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Executive Summary 

With the design and documentation of the FutureTPM Reference Architecture presented in D1.2 
[1], the consortium identified the core services and components that need to be implemented 
towards the development of QR-based TPM environments for enhancing the security and 
privacy posture of cyber-physical systems. These fall into three main categories, namely the 
Design and Risk Management phases and the Implementation phase comprising the 
implementation and integration of the individual FutureTPM components. These services were 
defined in complete alignment with the derived functional and non-functional requirements, as 
documented in D1.1 [2], and constitute the main investigation points of the core technical work 
packages: WPs 3 and 4, and WPs 2 and 5, respectively. 

Based on this comprehensive analysis, in this deliverable, we delve into the details of the Risk 
Management phase (WP4) where the focus is to identify and alleviate the complex threat 
landscape that the devices (e.g., processors, mobile devices, ASICS, etc.) hosting the TPM 
pose to the cryptographic applications. In many cases, the operation of such devices may leak 
sensitive information, which can be used to mount successful attacks to recover secret 
information. To mitigate such behavior, FutureTPM will start with the analysis and development 
of run-time risk assessment and vulnerability analysis methodologies of the existing TPM-
based commodity systems and then enhance this analysis to the quantum resistance (QR) 
realm. It will consider a wide palette of threats and an identified segmentation of vulnerabilities 
for the TPM and the host device starting with the analysis of the core functionalities as have 
been identified in the context of the envisioned use cases (i.e., Sealing, DAA and Key Creation 
and Storage). This process is tailored to address the specific challenges of performing risk 
assessment and providing implementation guidance. 

Risk Management refers to the process that allows security teams to assess, evaluate, measure 
and address potential security threats, to minimize the effect that they might pose to corporate 
and personal assets. Risk assessment (RA) is a process within risk management that deals with 
the identification of threats, and determines their probability of occurrence, and their resulting 
impact. A holistic risk assessment will focus on the TPM device itself, but also to the host device 
and all the remaining assets of the envisioned three reference scenarios. However, we will 
especially focus on the risk assessment of the TPM Software Stack (TSS) and TPM. In parallel, 
the consortium has worked towards defining the mapping between the project’s risk assessment 
methodology and the reference scenarios, identifying how the risk assessment methodology will 
be applied based on the exact needs of each use case and the type of TPM environment that 
will be tested in each scenario. 

The output of this investigation is the definition of the conceptual architecture of the FutureTPM 
Risk Assessment framework for supporting the design, test and validation of, not only, a QR 
TPM, but also a set of mutually interconnected components that will ensure security properties 
throughout the whole life cycle of cyber-physical systems. Details are presented on all aspects 
of the core services to be offered from risk identification and quantification to run-time risk 
assessment and security policy enforcement, including the interfaces exposed by the 
different components of the framework. This will steer the subsequent implementation of the 
specific integral components, namely the Design-time Risk Assessment, the Policy 
Modelling and Specification, the Run-time Risk Assessment and the Dynamic Update of 
the Policy Models. 

In a nutshell, by leveraging the Risk Assessment component, a set of security policies will be 
defined in order to satisfy the security requirements of a given scenario, e.g., under what 
conditions can a certain private key sign some information. Ensuring and imposing the correct 
usage of this set of rules is the task of the Security Policy Enforcement module. The Risk 
Assessment phase will be executed during both the design- and run-time, to address initially 
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unknown threats. During the design-time, the risk assessment will be applied by security 
experts in order to provide a cartography of their TPM supported/enabled applications and 
services ecosystem. During the run-time, it will be applied towards the serialization of all 
information that is required to perform the re-calculation of relevant risks that may lead to a 
(possible) dynamic update of predefined security policies. The Policy Enforcement component 
will block unsafe usage of API depending on the provided policies, which will be elaborated to 
tailor the requirements of the three envisioned Reference Scenarios.  

Overall, the purpose of deliverable D4.1 is to provide a reference document for the FutureTPM 
threat modelling and risk assessment methodology and to be used as the guide for the further 
development of the FutureTPM RA framework to be presented in the subsequent deliverables 
of WP4. 
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Chapter 1 Introduction 

The main goal of the FutureTPM project is to design a Quantum-Resistant (QR) Trusted 
Platform Module (TPM) by selecting, designing and developing QR algorithms suitable for 
inclusion in a TPM. In order to achieve this, apart from the appropriate QR algorithm selection, a 
systematically risk assessment is necessary to confirm the security and privacy of the QR TPM-
based environment. In D1.2 [1] we have already identified the overall architecture of the 
FutureTPM as well as the components that comprise it, in complete alignment with the derived 
functional and non-functional requirements. More specifically, the FutureTPM architecture 
consists of three main components: a) the QR TPM, b) the Risk Assessment and c) the 
Security Policy Enforcement components.  

