogatov. Physical Attacks and Tamper Resistance, pages 143–173. Springer
New York, 2012.

[63] Giannetsos Thanassis, Dimitriou Tassos, and Prasad Neeli R. Weaponizing wireless net-
works: An attack tool for launching attacks against sensor networks. In Black Hat Europe
2010, Barcelona, Spain, April 12-15, 2010.

[64] Marten van Dijk and Ari Juels. On the impossibility of cryptography alone for privacy-
preserving cloud computing. In USENIX conference on Hot topics in security (HotSec),
pages 1–8, Washington, DC, August 2010. USENIX.

[65] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public auditing for
data storage security in cloud computing. In IEEE INFOCOM, pages 1–9, San Diego, CA,
March 2010. IEEE.

[66] Jorden Whitefield, Liqun Chen, Ralf Sasse, Steve Schneider, Helen Treharne, and Steve
Wesemeyer. A symbolic analysis of ECC-based direct anonymous attestation. In 2019
IEEE European Symposium on Security and Privacy, 2019. To appear.

[67] Johannes Winter. Trusted computing and local hardware attacks. Master’s thesis, Graz
University of Technology, 5 2014.

[68] Rafal Wojtczuk and Joanna Rutkowska. Attacking intel trusted execution technology, 2009.
Accessed 31 May, 2019.

FutureTPM D3.2 PU Page 40 of 68

D3.2 - First Report on the Security of the TPM

Appendix A

Hardware Security Anchors in Malicious
Cloud Scenarios

Cloud services support the outsourcing of data processing on remote servers. This process-
ing can take a variety of forms, from storing private files for archival to forwarding messages to
communicating parties, to executing complex data mining algorithms on the outsourced data. In
those scenarios, the cloud provider clearly needs access to the user’s data in some form. This
fact raises privacy concerns.

Indeed, users’ data can be leaked by a malicious insider, an outsider breach, or the cloud provider
colluding with a third party. Even though there are now legal and regulatory means to mitigate
these threats, these do not prevent the breach, and are thus insufficient to guarantee the required
levels of privacy and confidentiality for private datasets [56, 60]. We thus consider the problem of
ensuring that the user can trust that the cloud provider processes the data only in the way it indi-
cated [58] without considering issues of incentives. In some scenarios, the user may even wish to
not trust the cloud provider at all, but still requires the ability to outsource some functionality over
their data. Solutions at both ends of this spectrum have been proposed: when the cloud provider
is completely trusted, the user can still consider privacy/utility trade-offs [59] to limit exposure;
when the cloud provider is completely untrusted, it is possible to achieve almost arbitrary func-
tionality without loss of privacy through the use of advanced cryptographic mechanisms (such
as, for example, fully homomorphic encryption or multi-party computation protocols) [65]. In this
latter setting, van Dijk and Juels [64], among others point out the difficulties of enforcing privacy
using cryptography along, and suggest the use of trusted hardware to make progress towards
a feasible solution. We investigate the question of whether current trusted computing solutions
(generically referred to as Hardware Security Anchors (HSAs)) are ready to support privacy in
a generic cud-based multi-user scenario where the cloud provider is untrusted. We will assume
that the cloud is an honest-but-curious adversary (that is, it follows the protocol but tries to learn
as much information as they can).

We generically model this scenario as a “social network”, and consider privacy concerns related
to both the confidentiality of users’ data (during transmission and processing, and at rest), and
the visibility of metadata (for example, connections between users). Privacy properties where
the adversary can access both data and activity (or metadata) are best captured as unlinkability
properties. Consider, for example, the case of a conference management system. The sensitive
data, in this case, includes the papers—submitted in confidence—and the reviews. The metadata
would include, among other sensitive details, the connections between authors and reviewers,
which would ideally only be known to the chair of the programme committee. Yet, we still wish
the cloud provider to support the system’s functionality (for example, by routing information to the

FutureTPM D3.2 PU Page 41 of 68

D3.2 - First Report on the Security of the TPM

correct users) without learning any of the sensitive information.

In the remainder of this Chapter, we discuss possible directions for unlinkable conference man-
agement systems A.1 and a more generic social network A.2. We then discuss how current HSAs
seem to fall short of the functionality required to fully support privacy in these scenarios (and, by
extension, also in the FutureTPM’s third use case).

A.1 Use Case: Private Conference Management System

We first consider the ConfiChair protocol [5], a privacy-preserving cloud-based conference man-
agement system that uses in-browser key translation techniques to protect the confidentiality of
data. Concretely, the confidentiality properties attained by the protocol ensure that the cloud does
not learn:

• the content of the submitted papers,

• the content of the submitted reviews, or

• the scores attributed to submitted papers.

Further, it also provides a strong unlinkability property, ensuring that the cloud does not learn the
author-reviewer relation. The cloud server only manages sensitive data as encrypted blobs, and
the chair’s browser executes a critical obfuscation part on the data in order to achieve unlinkability.
In terms of functionality, the protocol still enables the cloud provider to route information to the
necessary chairs, reviewers and authors, to enforce access control, and optionally to perform
statistics collection.

Overview of ConfiChair. There are some particularities of the ConfiChair protocol that play a
key role in achieving its unlinkability property:

1. The protocol manages a relatively small social network;

2. The protocol is divided into different phases: the papers can be uploaded to the cloud (but
not retrieved) during the submission phase. The privacy-preserving actions are triggered
after this phase.

3. Users (reviewers) are allowed to download entire databases of encrypted papers or meta-
data.

4. Users have different roles. There is a “special user” (the chair) which plays a paramount
role in the privacy-preserving feature.

5. The chair is in charge, not only of assigning reviewers to papers, but also of re-encrypting
cryptographic material so that the cloud can perform the routing tasks correctly. The re-
encryption is required to prevent the cloud from learning the links.

An important observation is that, while ConfiChair protects the author-reviewer link, it does not
protect the “friends of friends” link. That is, the cloud knows what reviewers are reviewing the
same paper, but not which one. We discuss this stronger unlinkability property in a more general
scenario in Section A.2.

FutureTPM D3.2 PU Page 42 of 68

D3.2 - First Report on the Security of the TPM

Re-encryption for privacy. We consider four different roles: the chair, the cloud provider, and
two different types of regular users, namely authors and reviewers. The protocol critically relies
on strict interactions between the chair and the cloud provider. Recall that the cloud is responsible
for the correct and secure routing of information between the other three participants. In order
for the ConfiChair protocol to achieve this goal, while ensuring the integrity and confidentiality of
the transmitted data, the chair is burdened with more computational load, especially in the review
phase.

More concretely, the chair is responsible for decrypting data with one key and encrypting it with
another one while mixing and re-randomising the order of the encrypted items. During the review
phase, the chair downloads from the cloud a database DBkeys. Each entry in this database is a
pair of a symmetric key and a unique identifier for the paper, both encrypted under a conference
public key pub(Conf). The chair, who uniquely possesses the corresponding conference private
key priv(Conf) decrypts each entry, generates a new unique identifier (at random) which is used
to assign papers to reviewers, and re-encrypts the entry under a symmetric key Kconf shared by
all reviewers. The resulting ciphertexts are then mixed, forming a new database DBrkeys, which is
returned to the cloud. The cloud is responsible for access control related to conflicts of interest.
Thus, the conference chair has to perform the following operations: a public key decryption,
a symmetric encryption and a shuffle. These operations are performed on the chair’s browser,
adding a significant computational burden on the chair side. In addition, any failure of the browser,
or the loss of connection during the process, would require the phase to be re-executed from
the beginning. We refer the reader to the published version of ConfiChair [5] or its extended
version [6] for a further discussion on the protocol.

HSAs for Privacy. Consider the critical privacy-preserving operation discussed above, whose
interface can be abstracted in terms of inputs and outputs as:

Input: (x1, x2 . . . , xr)

Output: (f(xσ(1)), f(xσ(2)), . . . , f(xσ(r))),

where σ : {1, 2 . . . , r} → {1, 2 . . . , r} is a (secret) permutation, and f is a function parametrized
by the two keys (priv(Conf) and Kconf) above. The function f is in charge of decomposing its
inputs, executing some checks, rearranging items and performing a decryption and an encryp-
tion (under some provided keys), obtaining a functionality to that of a reencryption mixnet, but
with concrete details incompatible with common realizations. Further, reencryption mixnets only
distribute trust, and require incentives to be aligned to deter collusion, which we aimed to avoid.

As such, we wish to consider the use of a minimal HSA—possible an extended-functionality
version of a TPM—to be placed on the conference server (which runs the cloud provider’s opera-
tions), to avoid having to involve the chair in the distribution of papers to reviewers. (Note that the
allocation would still be performed by the chair.) It is difficult to expect such a bespoke function-
ality to be made available in a general-purpose fixed-API device such as the TPM. Further, we
wish to avoid assuming fully-programmable HSAs: lightweight version such as Intel SGX provide
only nebulous security guarantees, whereas dedicated fully-programmable Hardware Security
Modules are often very costly. We also note that the use case’s requirements—nd in particular
that the permutation over the whole database of submissions be performed obliviously—places
strong requirements on the HSA, which are unlikely to be met by any TPM.

We therefore separate the desired functionality into two smaller, but more generic functionalities,
that would suffice to support this use case in practice:

FutureTPM D3.2 PU Page 43 of 68

D3.2 - First Report on the Security of the TPM

• HSA.Apply(π, x): This command applies a transformation described by π to each entry of a
vector input x = (x1, x2, . . . , xr). In the ConfiChair scenario, the input is the database DBkeys
and for each of the entries xi, the function HSA.Apply(π, x) derives the key associated to
each author, verifies the validity of each key, generates a new random identifier that will
be used to assign each paper to a reviewer and returns the encryption of these values. In
other words, this function can be described as:

(y1, y2, . . . , yr)← HSA.Apply(π, (x1, x2, . . . , xr))

The benefit of adding this function in the HSA API is that it can rely on the HSA’s inherent
trust to manage and protect encryption and decryption keys, and demonstrate to a remote
caller that operations were performed correctly—perhaps through the use of standard and
existing auditing mechanisms. Contrasting with general purpose trusted execution environ-
ments such as Intel’s SGX, this functionality could use language-based mechanisms to limit
the set of functionalities (such as π) that could be applied, preventing looping behaviours,
for example. On the other hand, some features are required for our use case, and the
language must allow:

– Access to loaded HSA objects following their authorization policy;

– Execution of elementary HSA operations such as encryption and decryption using
authorized objects;

– Simple value checks (such as equality checks);

– The generation of random values; and

– Conditional branching.

Additionally, we also require that the output of HSA.Apply can also be protected as an
HSA-protected object, ensuring it cannot be read or manipulated outside of the HSA it was
created on.

• HSA.Shuffle(y): As the name suggests, this function applies a mixing on an input vector
y = (y1, y2, . . . , yr). In other words:

(yσ(1), yσ(2), . . . , yσ(r))← HSA.Shuffle(y1, y2, . . . , yr),

where σ : {1, 2, . . . , r} → {1, 2, . . . , r} is a random permutation for the r entries yi. Of
course, this permutation command only makes sense if the input y is encrypted and only
accessible to the HSA, or if the yi are encrypted using a malleable scheme that allows
re-randomization. We note that such a feature would also be useful in more general appli-
cations, where shuffling requires either partial trust (for example, through distribution and
threshold operations in electronic voting) or complex and slow cryptography (as in online
card games).

An interesting similarity arises here, which we do not reflect on further in this deliverable, with
the standard data analysis map/reduce technique, whereby an operation is first mapped over
each element of a large dataset, and the results are then aggregated (or reduced) to produce
the final result. In our case, the functionality π we pass to the HSA.Apply functionality could
indeed be described as an element-by-element mapping (although there is a need to guarantee
the absence of collision in the random identifiers), and HSA.Shuffle, along with the decryption of
the final result, could be seen as a reduce step. Identifying ways in which the above commands
could be amended to better support this standard cloud-based workflow is left as future work.

FutureTPM D3.2 PU Page 44 of 68

D3.2 - First Report on the Security of the TPM

A.2 Use Case: a Generic Social Network

The ConfiChair protocol is particularly amenable to the kind of discussion carried out above,
since it already identifies a privileged user that is trusted for privacy and functionality, and whose
functionality can be offloaded to a sufficiently capable HSA. In general, cloud applications—and
social networks more particularly—do not have such privileged roles, and relying on particular
users’ ability to perform complex tasks for functionality or security would be entirely unrealistic.

Motivated by the conference management system setting, we now wish to generalize protocols
like ConfiChair to more generic social network scenarios, and incorporate the use of a HSA to
avoid the computational burden imposed on the users by the use of various cryptographic mecha-
nisms. The approach taken to support ConfiChair will not be applicable to general social network
settings. Beyond the already discussed absence of a centrally trusted party, which can perform
critical operations and distribute shared secrets, in general social networks, social networks are
not clearly divided in phases, all users can write content and associate unique access policies to
them, and all users can read the content they have been granted access to. Further, the “friend
of a friend” problem represents a more serious privacy concern than it did in the case of confer-
ence management. Finally, friendship relations tend to change regularly, requiring our models to
capture the dynamic aspects of friendships, but also to capture privacy in this dynamic setting. In
such a setting, solutions for cryptographically-enforced access control [30] are not suitable even
when they guarantee policy privacy [29]. In particular, policy changes tend to be very costly in
such settings, and they do not guarantee unlinkability of requests.

Problem Statement. We thus consider the problem of providing standard social network func-
tionalities (including access policies set per-content, rather than per-user) whilst providing strong
privacy and unlinkability properties. In particular, although cloud C1 can learn the identities of
writers and readers as they make access requests, we require that neither C1 nor C2 is able to
learn the contents, policies, or any relevant metadata that can link users. Further, we will look
for solutions in which neither C1 nor C2 can distinguish between the type of requests (read, write,
or change policy). We distribute the network’s operations across two non-colluding, honest-but-
curious cloud providers C1 and C2. C1 will be given access to an HSA, and will be managing
write, read, and policy change operations from users, and for routing data, while C2 is used for
storage.

Analysing the privacy requirements. Considering only privacy, and since C1 has immediate
access to all information about operations required to route messages, it is important to hide from
C1 the links between those requests and the encrypted blobs it routes between users and C2,
and must also hide relations between incoming and outgoing blobs of encrypted data. Encrypted
blobs in this scenario may be quite large (for example, if they are files in a cloud data store with
fine-grained sharing), and it may not be feasible to have the HSA perform decryptions and en-
cryptions over the data itself. However, the HSA could be used to distribute per-object secrets to
authorized users, essentially serving as a trusted monitor using simple cryptographic techniques
to protect itself from its immediate environment (the cloud C1).

However, the naive solution here, which consists in simply passing around encrypted blobs of
data and encrypted keys would leak significant amounts of information about links and policies:
C1, in particular, could observe the same encrypted blobs being passed between users. We must,
therefore, consider other solutions, which would for example prevent C1 from learning information

FutureTPM D3.2 PU Page 45 of 68

D3.2 - First Report on the Security of the TPM

by having the HSA request more blobs than necessary from C2, or would involve activity coop-
eration between the HSA and C2. All those solutions have in common the fact that existing TPM
features will in fact be insufficient, since the HSA must either be able to make decisions (about
which data to request from C2), or monitor the behaviour of an untrusted party.

FutureTPM D3.2 PU Page 46 of 68

D3.2 - First Report on the Security of the TPM

Appendix B

Provably-Secure Lattice-Based Direct
Anonymous Attestation1

We now give details of the mathematics, and of the proposed lattice-based DAA construction,
and an overview of the model and proof from El Kassem et al. [39].

B.1 Lattice-Based Cryptography: Some Notations and Assump-
tions

Throughout the rest of this section, we use polynomial rings Rq = Zq[x]/〈xn + 1〉 to build crypto-
graphic operations, where Zq represents the quotient ring Z/qZ and n is a power of 2.

Elements a ∈ Rq are represented as polynomials a = a0 + a1x + · · · + an−1x
n−1 of degree

n − 1 with integer coefficients. Operations over Rq handle these elements with the polynomials
reduced modulo xn + 1 and the coefficients reduced modulo q. An element a ∈ Rq can thus
be represented as a vector (a0, a1, . . . , an−1) ∈ Znq . We use ‖a‖∞ to denote the infinity norm of
a ∈ Rq, defined as ‖a‖∞ = (‖a‖∞ = max 0≤j≤n |aj|).

We also manipulate vectors of polynomials in dimension m, represented as Â = (a1, . . . , am)
where m is some positive integer. ‖Â‖∞ is the infinity norm of the vector of polynomials Â
defined by ‖Â‖∞ = maxi ‖ai‖∞.

We write [d] for the set {1, . . . , d} given any positive integer d. B3n denotes the set of vectors u ∈
{−1, 0, 1}3n having exactly n coordinates equal to−1, n coordinates equal to 0 and n coordinates
equal to 1. β denotes a positive real norm bound and λ represents a security parameter.

For a fixed Â, we can use the inner-product Â · Ẑ with Ẑ varying Rm
q to generate a lattice

L(Â) =
{

v | ∃Ẑ∈Rm
q
Â · Ẑ = v

}
It is easy to see that the lattice L(Â) such defines satisfies Definition 2. Moreover, for a given u,
we define L⊥u (Â) as

L⊥u (Â) =
{
Ẑ ∈ Rm

q |Â · Ẑ = u
}

1This Appendix is based on a journal article authored by Nada El Kassem, Liqun Chen, Rachid El Bansarkhani
(TU Darmstadt), Ali El Kaafarani (University of Oxford), Jan Camenisch (Dfinity), Patrick Hough (University of Oxford),
Paulo Martins, and Leonel Sousa. [39]

FutureTPM D3.2 PU Page 47 of 68

D3.2 - First Report on the Security of the TPM

Definition 2 (Lattices [37]). Let b1,b2, · · · ,bn be linearly independent vectors over Rm. Let
B = [b1|b2| · · · |bn] ∈ Rm×n having these vectors as columns. The lattice spanned by B is given
by

L(B) =

{
n∑
i=1

zibi : zi ∈ Z

}
The vectors b1,b2, · · · ,bn are called a basis of the lattice. The rank n of the lattice is defined to
be the number of vectors in B. If n = m then the lattice L is said to be a full-rank lattice.