As a technical solution, it will provide security, privacy and assurance services to the deployed 
platforms, with a special focus on the potential threats that quantum computers pose when they 
become reality in the following few decades. As such, it will implement a Risk Assessment 
framework supporting the design, test and validation of, not only, a QR TPM, but also a set of 
mutually interconnected components that will ensure security properties throughout the whole 
life cycle of cyber physical systems. The goal is to identify a solution that offers effective means 
to guarantee the specific needs in terms of cybersecurity, privacy and trust, and remain secure 
not only today, but also in the long term against attacks carried out by adversaries possessing 
quantum capabilities. 

Risk assessment is a key aspect for the efficient operation of Information and Communications 
Technology (ICT) deployments. Various standards and good practices exist for the 
establishment of risk assessment which are used to evaluate the effectiveness of mitigation 
actions and policies that are associated with a given risk. Within the context of FutureTPM, the 
developed RA Framework will be tailored to the security requirements of TPM-based systems 
capable of providing a risk quantification methodology, which is model driven, and a run-
time risk assessment and software verification mechanism (especially, for the TPM 
Software Stack (TSS)) towards achieving operational assurance even against newly identified 
attacks and exploits. While the investigation will cover a wide palette of threats and an identified 
segmentation of vulnerabilities for the TPM, it will start with the analysis of the core 
functionalities (Chapter 4) as have been identified in the context of the envisioned use cases 
(i.e., Sealing, DAA and Key Creation and Storage). 

More specifically, this deliverable will mainly focus on the Risk Assessment and the Security 
Policy Enforcement components. As aforementioned, the Risk Assessment component 
quantifies the risk that attackers with a quantum computer can steal information managed by 
use case demonstrators. The computation of the risk is based on using API calls traced with 
techniques such as extended Berkeley Packet Filters (eBPFs). The computation of the risk will 
be conceptually separated in two parts: a design-time component, and a run-time component, 
which will be implemented as a client application within the host device, and it will be in charge 
of updating during run-time, the initial risk assessment provided during design-time. The Policy 
Enforcement component will block unsafe usage of API depending on the provided policies, 
which will be elaborated to tailor the requirements of the three envisioned Reference Scenarios. 

1.1 Scope and Purpose 

This deliverable defines and documents the high-level risk assessment methodology of the 
FutureTPM platform. In this context, it starts by providing a detailed research background on 
threat modelling and risk assessment concepts, the methodology that will be used for the 
FutureTPM, and how these will be applied to the three envisioned reference scenarios. It then 
continues with a comprehensive overview of the FutureTPM Risk Assessment framework 
expanding on the interaction among the integral system components. In respect to this, D4.1 
aims to derive a clear overview of the framework’s conceptual architecture, which will satisfy the 
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system requirements that have been captured and introduced in the requirement analysis 
scheme [2]. To this end, D4.1 will provide a thorough system-level architectural specification 
that will comprise a high-level overview of the architecture layers and components, as well as, 
the technology axes that will guide the implementation of the particular layers. As D4.1 will 
guide the development of the technical components comprising the RA platform, this deliverable 
also includes an initial overview of the interaction patterns and intercommunication schemes 
between system components, users and third-party entities. Thus, starting from the mapping of 
the system requirements to platform components, each component will be further decomposed 
into high-level functional blocks and supported primitives and interfaces. 

Towards this direction, this deliverable also provides a concrete meta-model (see Figure 2) 
regarding the calculation of risks that are related with the operation of the QR TPM. More 
specifically, in the frame of D4.1 the following concepts, along with their relationships, are going 
to be formalized: a) risks that quantify the possibility of harming an asset, b) threats that relate 
to risks; c) assets that may be exploited by some of the threats; d) attack types related to the 
attacking surfaces exposed by the assets; e) vulnerabilities along with their exploitability and 
impact; f) control elements that can mitigate the effect of exploitation attempts and g) 
attestation properties bound to the control mechanisms. 