The security of the proposed DAA scheme is based on the Ring-ISIS and Ring-LWE problems,
characterised in Definitions 3 and 4. Both of these problems are usually assumed to be hard
problems to solve, even when leveraging a general purpose quantum computer.

Definition 3 (The Ring Short Integer Solution Problem (Ring-SISn,m,q,β) [52]). Given m uniformly
random elements ai ∈ Rq defining a vector Â = (a1, a2, . . . , am), find a nonzero vector of poly-
nomials Ẑ = (z1, z2, . . . , zm) ∈ Rm

q with ‖Ẑ‖∞ ≤ β such that: Â · Ẑ =
∑

i∈[m] ai · zi = 0.

The Ring Inhomogeneous Short Integer Solution (Ring-ISISn,m,q,β) problem asks to find Ẑ with
‖Ẑ‖∞ ≤ β, and such that: Â · Ẑ = y, for some uniform random polynomial y.

Definition 4 (The Ring Learning With Error Problem (Ring-LWE) [54]). Let χ be an error distribu-
tion defined over Rq, we define the following:

Ring-LWE distribution: Choose a uniformly random ring element s ←↩ Rq called the secret,
and a distribution χ. The ring-LWE distribution As,χ overRq×Rq is sampled by choosing a ∈ Rq

uniformly at random, choosing randomly the noise e ←↩ χ and outputting (a,b) = (a, s · a + e
mod q) ∈ Rq ×Rq.

Ring-LWE Problems: Let u be uniformly sampled from Rq

1. The decision Ring-LWE problem asks to distinguish between (a,b)← As,χ and (a,u) for a
uniformly sampled secret s←↩ Rq.

2. The search Ring-LWE problem asks to return the secret vector s ∈ Rq given a Ring-LWE
sample (a,b)← As,χ for a uniformly sampled secret s←↩ Rq.

We will also sample values from Gaussian distributions over lattices, which we define below
(Definition 5).

Definition 5 (Discrete Gaussian Distributions [54]). The discrete Gaussian distribution on a non
empty set L with parameter s, denoted by DL,s, is the distribution that assigns to each x ∈ L a
probability proportional to exp(−π(‖x‖/s)2).

We can now describe the proposed scheme, starting with the signature and commitment schemes
that form its core.

B.2 Building Blocks

The scheme modifies and combines a signature scheme by Boyen [12] and a commitment
scheme by Baum et al [9]. We refer the reader to the full article [39] for detailed discussions
of the original schemes.

FutureTPM D3.2 PU Page 48 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.1: Modified Version of Boyen’s Signature Scheme

• KeyGen(1λ):

1. Generates a vector Ât ∈ Rm
q .

2. Generates a vector Â ∈ Rm
q together with a trapdoor T̂ . The trapdoor enables

sampling vectors of polynomials following a discrete Gaussian distribution on
L⊥v (Â|B̂) for any v ∈ Rq and B̂ ∈ Rm

q where | denotes concatenation [41].

3. Samples uniform random vectors of polynomials Âi ∈ Rm
q for i ∈ (0, [`]).

4. Selects a uniform random syndrome u ∈ Rq.

5. Outputs the secret key sk := T̂ and the public key pk := (Ât, Â, Â0, Â1, . . . ,
Â`,u, q, β).

• Sign(sk, id ∈ {0, 1}`):

1. Samples a vector of polynomials Ẑt = (z1, . . . , zm)←↩ DmZn,s such that ‖Ẑt‖∞ ≤ β,
and computes Ât · Ẑt ≡ ut mod q.

2. Generates a vector of polynomials Âid = [Â|Â0 +
∑`

i=1 idi · Âi] ∈ R2m
q , as in the

Boyen scheme.

3. Using the secret key T̂ , samples Ẑh = (zm+1 . . . , z3m) ←↩ DL⊥uh
(Âid),s

, with

‖Ẑh‖∞ ≤ β and such that Âid · Ẑh ≡ uh = (u− ut) mod q.

4. Outputs the signature Ẑ = [Ẑt|Ẑh] = (z1, . . . , z3m).

• Verify(pk, id, Ẑ): If [Ât|Âid] · Ẑ ≡ u mod q and ‖Ẑ‖∞ ≤ β are satisfied, output 1, else
0.

As noted in Section 4.1, DAA credentials correspond to a signature of the platform identifier
produced by the Issuer. In practice, DAA credentials are not held by a single party, but are split
across the TPM and Host that constitutes the platform. We modify the signature scheme by
Boyen [12], as described in Scheme B.1, to allow the key to be split. As a consequence of this
modification, the Issuer’s public-key must now include one more random vector of polynomials
Ât ∈ Rq, and each signature is composed of two vectors of polynomials Ẑt and Ẑh of small norm
such that [Ât|Âid] · [Ẑt|Ẑh] = u. The key share Ẑt is held by the TPM whereas key share Ẑh is
held by the Host.

The security of this modified Boyen signature scheme is based on the original Boyen signature
scheme which is unforgeable if the SIS problem is unfeasibly hard [12]. The unforgeability of the
modified Boyen signature can be reduced to the existential unforgeability of the original Boyen
signature scheme. We do not detail this analysis here.
In order to create a DAA signature, which is jointly signed by a TPM and its Host, we modify
a commitment scheme by Baum et al. [9] to allow for two parties to commit to a set of secret
values jointly. This modification is reflected in Scheme B.2 and leverages the scheme’s additive
homomorphism. Let Ŝt ∈ Rlt

q and Ŝh ∈ Rlh
q , where lt and lh are some integers representing,

respectively, the TPM and the Host’s inputs. Let st and sh in Rq be the TPM and the host’s
corresponding inputs to be added. Scheme B.2 allows the TPM and Host to jointly commit to

FutureTPM D3.2 PU Page 49 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.2: Modified Baum et al’s Commitment Scheme

To commit to a message Ŝ = [(st + sh)|Ŝt|Ŝh] ∈ Rlt+lh+1
q , the TPM and Host share a

uniformly random vector of polynomials B̂ in R(lt+lh+2)×k
q .

To commit to a message [st|Ŝt], the TPM:

• Chooses a uniformly random vector of invertible polynomials R̂t ∈ D such that
‖R̂t‖∞ ≤ αt for some small constant αt.

• Computes Ct = COM([st|Ŝt], R̂t) := B̂R̂t + (0|st|Ŝt|0̂ ∈ Rlh
q), outputs Ct.

To commit to a message [sh|Ŝh] the host:

• Chooses a uniformly random vector of invertible polynomials R̂h ∈ D such that
‖R̂h‖∞ ≤ αh for some small constant αh.

• Computes Ch = COM([sh|Ŝh], R̂h) := B̂R̂h + (0|sh|0̂ ∈ Rlt
q |Ŝh), outputs Ch.

Now we have C = Ct+Ch = B̂(R̂t+R̂h)+(0|st+sh|Ŝt|Ŝh) = COM([st+sh|Ŝt|Ŝh], R̂t+R̂h) =
COM(Ŝ, R̂), where R̂ = R̂t + R̂h and ‖R̂‖∞ < αt + αh.

the vector
(
st + sh|Ŝt|Ŝh

)
without one learning about the input values of the other. The original

scheme by Baum et al. was proved to be statistically hiding and computationally binding assuming
an instantiation of the Ring-SIS problem. The security of our modified commitment scheme is
based on that of the original scheme. In particular, we argue that splitting the prover role into two
entities does not affect these two properties, but do not detail the security proof here.

B.3 The Proposed LDAA Scheme

We now describe our proposed DAA scheme, which builds upon the lattice-based constructions
described above. The scheme’s algorithms are described as reactive systems, which react to
specific inputs from their environment, rather than more classic oracle-based escriptions in order
to align with the UC-based security model we choose to use. The security of this scheme is
based on the Ring-ISIS and Ring-LWE problems from Definitions 3 and 4.

Beyond the primitives already constructed bove, the scheme also assumes some standard func-
tionalities, widely used in TPM applications. These additional assumptions follow Camenisch,
Drijvers and Lehmann [17], and are not discussed further here. However, we note that precisely
identifying them and their expected security is critical in developing sound foundations for the
analysis of the security of TPM as a whole. Indeed, most of these functionalities will be imple-
mented by other components or high-level functionalities provided by the TPM, perhaps jointly
with its Host.

We assume the following functionalities:

• Fca is a common certificate authority functionality that is available to all parties.

FutureTPM D3.2 PU Page 50 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.3: LDAA Setup

• Fcrs creates the system parameters: sp = (λ, q, n,m,Rq, c, β, β
′, `, η), where λ, c and

η are positive integer security parameters, β and β′ are positive real numbers such that
β, β′ < q, and ` is the length of a message to be signed with Boyen’s signature scheme.

• Upon input (SETUP, sid), where sid is a unique session identifier, the Issuer first checks
that sid = (I, sid′) for some sid′, then creates its key pair. The Issuer’s public key is
pp = (sp, Ât, ÂI , Â0, Â1, ..., Â`, u, H,H0,H1), where Ât, ÂI , Âi(i = 0, 1, ..., `) ∈ Rm

q ,
u ∈ Rq, H : {0, 1}∗ → Rq, H0 : {0, 1}∗ → {1, 2, 3}c and H1 : {0, 1}∗ → {0, 1}η be
a collision resistant hash function. The Issuer’s private key is T̂I , which is the trapdoor
of ÂI and ‖T̂I‖∞ ≤ ω, for some small real number ω. The Issuer initialises the list
of joining members (Members← ∅) and proves that his secret key is well formed by
generating a proof of knowledge πI , and registers the key (T̂I , πI) with Fca. Finally, it
outputs (SETUPDONE, sid).

• FDcrs is a common reference string functionality that provides participants with all system
parameters.

• Fauth∗ is a special authenticated communication functionality that provides an authenticated
channel between the issuer and the TPM via the host.

• F l
smt is a secure message transmission functionality that provides an authenticated and

encrypted communication between the TPM and the host.

Defining a DAA scheme requires the specification of five algorithms:

• Setup, which initializes and distributes secrets;

• Join, through which a platform requests credentials from the issuer and demonstrates its
trust status;

• Sign,through which a platform produces a DAA signature for any chosen message;

• Verify, through which a verifier checks the validity of a given signature for a given message;
and

• Link, through which anyone can test whether two signatures were produced using the same
basename.

We describe each of these algorithms in turn.

Setup.

The Setup step is described in Scheme B.3 and corresponds to the generation of the parameters
shared by the Issuer’s community, along with the Issuer’s secret-key and the initialisation of its
internal state.

FutureTPM D3.2 PU Page 51 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.4: LDAA Join Request

• On input query (JOIN, sid, jsid, tpmi), the host hostj forwards (JOIN, sid, jsid) to I, who
replies by sending (sid, jsid, ρ, bsnI) back to hostj, where ρ is a uniform random nonce
ρ ←↩ {0, 1}λ, and bsnI is the Issuer’s base name. This message is then forwarded to
tpmi.

• The TPM proceeds as follows:

1. It checks that no such entry exists in its storage.

2. It samples a private key: X̂t = (x1, . . . ,xm)←↩ Rm
q with the condition ‖X̂t‖∞ ≤ β,

and stores its key as (sid, hostj, X̂t, id).

3. It computes the corresponding public key ut = Ât ·X̂t mod q, a link token nymI =
H(bsnI) · x1 + eI mod q for some error eI ←↩ DZn,s′ such that ‖eI‖∞ < β′, and
generates a signature based proof:

πut = SPK
{
public := {sp, Ât, ut, bsnI , nymI},

witness := {X̂t = (x1, . . ., xm), eI} :
ut = Ât · X̂t mod q ∧ ‖X̂t‖∞ ≤ β ∧ nymI = H(bsnI) · x1 + eI

mod q ∧ ‖eI‖∞ ≤ β′
}

(ρ).

4. It sends (nymI , id, ut, πut) to the issuer I via the host by means of Fauth∗ , i.e., it
gives Fauth∗ an input (SEND, (nymI , πut), (sid, tpmi, I), jsid, hostj).

• The host, upon receiving (APPEND, (nymI , πut), (sid, tpmi, I)) from Fauth∗ , forwards
it to I by sending (APPEND, (nymI , πut), (sid, tpmi, I)) to Fauth∗ and keeps the state
(jsid, ut, id).

• The Issuer, upon receiving (SENT, (nymI , πut), (sid, tpmi, I), jsid, hostj) from Fauth∗ ,
verifies the proof πut to make sure that tpmi /∈ Members. I stores (jsid, nymI , πut , id,
tpmi, hostj), and generates the message (JOINPROCEED, sid, jsid, id, πut).

Join.

The Join process is a protocol running between the Issuer I and a platform, consisting of a TPM
tpmi and a Host hostj (with an identifier id). More than one Join session be may run in parallel,
and a unique sub-session identifier jsid is distributed to all participating parties to allow the Issuer
to differentiate between them. The goal of the potocol is to allow the issuer I to check that the
platform is qualified to execute the trusted computing attestation service, and to issue qualified
platforms with a credential enabling it to create attestations.

A Join session works in two distinct phases, Join request and Join proceed. During the Join
request, described in Scheme B.4, the TPM generates its private-key X̂t and the corresponding
public-key ut, along with a linking token nymI associated with the Issuer, and a proof that the
public-key and the token are well formed. The Issuer finalises the Join request phase by checking
the validity of the proof and that the platform has not been provisioned before.
During Join proceed (Scheme B.5), the Issuer samples a small X̂h such that [Ât|Âid]·[X̂t|X̂h] = u.
X̂h is then transmitted to the Host.

FutureTPM D3.2 PU Page 52 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.5: LDAA Join Proceed

• If the platform chooses to proceed with the Join session, the message (JOINPRO-
CEED, sid, jsid) is sent to the issuer, who performs as follows:

1. It checks the record (jsid, nymI , id, tpmi, hostj, πut). For all nym′I from the previ-
ous Join records, the issuer checks whether ‖nymI − nym′I‖∞ ≤ 2β′ holds; if yes,
the issuer treats this session as a rerun of the Join process; otherwise the issuer
adds tpmi to Members and goes to Step 2. If this is a rerun, the issuer will further
check if ut = u′t; if not the issuer will abort; otherwise the issuer will jump to Step
4 returning X̂h = X̂ ′h. Note that this double check will make sure that any two DAA
keys will not include the same x1 value.

2. It calculates the vector of polynomials Âh = [ÂI |Â0 +
∑`

i=1 idi · Âi] ∈ R2m
q .

3. It samples, using the issuer’s private key T̂I , a preimage X̂h = (xm+1, . . . ,x3m) of
u− ut such that: Âh · X̂h = uh = u− ut mod q and ‖X̂h‖∞ ≤ β.

4. It sends (sid, jsid, X̂h) to hostj via Fauth∗ .

• When the host receives the message (sid, jsid, X̂h), it checks that the equations Âh ·
X̂h = uh mod q and u = ut + uh are satisfied with ‖X̂h‖∞ ≤ β. If the checks are
correct, then hostj stores (sid, tpmi, id, X̂h, ut) and outputs (JOINED, sid, jsid).

The linking token created during the Join request phase allows the Issuer to check that the same
private key is not used for two different TPMs in the Join proceed step, preventing unwanted
linking of signatures that were not created by the same platform.

Sign.

After obtaining the credential from the Join process, tpmi and hostj can jointly sign a message µ
with respect to a basename bsn. Here again, we use a unique sub-session identifier ssid to allow
for multiple parallel Sign sessions to take place.

Each session has two phases, Sign request and Sign proceed. Sign request, described in
Scheme B.6, is mostly responsible for ensuring that the TPM and the Host have compatible
secret-key shares.
Sign proceed, described in Scheme B.7, produces a zero-knowledge proof-of-knowledge of small
X̂t and X̂h such that [Ât|Âid] · [X̂t|X̂h] = u. More concretely, the TPM and the Host respectively
commit to random strings each showing that either X̂t and X̂h are small or that Ât · X̂t = ut
and Âh · X̂h = uh. We then leverage the additive homomorphism of Scheme B.2 to produce
commitments to strings showing that either X̂t|X̂h is small or that [Ât|Âid] · [X̂t|X̂h] = u. However,
opening all the commitments would reveal the value of X̂t|X̂h. Instead, this procedure is iterated
multiple times, and at each iteration a subset of the commitments is revealed at random. The
randomness is derived from the message to be signed, as is standard in producing signature
proofs of knowledge.

The computation also generates a nym tag, associated with the basename bsn.

FutureTPM D3.2 PU Page 53 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.6: LDAA Sign Request

• Upon input (SIGN, sid, ssid, tpmi, bsn, µ), hostj looks up the record
(sid, tpmi, id, ut, X̂h), and sends the message (sid, ssid, bsn, µ) to tpmi.

• The TPM then does the following:

1. It asks hostj for a permission to proceed.

2. It makes sure to have a Join record (sid, id, X̂t, hostj).

3. It generates a sign entry (sid, ssid, bsn, µ) in its record.

4. Finally it outputs (SIGNPROCEED, sid, ssid, bsn, µ).

Verify.

The verify algorithm, described in Scheme B.8, allows anyone to check whether a signature σ on
a message µ with respect to a basename bsn is valid.

Link.

Finally, the link algorithm, depicted in Scheme B.9 allows anyone to check whether two signatures
(σ, µ) and (σ′, µ′) that were generated for the same basename bsn stem from the same TPM.
This is done by checking whether the difference between the two nym tags has a small norm.

B.3.1 The Proofs θt, θh and π.