The usage of the meta-model is twofold. On one hand, the model will be used during design-
time by security experts to provide a cartography of their QR TPM supported/enabled 
applications and services ecosystem. On the other hand, during run-time, the model will be 
used to serialize all pieces of information that are required to perform the (re-)calculation of 
relevant risks that may lead to a (possible) dynamic update of predefined security policies. This 
deliverable provides the normative specification of a meta-model which will be used by security 
analysts to capture the cartography of a QR TPM supported environment and the non-
normative specification of a multi-step RA methodology that has to be applied prior to the risk 
quantification. It also provides the approach for integrating multiple levels of risk analysis and 
dependencies such as safety.  

Overall, the main goal is to provide the overview of the risk assessment framework, the key 
technological axes of the risk assessment and vulnerability analysis and to provide a clear 
distinction on what the risk assessment is going to analyse regarding the TSS and TPM. 

1.2 Relation to other WPs and Deliverables 

As a threat modelling and risk assessment deliverable, D4.1 arguably relates (and serves as the 
basis) to all later WP4 deliverables. The use case descriptions, and the FutureTPM reference 
architecture, provided in WP1 deliverables will be used as the basis for the specific quantitative 
metrics to be defined in the risk assessment and management phases. Furthermore, this 
deliverable directly feeds from the activities conducted within the context of WP3 and, more 
specifically, taking as input the normative specification of a threat meta-model (for the core 
TPM functionalities) and the inherent trust assumptions which will be used by security 
analysts in order to capture the cartography of assets of a QR TPM supported environment. 
These serve as the core information to structure the properties (to be attested) and the 
security policies (to be enforced) for meeting the desired security, privacy, functional and 
non-functional requirements.  

In what follows, Figure 1 depicts the relationships of the deliverable to the other Work 
Packages (WPs). As already pointed out, the outcome of Deliverable D4.1 is intended to 
support the risk assessment and vulnerability analysis of later activities in this work package 
(WP). More concretely, it will provide the narrative basis of the architecture requirements of the 
Risk Assessment framework. The concrete integral components, and the input and output types 
to communicate between them will be documented. D4.1 will: 

a) provide a non-normative specification of a risk assessment methodology,  
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b) guide the implementation of all integral system components of the RA framework, 
namely the Design-time Risk Assessment, the Attestation Toolkit that provide 
assurance services during run-time and the Security Policy Enforcement mechanisms, 
and 

c) constitute the basis for the integration activities, related to the risk assessment of the 
envisioned use cases, to be performed in the context of WP6. 

 

 

Figure 1: Deliverable D4.1 relationship within the FutureTPM project 

 

1.3 Deliverable Structure 

This deliverable is structured as follows. In Chapter 2, we describe and review the research 
background regarding the definitions, threat modelling and vulnerability analysis and the risk 
assessment methods; starting by a general overview and then focusing on the specific aspects 
of TPM-based environments. The overall risk assessment methodology is presented in Chapter 
3, where the design-time, run-time and security policy and mitigation enforcement phases are 
described in detail. More specifically, both risk modelling and risk evaluation as well as the risk 
modelling toolkit and the quantification engine are described as the main parts of the overall risk 
assessment framework. Chapter 4 outlines the risk assessment focused on the three 
envisioned use cases and the possible TPM commands needed per reference scenario.  
Finally, Chapter 5 concludes the deliverable. 
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Chapter 2 Research Background 

This chapter is devoted to discuss the research background of the state-of-the-art risk 
assessment methodologies and concepts. In the first subsection, we will focus on an overall 
risk assessment approach on cyber physical systems considering all the assets and their 
communication, while on the second subsection we will focus specifically on the threat 
modelling and vulnerability analysis of TPM and TSS. Threat modelling will also be 
investigated in parallel with WP3.  

2.1 Definitions and Risk Assessment Methodologies & Tools for 
Cyber Physical Systems  

In this subsection, we consider a number of foundational aspects of risk and vulnerability 
assessment for cyber physical systems (CPS). CPS is a combination of computation and 
networking systems with the physical systems that interact together in complex ways and rising 
uncertainty. We cannot simply apply information security risk assessment. The complex 
coupling between cyber and physical components (the TPM in our case) makes it unrealistic to 
estimate what will happen in the first place. Firstly, we have to define what will happen to the 
system. Then, we evaluate the probability of the event. At last, we estimate the consequences. 
During the security analysis of an ecosystem, it is highly crucial to have a clear view of the 
concepts that are used during the analysis. In order to come up to a common model that will be 
used during the lifecycle of the entire project, we will adopt concepts from the domain of Risk 
Assessment (RA). Below we summarize in a consistent vocabulary terms used in this 
deliverable and will be used in future technical deliverables: 

• Asset: An asset represents anything that is deemed to be of value. Generally, an asset 
may be any physical or virtual entity that needs to be protected, such as personnel 
(employees or customers), material, information (e.g. databases or critical records), or 
intangibles (reputation or intellectual property). Specifically, within the FutureTPM 
project, the TPM is the primary asset. 

• Threat: A threat is an action, or inaction, likely to cause damage, harm or loss. In the 
FutureTPM context, threats related to the TPM will also be considered. 

• Vulnerability: Vulnerabilities refer to weaknesses or gaps in the protection of assets that 
can be exploited via a threat in order to compromise or harm the asset. 

• Risk: Risk refers to the potential for compromise, loss, injury or other adverse 
consequence. Risk comes from a threat, or combination of threats, that exploit 
vulnerabilities in order to compromise an asset. In the FutureTPM context, the primary 
risk is clearly the risk of a TPM takeover. 

• Control: As a control we refer to any countermeasure that is applied in order to reduce 
risk. Practically, the FutureTPM framework is a set of control mechanisms that prevent 
or minimize specific risks. 

• Impact: Impact refers to the severity of the consequences stemming from a successful 
exploit of a specific asset. The impact may be low, medium, high, or even critical in the 
extreme case of the complete compromise or destruction of an asset. In the absence of 
a de facto standard for categorization, the FutureTPM-related impacts will be 
categorized implicitly based on the security characteristics defined in ISO/IEC 
25010:2011 [3]. 

There are probably as many definitions for the above terms as there are formulas to quantify the 
risk. However, there is one fairly simple equation that establishes the risk by examining the 
nature of the threats, any perceived vulnerabilities, and the impact if the threat should 
materialize. The proposed equation is: 

 
Risk_ASSET  = Threat * Vulnerability * Impact 
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This is inspired by NIST’s guide for security risk assessment [4] according to which the size of a 
risk is defined per asset based on a formula that quantifies the impact of the associated threats 
and the vulnerability level for this asset. Figure 2 provides a high-level view (meta-model) of 
concepts that are widely used in the Cyber Risk Assessment domain. 
 

 

Figure 2: Concepts of Cyber Risk Assessment 

 
The starting point is “Asset”. An asset can be a cyber, physical or cyber-physical element within 
an organization that is used in the frame of business operations. Furthermore, an asset can be 
something tangible or intangible. Furthermore, an asset may entail a specific business value by 
itself. Irrelevant of the nature and the type of an asset, each asset may entail several 
Vulnerabilities. A vulnerability is the stepping stone of the adversary since s/he must identify 
one in order to harm an Asset. It should be clarified that vulnerabilities are inherent properties of 
assets and depend on their nature/type. Creating an abstract model for a vulnerability is rather 
challenging since many parameters have to be taken into consideration. Although there are 
many models that have been proposed, the Common Vulnerability and Exposure (CVE1) model 
is considered predominant. According to this model a vulnerability is characterized by two 
properties; exploitability, i.e. how easily you can make use of the vulnerability and impact i.e. 
how dangerous is the exploitation of this vulnerability. The model defines sub-scores for 
Confidentiality, Integrity and Availability (a.k.a. CIA) consequences. An open repository for 
disclosed vulnerabilities can be found here: https://www.cvedetails.com. As it is inferred, a 
vulnerability may be exploited during an ‘Attack’ that is able to make use of this vulnerability. In 
the cyber security domain, the terms Attack and Threat coincide. In the frame of this document 
and in the scope of the entire project these terms will be semantically equivalent. Analogous to 
the Vulnerabilities, Threats maintain their own meta-model. A widely used model/taxonomy is 
Common Attack Pattern Enumeration and Classification (CAPEC2). The objective of the CAPEC 
effort is to describe most common attack patterns classified in an intuitive manner. The attacks 
were defined using the CAPEC taxonomy which is defined and described below. As seen in 
Table 1 below, several types of threats are identified and categorized per domain and 
mechanism. 
 