We now describe the commitments and proofs of knowledge θt, θh and π in more detail. We
borrow the techniques from [44] and rewrite [Ât|Âh] · [X̂t|X̂h] as

[Ât|ÂI |Â0|Â1| . . . |Âl] · [X̂t|X̂h1|X̂h2|id1X̂h2| . . . |idlX̂h2],

where X̂h = [X̂h1 ∈ Rm
q |X̂h2 ∈ Rm

q], for a public [Ât|ÂI |Â0|Â1| . . . |Âl], and extending and
randomising id such that [43] is still applicable.

Our main technical innovation is the proposal of a proof about values that are shared between
the TPM and the Host. Let k = dlog2 βe. Since we are operating in the ringRq = Zq[x]/〈xn + 1〉,
with n = O(λ), then we can transform products of elements in Rq into matrix-vector products.
The matrices Āi = rot(ai) are constructed as defined in [44], for i = (1, 2, . . . , (` + 3)m), for
all polynomials ai in Ât, ÂI , Â0, ..., Â`, respectively. More concretely, the matrices Āi = rot(ai)
for i = (1, 2, . . . ,m) are associated with the m polynomials in Ât, the matrices Āi = rot(ai) for
i = (m,m+ 1, . . . , 2m) with the m polynomials in ÂI , etc. Similarly, the vectors x̄i whose entries
are the coefficients of xi, for i = (1, 2, . . . , 3m), are produced for all polynomials xi in X̂t and
X̂h, respectively. As a result of these operations, the products Āix̄i and aixi are isomorphic.
Furthermore, the following extensions are considered:

• id = {id1, ..., id`} ∈ {0, 1}` is extended to id∗ ∈ B2` which is the set of vectors in {0, 1}2` of
hamming weight `.

• Ā∗i = [Āi|0 ∈ Zn×3n] for i = 1 to i = (3 + `)m and Ā∗i = 0 for (3 + l)m < i ≤ (3 + 2l)m.

FutureTPM D3.2 PU Page 54 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.7: LDAA Sign Proceed

• When tpmi gets permission to proceed for ssid, the TPM proceeds as follows:

1. It retrieves the records (sid, id, hostj, πut) and (sid, ssid, bsn, µ).

2. Depending on the input bsn, there are two cases: If bsn 6= ⊥, the tpm computes
the tag nym = H(bsn) · x1 + e mod q, for an error term e ←↩ DZn,s′ such that
‖e‖∞ < β′ and generates a commitment using Scheme B.2:

θt = COM
{
public := {sp, Ât, nym, bsn, H, ut},

witness := {X̂t = (x1, . . . ,xm), e} :

{Ât · X̂t = ut ∧ ‖X̂t‖∞ ≤ β} ∧ nym = H(bsn) · x1 + e ∧ ‖e‖∞ ≤ β′
}
.

If bsn=⊥, then tpmi samples a random value bsn ← {0, 1}λ, and then follows the
previous case.

3. tpmi sends (sid, ssid, θt, µ) to hostj.

4. When hostj receives the message (sid, ssid, θt, µ), it checks that θt is valid, and
subsequently generates a commitment using, again, Scheme B.2:

θh = COM
{
public := {sp, Âh, uh, µ, θt},

witness := {X̂h = (xm+1, . . . ,x3m), id} :

{Âh · X̂h = uh ∧ ‖X̂h‖∞ ≤ β}
}
.

The two commitments θt and θh are homomorphically combined.

5. The TPM and Host run the standard Fiat-Shamir transformation, and the result is
a signature based proof (signed on the message µ):

π = SPK
{
public := {pp, nym, bsn},

witness := {X̂ = (x1, . . . ,x3m), id, e} :
[Ât|Âh] · X̂ = u ∧ ‖X̂‖∞ ≤ β ∧ nym = H(bsn) · x1 + e

mod q ∧ ‖e‖∞ ≤ β′
}

(µ).

The details of the θt, θh and π computation will be given below.

6. hostj outputs the L-DAA signature σ = (nym, bsn, π).

FutureTPM D3.2 PU Page 55 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.8: LDAA Verify

• Let RL denote a revocation list containing the secret keys of all known rogue TPMs.
Upon input (VERIFY, sid, bsn, σ, µ, RL), the verifier proceeds as follows:

1. It parses σ as (nym, bsn, π), and checks SPK on π with respect to bsn, nym, µ
and u, verifying the statement:

[Ât|Âh] · X̂ = u ∧ ‖X̂‖∞ ≤ β ∧
nym = H(bsn) · x1 + e mod q ∧ ‖e‖∞ ≤ β′.

2. It checks that the secret key X̂t that was used to generate nym, doesn’t belong to
the revocation list RL. This is done by checking whether the following equation
holds:

∀x1 ∈ RL, ‖H(bsn) · x1 − nym‖∞ ≤ β′.

3. If all checks passed, the verifier outputs (VERIFIED, ssid, 1), and (VERIFIED,
ssid, 0) otherwise.

Scheme B.9: LDAA Link

• Upon input (LINK, sid, σ, µ, σ′, µ′, bsn) the verifier follows the following steps:

1. Starting from σ = (nym, bsn, π) and σ′ = (nym′, bsn, π′), the verifier verifies σ
and σ′ individually.

2. If any of the signatures is invalid, the verifier outputs ⊥.

3. Otherwise if ‖nym− nym′‖∞ < 2β′, the verifier outputs 1 (linked); otherwise 0 (not
linked).

FutureTPM D3.2 PU Page 56 of 68

D3.2 - First Report on the Security of the TPM

• x̄(2+i)m+j = id∗i · x̄2m+j for 1 ≤ i ≤ 2` and 1 ≤ j ≤ m.

We decompose and extend the vectors x̄i and e into vectors of norm at most 1 such that x̄i =∑k
d=1 2d−1x̄di [1 : n] and e =

∑k
j=1 ej[1 : n]2j−1, where x̄di [1 : n] and ej[1 : n] correspond to the

first n entries of x̄di and ej , respectively, and

{ej}kj=1, {x̄
j
1}kj=1, {x̄

j
2}kj=1, . . . , {x̄

j
(3+2l)m}

k
j=1 ∈ B3n,

i.e. they have n entries equal to −1, n entries equal to 0 and n entries equal to 1.

The extensions of the Āi and id and the decompositions of the extensions of the xi satisfy:

u = [Ât|Âh] · X̂

= [Ât|ÂI |Â0 +
∑̀
i=1

idi · Âi] · X̂

=
3m∑
i=1

Āi · x̄i +
∑̀
j=1

idj ·
m∑
i=1

Āi+(j+2)m · x̄i+2m

=
3m∑
i=1

Ā∗i ·

(
k∑
d=1

2d−1x̄di

)
+

2∑̀
j=1

id∗j ·
m∑
i=1

Ā∗i+(j+2)m ·

(
k∑
d=1

2d−1x̄di+2m

)

=

(3+2`)m∑
i=1

Ā∗i

(
k∑
d=1

2d−1x̄di

)

The commitment algorithm COM used to compute θt and θh is as explained in Scheme B.2. To
produce θt, the TPM samples two vectors {rje ←↩ Z3n

q }kj=1 and {rji ←↩ Z3n
q }kj=1 for i ∈ [m] and

j ∈ [k]; and the permutations {φj ←↩ S3n}kj=1 associated with X̂t, and {ϕj ←↩ S3n}kj=1 for e. The
following terms are also calculated: D = [rot(H(bsn))|0] ∈ Zn×3nq , vji = xji +rji and vje = ej +rje.
θt = (Ct1,Ct2,Ct3) can then be computed as:

• Ct1 = COM(
∑m

i=1 Ā
∗
i ·(
∑k

j=1 2j−1rji), D·(
∑k

j=1 2j−1rj1)+[I|0]·(
∑k

j=1 2j−1rje), {φj}kj=1, {ϕj}kj=1).

• Ct2 = COM({φj(rj1), . . . , φj(rjm)}kj=1, {ϕj(rje)}kj=1).

• Ct3 = COM({φj(vj1), . . . , φj(vjm)}kj=1, {ϕj(vje)}kj=1).

In a similar fashion, the Host samples two vectors {rji ←↩ Z3n
q }kj=1 for i − m ∈ [(2 + 2`)m] and

j ∈ [k], and rid∗ ←↩ Z2`
q ; and the permutations τ ←↩ S2` for id∗, {δj ←↩ S3n}kj=1 for X̂h1 and

{ψj ←↩ S3n}kj=1 for X̂h2 . The Host also computes vji = xji + rji and vid∗ = id∗ + rid∗ . Then, it
computes θt = (Ch1,Ch2,Ch3):

• Ch1 = COM(
∑(3+2`)m

i=m+1 Ā∗i · (
∑k

j=1 2j−1rji), τ, {δj}kj=1, {ψj}kj=1).

• Ch2 = COM({δj(rjm+1), · · · , δj(r
j
2m), ψj(r

j
2m+1), . . . , ψj(r

j
3m), ψj(r

j
(τ(1)+2)m+1),

. . . , ψj(r
j
(τ(1)+3)m), . . . , ψj(r

j
(τ(2`)+2)m+1), . . . , ψj(r

j
(τ(2`)+3)m)}kj=1, τ(rid∗)).