 
 

                                                
1 http://cve.mitre.org/ 
2 https://capec.mitre.org 

https://www.cvedetails.com/
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Table 1: Indicative CAPEC Attack Tree Classification 

Category Attack 

Excavation – 1163 JSON Hijacking (aka JavaScript Hijacking) - 111 

Directory Indexing -127 

Common Resource Location Exploration - 150 

Cross-Domain Search Timing - 462 

Generic Cross-Browser Cross-Domain Theft - 468 

Probe Application Error Reporting - 54 

Probe Application Queries - 545 

Probe Application Memory - 546 

Interception – 117 Sniffing Network Traffic - 158 

Accessing/Intercepting/Modifying HTTP Cookies - 31 

Harvesting Usernames or User IDs via Application API Event 
Monitoring - 383 

Intent Intercept - 499 

Footprinting – 169 Host Discovery – 292 

Port Scanning – 300 

Network Topology Mapping – 309 

Malware-Directed Internal Reconnaissance - 529 

Owner Footprinting – 577 

Fingerprinting – 224 OS Fingerprinting - 311 

Application Fingerprinting - 541 

Reverse Engineering 
– 188 

White Box Reverse Engineering – 167 

Black Box Reverse Engineering – 189 

Protocol Analysis – 
192 

Cryptanalysis – 97 

Information Elicitation 
- 410 

Pretexting – 407 

Inject Unexpected 
Items - 152 

Code Injection – 241 

Parameter Injection – 137 

Local Execution of Code – 549 

 
The successful exploitation of a vulnerability through an attack leads to Impact. In order to 
prevent this impact, specific Control elements should be installed. However, as depicted in  
Figure 2 a control element can be applied at the Vulnerability Level or at the Threat Level. The 
knowledge of assets, vulnerabilities and applicable threats are the prerequisites that have to be 
defined in order to quantify Risk. In the literature, there are several information security risk 
assessment techniques, but none is considering the necessities of the TPM & TSS. Different 
risk assessment methods may obtain different results. We list below some of the most known 
methods for completeness reasons [5]: 

• OCTAVE [6], 

• TARA [7], 

• FAIR Framework [8], 

• COBIT Framework [9], 

• NIST Risk Management Framework [10], 

• ISO/IEC 27005 [11] 

 

                                                
3 The number following each CAPEC category or member represents its unique identification number, 
CAPEC-ID, which enables a fast discovery and retrieval of its description. 
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2.1.1 OCTAVE 

The Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) 
framework was created by the Software Engineering Institute (SEI) at Carnegie Mellon 
University to help organizations perform information security risk assessments. Since its 
release, different versions were released, OCTAVE Framework v 2.0, OCTAVE Criteria, 
OCTAVE-S and OCTAVE Allegro. We will focus on OCTAVE Allegro because it differs from 
previous OCTAVE approaches by focusing primarily on information assets in the context of how 
they are used, where they are stored, transported, and processed, and how they are exposed to 
threats, vulnerabilities, and disruptions as a result. There are four activities carried out by eight 
steps in OCTAVE Allegro methodology: 

1. Establish Risk Measurement Criteria 
2. Develop an Information Asset Profile 
3. Identify Information Asset Containers 
4. Identify Areas of Concern 
5. Identify Threat Scenarios 
6. Identify Risks 
7. Analyse Risks 
8. Select Mitigation Approach 

2.1.2 TARA Framework 

Threat Assessment & Remediation Analysis (TARA) is an engineering methodology to 
identify, prioritize, and respond to cyber threats through the application of countermeasures that 
reduce susceptibility to attacks. It is part of the MITRE Mission Assurance Engineering (MAE) 
portfolio. The MAE portfolio is comprised of an evolving collection of Enterprise Systems 
Engineering (ESE) practices that combine practical experience, information sharing, research, 
and experimentation to help sponsors better address the Advanced Persistent Threats (APT). 
The objectives of a TARA assessment are to identify and prioritize high-risk adversarial Tactics, 
Techniques, and Procedures (TTPs) that an asset may be susceptible to, to identify and 
prioritize countermeasures (CMs) effective against those TTPs and to recommend CMs that can 
reduce the susceptibility of an asset to attack.  

A TARA assessment is comprised of two analysis steps:  

1. Cyber Threat Susceptibility Assessment (CTSA)  
2. Cyber Risk Remediation Analysis (CRRA) 

The CTSA step identifies and evaluates the susceptibility of an asset to attack relative to a set 
of TTPs, while the CRRA step identifies a set of countermeasures that reduce the susceptibility 
or lessen the effects of an attack. 