• Ch3 = COM({δj(vjm+1), . . . , δj(v
j
2m), ψj(v

j
2m+1), . . . , ψj(v

j
3m), ψj(v

j
(τ(1)+2)m+1),

. . . , ψj(v
j
(τ(1)+3)m), . . . , ψj(v

j
(τ(2`)+2)m+1), . . . , ψj(v

j
(τ(2`)+3)m)}kj=1, τ(vid∗)).

FutureTPM D3.2 PU Page 57 of 68

D3.2 - First Report on the Security of the TPM

The proof π is computed using a similar strategy, but where the commitments are produced
using the homomorphic properties of Scheme B.2. Since soudness of the proof requires multiple
iterations of the proving process, tpmi hands out the commitments of the total c rounds to hostj.
hostj then adds its own commitments to those of the TPM, generating CMT = (C1,C2,C3) such
that:

• C1 = COM(
∑m

i=1 Ā
∗
i ·(
∑k

j=1 2j−1rji)+
∑(3+2`)m

i=m+1 Ā∗i ·(
∑k

j=1 2j−1rji), D ·(
∑k

j=1 2j−1rj1) +[I|0]·
(
∑k

j=1 2j−1rje), τ, {φj}kj=1, {δj}kj=1, {ψj}kj=1, {ϕj}kj=1).

• C2 = COM({φj(rj1), . . . , φj(rjm), δj(r
j
m+1), . . . , δj(r

j
2m), ψj(r

j
2m+1), . . . , ψj(r

j
3m),

ψj(r
j
(τ(1)+2)m+1), . . . , ψj(r

j
(τ(1)+3)m), . . . ψj(r

j
(τ(2`)+2)m+1), . . . , ψj(r

j
(τ(2`)+3)m)}kj=1,

{ϕj(rje)}kj=1, τ(rid∗)).

• C3 = COM({φj(vj1), . . . , φj(vjm), δj(v
j
m+1), . . . , δj(v

j
2m), ψj(v

j
2m+1), . . . , ψj(v

j
3m),

ψj(v
j
(τ(1)+2)m+1), . . . ψj(v

j
(τ(1)+3)m), . . . , ψj(v

j
(τ(2`)+2)m+1), . . . , ψj(v

j
(τ(2`)+3)m)}kj=1,

{ϕj(vje)}kj=1, τ(vid∗)).

Inspired by [53], instead of directly storing the C1, C2 and C3 values in π we opt to store their
hash, and gaining a significant reduction in the proof size. The challenges are generated following
the Fiat-Shamir approach, namely by using a hash function that consumesH1(C1)|H1(C2)|H1(C3)
and outputs a random looking distribution of {1, 2, 3}c:

{CHj}cj=1 = H0(µ,H1(C
j
1)|H1(C

j
2)|H1(C

j
3)}cj=1, pp) ∈ {1, 2, 3}c.

For each challenge, the tpmi and the hostj combine the required values to produce the following
responses:

• if CH = 1, C2 and C3 are revealed, corresponding to all the permuted τ(id∗), τ(rid∗),
{φj(xji)}kj=1, {δj(x

j
i)}kj=1, {ψj(x

j
i)}kj=1, {ϕj(ej)}kj=1, {ϕj(rje)}kj=1, {φj(r

j
i)}kj=1, {δj(r

j
i)}kj=1

and {ψj(rji)}kj=1.

• if CH = 2, C1 and C3 are revealed, corresponding to the permutations τ , {φj}kj=1, {δj}kj=1,
{ψj}kj=1, {ϕj}kj=1 and all the v values.

• if CH = 3, C1 and C2 are revealed, corresponding to all the permutations τ , {φj}kj=1,
{δj}kj=1, {ψj}kj=1, {ϕj}kj=1 and all the r values.

Finally hostj sends the proof to the verifier.

Depending on the prover’s inputs, the verifier can always check 2 out of 3 commitments. When
CH = 1, the verifier will be convinced that the ej

i and the x̄j
i were small. When CH = 2 or

CH = 3, the verifier will be able to validate either the left or the right-hand side of the following
expressions:

(3+2`)m∑
i=1

Â∗i

k∑
d=1

2d−1rdi =

(3+2`)m∑
i=1

Â∗i

k∑
d=1

2d−1
(
x̄di + rdi

)
− u

D ·
k∑
d=1

2d−1rd1 + [I|0] ·
k∑
d=1

2d−1rde = D ·
k∑
d=1

2d−1
(
x̄d1 + rd1

)
+ [I|0] ·

k∑
d=1

2d−1
(
rde + ed

)
− nym

FutureTPM D3.2 PU Page 58 of 68

D3.2 - First Report on the Security of the TPM

ε

A

P1 P2
... Pn

Π

S

P1P2
...Pn

F l
daa

Real World Ideal World

Figure B.1: Universal composability security model: the real and the ideal world executions are
indistinguishable to the environment ε.

B.4 Security Model and Proof

We use the security model for DAA proposed by Camenisch, Drijvers and Lehmann [17]. The
security definition is given in the Universal Composability (UC) model, represented in Figure B.1,
with respect to an ideal functionality F l

daa. In UC, an environment ε should not be able to distin-
guish with a non-negligible probability between two worlds:

1. The real world, where each party Pi in the DAA protocol executes its assigned part of the
protocol Π. The network is controlled by an adversary A that communicates with ε.

2. The ideal world, in which all parties forward their inputs to a trusted third party, called the
ideal functionality F l

daa, which internally performs all the required tasks and creates the
parties’ outputs.

A protocol Π is said to securely realize F l
daa if for every adversary A performing an attack in the

real world, there is an ideal world adversary S that performs the same attack in the ideal world.
More precisely, given a protocol Π, an ideal functionality Fldaa and an environment ε, we say that Π
securely realises Fldaa if the real world in which Π is used is as secure as the ideal world in which
F l
daa is used. A UC security model therefore requires the specification of an ideal functionality

which provides the same interface as the protocol under study—in this case, all stages of the five
DAA algorithms. That ideal functionality should separtely be argued to have the desired security
properties.

In general, a DAA scheme should have the following properties:

• Unforgeability This property requires that the issuer is honest and should hold even if the
host is corrupt. If all the TPMs are honest, then no adversary can output a signature on a
message M with respect to a basename (bsn). On the other hand, if not all the TPMs are
honest, say n TPMs are corrupt, the adversary can at most output n unlinkable signatures
with respect to the same basename.

• Anonymity : This property requires that the entire platform (tpmi + hostj) is honest and
should hold even if the issuer is corrupt. Starting from two valid signatures with respect
to two different basenames, the adversary cannot tell whether these signatures were pro-
duced by one or two different honest platforms.

FutureTPM D3.2 PU Page 59 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.10: Ideal Setup

On input(SETUP, sid) from the issuer I, F l
daa does the following:

• Verify that (I, sid′) = sid and output (SETUP, sid) to S.

• SET Algorithms. Upon receiving the algorithms (Kgen, sig, ver, link, identify) from the
simulator S, it checks that (ver, link, identify) are deterministic [Check-I].

• Output (SETUPDONE, sid) to I.

• Non-frameability : This requires that the entire platform (tpmi + hostj) is honest and should
hold even if the issuer is corrupt. It ensures that no adversary can produce a signature that
links to signatures generated by an honest platform.

As in the standardised DAA schemes supported by the TPM (either the TPM Version 1.2 or the
TPM Version 2.0), in the proposed L-DAA scheme, privacy assumes that the entire platform—both
TPM and Host—are honest. Camenisch et al. [16] consider that the TPM may be compromised,
and that privacy must still hold whenever the host is honest, regardless of the corruption state of
the TPM. Our analysis does not yet cover this scenario.

B.4.1 The Ideal Functionality F l
daa

The ideal functionality F l
daa is defined using the algorithms described in Schemes B.10 (Setup), B.11

(Join), B.12 (Sign), B.13 (Verify), and B.14 (Link).
In the UC model, several sessions of the protocol are allowed to run at the same time and each
session will be given a global identifier sid that consists of an issuer I and a unique string sid′, i.e.
sid = (sid′, I). We also uniquely identify the Join and Sign sub-sessions with jsid and ssid. F l

daa is
parameterized by a leakage function l : {0, 1}∗ → {0, 1}∗, which models the information leakage
that occurs in the communication between a host hostj and a TPM tpmi.

Schemes B.10, B.11, B.12, B.13 and B.14 aso make use of some auxiliary algorithms, which we
define below.

• Kgen(1λ): A probabilistic algorithm that takes a security parameter λ and generates keys
gsk for honest TPMs.

• sig(gsk, µ, bsn): A probabilistic algorithm used for honest TPMs. On input of a key gsk, a
message µ and a basename bsn, it outputs a signature σ.

• ver(σ, µ, bsn): A deterministic algorithm that is used in the VERIFY interface. On input of
a signature σ, a message µ and a basename bsn, it outputs f = 1 if the signature is valid,
f = 0 otherwise.

• link(σ1, µ1, σ2, µ2, bsn): A deterministic algorithm that will be used in the LINK interface.
It outputs 1 if both σ1 and σ2 were generated by the same TPM with respect to the same
bsn, 0 otherwise.