CTSA consists of the following steps:  

1. Establish assessment scope  
2. Identify candidate TTP 
3. Eliminate implausible TTPs  
4. Apply scoring model  
5. Construct the threat matrix 

CRRA is performed separately for each cyber asset and consists of the following steps: 

1. Select which TTPs to mitigate  
2. Identify plausible countermeasures  
3. Assess countermeasure merit 
4. Identify an optimal CM solution 
5. Prepare recommendations 
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2.1.3 FAIR Framework 

Factor analysis of information risk (FAIR) is a taxonomy of the factors that contribute to risk 
and how they affect each other. It is primarily concerned with establishing accurate probabilities 
for the frequency and magnitude of data loss events. 

FAIR is also a risk management framework developed by Jack A. Jones now part of The Open 
group, it can help organizations understand, analyse, and measure information risk. FAIR seeks 
to provide a foundation and framework for performing risk analyses. Much of the FAIR 
framework can be used to strengthen, rather than replace, existing risk analysis processes like 
OCTAVE. 

The FAIR framework is based on four primary components: threats, assets, the organization 
itself and the external environment. It can be used to perform qualitative or quantitative analysis. 

The analysis comprises of 10 steps in 4 stages: 

1. Identify scenario components 
a. Identify the asset at risk  
b. Identify the threat community under consideration  
 

2. Evaluate Loss Event Frequency (LEF)  
a. Estimate the probable Threat Event Frequency (TEF)  
b. Estimate the Threat Capability  
c. Estimate Control Strength  
d. Derive Vulnerability 
e. Derive Loss Event Frequency (LEF)  

 
3. Evaluate Probable Loss Magnitude (PLM)  

a. Estimate worst-case loss  
b. Estimate probable loss  

 
4. Derive and articulate Risk  

a. Derive and articulate Risk 

2.1.4 COBIT Framework 

COBIT (Control Objectives for Information and Related Technologies) is a good-practice 
framework by ISACA for IT management and governance. The framework defines a set of 
generic processes for the management of IT, with each process defined together with process 
inputs and outputs, key process-activities, process objectives, performance measures and an 
elementary maturity model. An add-on for COBIT 5 related to information security was released 
in December 2012. The framework is business oriented and its version for information security 
is intended for: 

- Reducing complexity and increasing cost-effectiveness 
- Increase user satisfaction with information security arrangements and outcomes 
- Improve integration of information security 
- Inform risk decisions and risk awareness 
- Reduce information security incidents 
- Enhance support for innovation and competitiveness 

 

2.1.5 NIST Risk Management Framework 

NIST Risk Management Framework (RFM) tries to integrate security and risk management 
activities into the system development life cycle (SDLC). It provides emphasis on the selection, 
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implementation, assessment, and monitoring of security controls, and the authorization of 
information systems.  

It is divided in 6 steps: 

1. Categorize: categorize the system and the information processed, stored, and 
transmitted by that system based on an impact analysis 

2. Select: select an initial set of baseline security controls for the system based on the 
security categorization; tailoring and supplementing the security control baseline as 
needed based on organization assessment of risk and local conditions 

3. Implement: implement the security controls and document how the controls are 
deployed within the system and environment of operation 

4. Assess: assess the security controls using appropriate procedures to determine the 
extent to which the controls are implemented correctly, operating as intended, and 
producing the desired outcome with respect to meeting the security requirements for the 
system 

5. Authorize: authorize system operation based upon a determination of the risk to 
organizational operations and assets, individuals, other organizations and the Nation 
resulting from the operation of the system and the decision that this risk is acceptable 

6. Monitor: monitor and assess selected security controls in the system on an ongoing 
basis including assessing security control effectiveness, documenting changes to the 
system or environment of operation, conducting security impact analyses of the 
associated changes, and reporting the security state of the system to appropriate 
organizational officials 

Each step is supported with NIST special publications, like SP 800-30 that describe how to 
conduct the risk assessment process. 

2.1.6 ISO/IEC 27005 

ISO/IEC 27005 [11] is an international standard part of the ISO/IEC 27000-series comprises 
information security standards published jointly by the International Organization for 
Standardization (ISO) and the International Electrotechnical Commission (IEC). The standard 
provides best practice recommendations on the management of information risks through 
information security controls within the context of an overall Information security management 
system (ISMS). 

The ISMS is conducted in 4 phases:  

1. Plan:  
a. Establishing the context 
b. Risk assessment 
c. Developing risk treatment plan  
d. Risk acceptance 

2. Do: implement the risk treatment plan 
3. Check: continual monitoring and reviewing of risks 
4. Act: maintain and improve the Information Security Risk Management Process 

The ISO/IEC 27005 process can be an iterative process. 

2.2 Threat Modelling and Vulnerability Analysis 

Threat modelling is the process of the systematic enumeration of threats to a system. Just 
claiming that a system is secure is not enough, we need a method for analysing a system to its 
components in order to identify all possible threats that it might face. There is no common 
security solution for all systems, each one has specific security requirements and possible 
threats and it is required that the enforced policies are uniquely tailored for the system in hand. 
When choosing these policies, the author must have a holistic view of the entire system with all 
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the details such as the assets that the system has, all the data flows, the access points, any 
privileged code and the defined trust boundaries. Threat modelling systemizes processes for 
identifying all the needed pieces of information that a systems security engineer needs for 
specifying and enforcing security policies. 

Threat modelling produces an analytic schematic of the system that identifies all the possible 
threats, assesses them and rates them according to their possibility of occurrence and the 
damage they could do. This model helps to develop realistic and meaningful security policies 
that perfectly fit the specified requirements. As evident, threat modelling has a close relationship 
with the definition of the security requirements of the system and the development of the 
security mechanisms (see Figure 3). 

 

Figure 3: Threat modelling is closely related with security requirements definition and security 
mechanism development 

 

There are several threat modelling techniques, we are going to evaluate each one and choose 
the best options that will help to achieve the goals of the FutureTPM project: 

• STRIDE: The STRIDE technique was developed by Loren Kohnfelder and Praerit Garg 
in 1999, in a Microsoft technical document as part of the Microsoft Trustworthy 
Computing Security Development Lifecycle [4]. The name provides a mnemonic for 
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and 
Elevation of Privilege, which are the cornerstones of this technique. The STRIDE 
process consists of decomposing an application into constituent components on data 
flow diagrams and analyzing each component against possible threats from the 
aforementioned categories. STRIDE has two different applications, namely on per-
element basis [12] [13] and on per-interaction basis [12]. More specifically, the per-
element method, focuses on each element that the model has, producing a more in-
depth result, while the per-interaction focuses on the interactions between elements. 
Both methods can be used in conjunction to produce more complete models [14]. The 
STRIDE method can be used for assessing the threats against the FutureTPM assets, 
as its focus is around the assets and their interactions. 

Threat Modelling

Security 
Requirements

Develop Security 
Mechanisms
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• Attack Tree: Attack trees can be used in the FutureTPM project to model the possible 
attack paths that lead to specific attack goals. They use tree-like diagrams to represent 
the possible attack paths that are available in the system. More specifically, the root of 
each tree is a vulnerability identified to be a threat to the system, the leaves represent 
the attack surface and the rest of the nodes are subtasks that lead up to the realization 
of the attack. The modelling process with attack trees has multiple steps [15]: 

o Identify the threats that the system might have and set them as attack tree roots. 

o Decompose each threat to subtasks iteratively until the subtasks consist of basic 
functionalities which belong to the attack surface. Some tasks might be 
composed of all of its subtasks, and some only of one, depending on this setting, 
there are logical AND and OR nodes to be used. 

o Each task is assigned a cost number. If the final attack has a smaller damage 
than its summed subtasks costs, then the attack is deemed not likely to occur. 
On the other hand, attacks with a low-cost implementation and highly damaging 
results, indicate that the attack must be mitigated as it is likely to occur. 