• identify(gsk, σ, µ, bsn): A deterministic algorithm that will be used to ensure consistency
with the ideal functionality F l

daa’s internal records. It outputs 1 if a key gsk was used to
produce a signature σ, 0 otherwise.

FutureTPM D3.2 PU Page 60 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.11: Ideal Join

JOIN

1. JOIN REQUEST: On input (JOIN, sid, jsid, tpmi) from the host hostj to join the TPM
tpmi, the ideal functionality F l

daa proceeds as follows:

• Create a join session 〈jsid, tpmi, hostj, request〉.
• Output (JOINSTART, sid, jsid, tpmi, hostj) to S.

2. JOIN REQUEST DELIVERY: Proceed upon receiving delivery notification from S.

• Update the session record to 〈jsid, tpmi, hostj, delivery〉.
• If I or tpmi is honest and 〈tpmi, ?, ?〉 is already in Members, output ⊥ [Check II].

• Output (JOINPROCEED, sid, jsid, tpmi) to I.

3. JOIN PROCEED:

• Upon receiving an approval from I, F l
daa updates the session record to

〈jsid, sid, tpmi, hostj, complete〉.
• Output (JOINCOMPLETE, sid, jsid) to S.

4. KEY GENERATION: On input (JOINCOMPLETE, sid, jsid, gsk) from S.

• If both tpmi and hostj are honest, set gsk = ⊥.

• Else, verify that the provided gsk is eligible by performing the following checks:

– If hostj is corrupt and tpmi is honest, then CheckGskHonest(gsk)=1 [Check
III].

– If tpmi is corrupt, then CheckGskCorrupt(gsk)=1 [Check IV].

• Insert 〈tpmi, hostj, gsk〉 into Members, and output (JOINED, sid, jsid) to hostj.

FutureTPM D3.2 PU Page 61 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.12: Ideal Sign

1. SIGN REQUEST: On input (SIGN, sid, ssid, tpmi, µ, bsn) from the host hostj request-
ing a DAA signature by a TPM tpmi on a message µ with respect to a basename bsn,
the ideal functionality does the following:

• Abort if I is honest and no entry 〈tpmi, hostj, ?〉 exists in Members.

• Else, create a sign session 〈ssid, tpmi, hostj, µ, bsn, request〉.
• Output (SIGNSTART, sid, ssid, tpmi, hostj, l(µ, bsn)) to S.

2. SIGN REQUEST DELIVERY: On input (SIGNSTART, sid, ssid) from S, update the
session to 〈ssid, tpmi, hostj, µ, bsn, delivered〉. F l

daa output (SIGNPROCEED,
sid, ssid, µ, bsn) to tpmi.

3. SIGN PROCEED: On input (SIGNPROCEED, sid, ssid) from tpmi

• Update the records 〈ssid, tpmi, hostj, µ, bsn, delivered〉.
• Output (SIGNCOMPLETE, sid, ssid) to S.

4. SIGNATURE GENERATION: On the input (SIGNCOMPLETE, sid, ssid, σ) from S, if
both tpmi and hostj are honest then:

• Ignore the adversary’s signature σ.

• If bsn 6= ⊥, then retrieve gsk from the 〈tpmi, bsn, gsk〉 ∈ DomainKeys.

• If bsn = ⊥ or no gsk was found, generate a fresh key gsk ← Kgen(1λ).

• Check CheckGskHonest(gsk)=1 [Check V].

• Store 〈tpmi, bsn, gsk〉 in DomainKeys.

• Generate the signature σ ← sig(gsk, µ, bsn).

• Check ver(σ, µ, bsn)=1 [Check VI].

• Check identify(σ, µ, bsn, gsk)=1 [Check VII].

• Check that there is no TPM other than tpmi with key gsk′ registered in Members
or DomainKeys such that identify(σ, µ, bsn, gsk′)=1 [Check VIII].

• If tpmi is honest, then store 〈σ, µ, tpmi, bsn〉 in Signed and output (SIGNATURE,
sid, ssid, σ) to hostj.

FutureTPM D3.2 PU Page 62 of 68

D3.2 - First Report on the Security of the TPM

Scheme B.13: Ideal Verify

• On input (VERIFY, sid, µ, bsn, σ, RL), from a party V to check whether a given sig-
nature σ is a valid signature on a message µ with respect to a basename bsn and the
revocation list RL, the ideal functionality does the following:

• Extract all pairs (gski, tpmi) from the DomainKeys and Members, for which
identify(σ, µ, bsn, gsk)=1. Set b = 0 if any of the following holds:

– More than one key gski was found [Check IX].

– I is honest and no pair (gski, tpmi) was found [Check X].

– An honest tpmi was found, but no entry 〈?, µ, tpmi, bsn〉 was found in Signed
[Check XI].

– There is a key gsk′ ∈ RL, such that identify(σ, µ, bsn, gsk′)=1 and no pair
(gsk, tpmi) for an honest tpmi was found [Check XII].

• If b 6= 0, set b←ver(σ, µ, bsn) [Check XIII].

• Add 〈σ, µ, bsn, RL, b〉 to VerResults, and output (VERIFIED, sid, b) to V .

Scheme B.14: Ideal Link

On input (LINK, sid, σ1, µ1, σ2, µ2, bsn), with bsn 6= ⊥, from a party V to check if the two
signatures stem from the same signer or not. The ideal functionality deals with the request
as follows:

• If at least one of the signatures (σ1, µ1, bsn) or (σ2, µ2, bsn) is not valid (verified via
the VERIFY interface with RL 6= ∅), output ⊥ [Check XIV].

• For each gski in Members and DomainKeys, compute bi ← identify(σ1, µ1, bsn, gski)
and b′i= identify(σ2, µ2, bsn, gski) then set:

– f ← 0 if bi 6= b′i for some i [Check XV].

– f ← 1 if bi = b′i = 1 for some i [Check XVI].

• If f is not defined, set f ←link(σ1, µ1, σ2, µ2, bsn), then output (LINK, sid, f) to V.

FutureTPM D3.2 PU Page 63 of 68

D3.2 - First Report on the Security of the TPM

The following functions are also used to check whether or not a TPM key is consistent with the
internal records of F l

daa:

1. CheckGskHonest(gsk): If the tpmi is honest, and no signatures in Signed or valid signatures
in VerResults identify to be signed by gsk, then gsk is eligible and the function returns 1,
otherwise it returns 0.

2. CheckGskCorrupt(gsk): If the tpmi is corrupt and there does not exist a gsk′ 6= gsk and a
(µ, σ, bsn) such that both keys identify to be the owners of the same signature σ, then gsk
is eligible and the function returns 1, otherwise it returns 0.

B.4.2 Proof Sketch.

We can now provide a sketch of the security proof of the proposed protocol, referring the reader
to the journal article [39] for details of the proof steps. Our proof shows that there can exist no
environment ε that can distinguish the real world protocol Π with an adversary A from the ideal
world F l

daa with a simulator S. It works by exhibiting a sequence of transformations that gradually
transform the game representing the real world interactions into that representing the ideal world
interactions, taking care to ensure that each transition only induces a negligible distinguishing
probability. The resulting sequence of 16 games reflects transitions and transformations similar
to those used by Camenisch, Drijvers and Lehmann [17], but differ in the complexity of each tran-
sition, and of the arguments supporting them, which now rely on lattice-based assumptions. The
sequence of games is as follows:

Game 1 . The Real World Protocol.

Game 2 . Equivalent to Game 1.
An entity C is introduced. C receives all inputs from the
honest parties and simulates the real world protocol for them.

Game 3 . Similar to Game 2 but with a different structure.
C is split into two parts, F and S. F behaves as an ideal
functionality. It receives all the inputs and forwards them to
S, who simulates the real world protocol for honest parties
and sends the output to F . F then forwards the outputs to ε.

Game 4 . ε will notice no change from Game 3.
F now stores the algorithms for the issuer I in the setup
interface and ensures that the structure of sid is correct for
an honest I, and aborts if not. In case I is corrupt, S extracts
the secret key for I and proceeds in the setup interface on
behalf of I.

Game 5 . Same outcomes as Game 4.

FutureTPM D3.2 PU Page 64 of 68

D3.2 - First Report on the Security of the TPM

F now performs the verification and linking checks instead
of forwarding them to S. There are no protocol messages
and the outputs are exactly as in the real world protocol.
However, F doesn’t contain a revocation check in the veri-
fication algorithm. Nonetheless, F can perform this check
separately.

Game 6 . In all cases F and S can interact to simulate the real
world protocol.

The join interface of F is now changed. F now stores in
its records the members that have joined. If I is honest, F
stores the secret key, extracted from S, for corrupt TPMs.
S always has enough information to simulate the real world
protocol except when the issuer is the only honest party. In
this case, S doesn’t know who initiated the join, so it can’t
make a join query with F on the host’s behalf. Thus, to deal
with this case, F can safely choose any corrupt host and
put it into Members. The identities of hosts are only used to
create signatures for platforms with an honest TPM or honest
host, so one needn’t worry about fully corrupted platforms.

Game 7 . A distinguisher between Game 6 and 7 could solve De-
cision RLWE.

FutureTPM D3.2 PU Page 65 of 68

D3.2 - First Report on the Security of the TPM

F now creates anonymous signatures for honest platforms
by running the algorithms defined in the setup interface. Let
us start by defining Game 7.k.k′: in this game F handles
the first k′ signing inputs of tpmk with algorithms and sub-
sequent inputs are forwarded to S as before. We note that
Game 7.0.0=Game 6. For increasing k′, Game 7.k.k′ will be
at some stage equal to Game 7.k+1.0, this is because there
can only be a polynomial number of signing queries to be
processed. Therefore, for large enough k and k′, F handles
all the signing queries of all TPMs, and Game 7 is indistin-
guishable from Game 7.k.k′. To prove that Game 7.k.k′ + 1

is indistinguishable from Game 7.k.k′, suppose there exists
an environment that can distinguish a signature of an honest
party using X̂t from a signature using a different X̂ ′t, then
the environment can solve the Decision Ring -LWE Problem.
Suppose that S is given tuples {(ai,bi)}k

′
i=1, (c,d), where

bi = ai · x1 + ei for a uniform random ai and c ∈ Rq, and
it is challenged to decide if the pair (c,d) is chosen from a
Ring LWE distribution (for some secret x1) or uniform ran-
dom. S proceeds in simulating the TPM without knowing the
secret x1. S can answer all theH queries, as S is controlling
Fcrs, on bsnj with H(bsnj) = aj for j ≤ k′. For j = k′ + 1, S
sets H(bsnk′+1) = c, otherwise H(bsnj) = rj for some uni-
form random rj and j > k′ + 1. Signing queries on behalf of
tpmi for i < k are forwarded by F to S, which calls the real
world protocol. For i > k, gsks are freshly sampled for each
bsni. However, for tpmk and i ≤ k′, the simulator S sets
nymi = bi, and for i = k′+1 it sets nym = d. For i > k′+1,
S samples fresh xi and generates nymi = H(bsni) · xi + ei,
keeping track of all the generated nymi such that it always
output the same nymi for an associated bsni. For each case,
tpmk can provide a simulated proof. Any distinguisher be-
tween Game 7.k.k′ and Game 7.k.k′+1 can solve the Deci-
sion Ring-LWE Problem.

Game 8 . ε observes no difference between Game 7 and Game
8.
F now no longer informs S about the message and the base-
name that are being signed. If the whole platform is honest,
then S can learn nothing about the message µ and the base-
name bsn. Instead, S knows only the leakage l(µ, bsn). To
simulate the real world, S chooses a pair (µ′, bsn′) such that
l(µ′, bsn′)=l(µ, bsn).

Game 9 . Game 8 and Game 9 are indistinguishable.

FutureTPM D3.2 PU Page 66 of 68

D3.2 - First Report on the Security of the TPM

If I is honest, then F now only allows platforms that joined to
sign. An honest host will always check whether it joined with
a TPM in the real world protocol, so there is no difference for
honest hosts. Also an honest TPM only signs when it has
joined with the host before. In the case that an honest tpmi

performs a join protocol with a corrupt host hostj and honest
issuer, the simulator will make a join query with F , to ensure
that tpmi and hostj are in Members.

Game 10 . Checks in Game 10 produce the same results as those
of Game 9.

When storing a new gsk = X̂t, F checks
CheckGskCorrupt(gsk)=1 or CheckGskHonest(gsk)=1.
These checks will always pass. Valid signatures always sat-
isfy nym = H(bsn)·x1+e where ‖x1‖∞ < β and ‖e‖∞ < β′.
By the unique Short Vector Problem, there exists only one
tuple (x1, e) such that ‖x1‖∞ < β and ‖e‖∞ < β′ for small
enough β and β′. Thus, CheckGskCorrupt(gsk) will always
give the correct output. Also due to the large min-entropy
of discrete Gaussians the probability that sampling a gsk
X̂ ′t = X̂t is negligible, thus with overwhelming probability
there doesn’t exist a signature already using the same
gsk = X̂t, which implies that CheckGskHonest(gsk) will
always give the correct output.

Game 11 . Game 11 produces the same results as Game 10
based on RLWE.

In this game, F checks that honestly generated signatures
are valid. This is true as the sig algorithm always produces
signatures passing through the verification checks. Also
those signatures satisfy identify(gsk, σ, µ, bsn) = 1 which
is checked via nym. F also makes sure, using Members and
DomainKeys, that honest users are not sharing the same se-
cret key gsk. If there exists a key gsk = X̂t in Members and
DomainKeys such that ‖nym −H(bsn)x1‖∞ < β′, then this
breaks the search Ring-LWE problem.

Game 12 . Valid signatures are associated with a single gsk.
Check-IX is added to ensure that there are no multiple gsk
values matching one signature. Since there exists only one
pair (x1, eI) such that ‖x1‖∞ < β and ‖eI‖∞ < β′, satisfy-
ing nymI = H(bsn) · x1 + eI, two different gsks can’t share
the same x1.

Game 13 . Game 13 is indistinguishable from Game 12 based on
the hardness of the Ring-ISIS Search Problem.

To prevent accepting signatures that were issued by the use
of join credentials not issued by an honest issuer, F adds
a further check Check-X. This is due to the unforgeability of
Boyen signatures.

FutureTPM D3.2 PU Page 67 of 68

D3.2 - First Report on the Security of the TPM

Game 14 . Game 14 is indistinguishable from Game 13 based on
the hardness of Ring-LWE.

Check-XI is added to F , preventing anyone from forging sig-
natures using an honest TPM’s gsk and credential. In fact, if
a valid signature is given on a message that the TPM never
signed, the proof could not have been simulated. It would
extract x1, breaking the Ring-LWE problem.

Game 15 . Game 15 is indistinguishable from Game 14 based on
the hardness of Ring-LWE.

Check-XII is added to F , ensuring that honest TPMs are not
revoked. If a honest TPM is simulated by means of the Ring-
LWE problem instance, if a proper keyRL is found, it must be
the secret key of the target instance. This is again equivalent
to solving the search Ring-LWE problem.

Game 16 . F now includes all the functionalities of F l
daa.

All the remaining checks of the ideal functionality F ldaa that
are related to link queries are now included. Using the fact
that if a gsk matches one signature and not the other, Game
16 is indistinguishable from Game 15.

B.5 Conclusions and Lessons Learned

In Section 4.1 and in this Appendix, we have discussed recent progress towards a practical
lattice-based DAA scheme that is provably secure. We note, however, that both performance and
security must be improved. The scheme improves on past proposals through the development
and use of a novel commitment scheme that allows TPM and Host to cooperatively produce a
zero-knowledge proof-of-knowledge over the secret they share, but remains inefficient. We prove
security of the proposed LDAA scheme in a static compromise model, and do not attempt to
prove privacy when the TPM falls under adversary control. In addition, the use of the UC model
imposes the use of session identifiers which cannot be used in practical TPM-based scenarios to
disambiguate usage. We prove security in a QR0 setting.

Still, the results go some way towards refining the scheme and model, and improve the existing
baseline for lattice-based DAA schemes on all fronts. Further, developing the proof has allowed
us to gain some insight into the challenges of such proofs for lattice-based cryptography in a
TPM-based setting.

The challenges of obtaining compositional security models for the TPM identified in D3.1 [22] re-
main. More precisely, in this particular proof, we assume secure message transmission between
TPM and Host, and authenticated message transmission between TPM and Issuer. We note that
the latter has currently not been implemented securely, due to issues related to bootstrapping
trust in unknown TPMs.

FutureTPM D3.2 PU Page 68 of 68

	List of Figures
	List of Tables
	Introduction
	Methodology
	Structure of the Report

	Trust Models
	Trust Modelling Languages
	A Trust Modelling Framework for FutureTPM
	Trust Assumptions and Security & Safety Requirements
	Formal Trust Model

	State Diagrams
	Reference Scenario 1 — Secure Mobile Wallet and Payments
	Reference Scenario 2 — Personal Activity & Health Kit Data Tracking
	Reference Scenario 3 — Device Management

	Policy Modelling
	Overview of the Modelling Approach
	Identified Limitations in Current HSA Technology

	Cryptography for the TPM
	A Provably-Secure Lattice Based Direct Anonymous Attestation Scheme
	Results

	Towards Mechanisms for Bootstrapping Trust with Privacy
	DAA Authentication Attacks
	A Hierarchy Authentication Attack
	Bootstrapping Trust

	Conclusion
	List of Abbreviations
	References
	Hardware Security Anchors in Malicious Cloud Scenarios
	Use Case: Private Conference Management System
	Use Case: a Generic Social Network

	Provably-Secure L-DAA
	Lattice-Based Cryptography: Some Notations and Assumptions
	Building Blocks
	The Proposed LDAA Scheme
	The Proofs t, h and .

	Security Model and Proof
	The Ideal Functionality Fdaal
	Proof Sketch.

	Conclusions and Lessons Learned