• Attack Library: Attack libraries are collections of known attacks compiled into 
searchable databases. They are general purpose checklists, that aim to provide detailed 
information for attacks, in order to help threat modelers to understand each threat from 
the perspective of the attacker. Attack libraries can be used in the FutureTPM project to 
check for known vulnerabilities against the implemented functionalities and cross them 
out from the list. Some major libraries are: 

o OWASP 

o CWE 

o CAPEC 

o WASC Threat Classification 

• T-MAP [16] -- It is a quantitative threat modelling technique for assessing security risks 
by calculating the total severity weights of relevant attack paths. This method begins by 
identifying attack paths on a four-layer model. The layers consist of: the firewall, the 
commercial of the shelf (COTS) systems, the IT infrastructure and the organization’s 
core values. These layers are described by 22 attributes which are derived from the 
Common Vulnerability Scoring System (CVSS). After that, weights are applied to each of 
those attributes depending on their severity, and each attack path can be evaluated 
based on those weights. The overall threat of the system can be quantified by summing 
the weights of each attack path, in order to provide a security evaluation of the whole 
system. Finally, the threat modeler, evaluates all the countermeasures for each threat, 
depending on their efficiency and cost. This way, optimal countermeasures can be 
chosen for the system and minimize both costs and possible damages. This method can 
provide comparative results against similar implementations in order to assess the 
threats against FutureTPM. 

Until now, we have reviewed threat models that could capture architectural threats, 
implementation threats and hardware and software vulnerabilities. These techniques, though, 
are not suited to be used when analyzing the security of cryptographic primitives. In order to 
assess the security of the cryptography that is (or will be) implemented on the TPM, we will 
need security models that are designed for this subject. There are two approaches when it 
comes to cryptographic security modelling: symbolic and computational. Symbolic 
cryptography defines cryptographic operations as perfect and unbreakable, thus it is suited for 
proving that a protocol or application is handling properly the cryptographic primitives it 
contains. On the other hand, computational security modelling, defines cryptography as 
probabilistic computations, and it focuses mainly on the actual security of the cryptography. 
With these two methods combined, we can capture both external (misuse) and internal (chance 
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of failure) security issues of the cryptographic functions that are implemented in our system. 
Both methods can be used in the FutureTPM project to check the security level of the 
implementation while also evaluating the security of the primitives to be used. 

In the next subsections we are going to present threat models that have been or can be applied 

to the TSS part of the TPM and a quantum resistant TPM. 

2.2.1 TPM & TSS Threat Modelling and Vulnerability Analysis 

The TSS is a middleware that provides a multi-level API to applications for accessing the TPM. 
Through the APIs provided by TSS, operating system and the users’ applications can utilize the 
security functionality provided by TPM. Until now several TSS implementations exists in 
different languages, such as IBM TSS [17], Intel’s TSS [18], Microsoft’s TSS [19], Trousers TSS 
[20], Java TSS [21], and Daonity TSS [22] etc. Products of trusted computing is mainly 
concerned with risk management, minimizing the risk to corporate and personal assets due to 
malicious and accidental loss or exposure. However, an integrated risk management is still 
considered a breakthrough aspect [23]. More specifically, it handles all the data from and to the 
TPM, which includes marshalling/unmarshalling data, encrypting transactions for cryptographic 
sessions, parameter checking etc. The TSS consists of three API layers that provide three 
levels of abstraction, namely the SAPI, the ESAPI and the FAPI. The FAPI is the most feature 
rich layer, and its purpose is to cover most of the use cases of the TPM as it includes ready to 
use functions that require very little configuration. It is designed to be simple to use and make 
the development of applications as easy as possible. The ESAPI is a little more advanced API 
and is targeted to individuals who seek to have a little better control over what the TPM does. 
Finally, the SAPI is an interface that requires expert knowledge of the underlying TPM 
commands and architecture. The functions it contains can be directly mapped to almost every 
command that the TPM can execute and it allows for fine grained control of the module. This 
level freedom allows for misuse and errors, that is why it is of great importance to model all the 
possible threats that may appear. 

The TSS is closely related to the TPM as they are closely interconnected with the TSS being 
the gateway for all inbound and outbound communications of the TPM. We are going to present 
the threats models on a per functionality categorization for the TPM and TSS that exist in the 
bibliography. Furthermore, we will focus on a set of core functionalities of the TPM during the 
threat modelling process, namely: cryptography, storage, key management, sessions and 
authorization. The security modelling of the whole TPM is too ambitious and that is why we 
selected these functionalities that cover most of the use cases to some degree. These 
functionalities where identified to be common across all the use cases that the FutureTPM 
project will examine, as they are seen in Chapter 4 of this deliverable. 

• Cryptography, Storage and Key Management: In [24] there is an analysis of the 
Protected Storage API security of the TPM. With the developed framework, they 
showed that part of the API cannot be misused to make an unauthorized access to key 
objects. The framework provides symbolic security guarantees and its scope is very 
narrow, as it only focuses on a small subset of the TPM’s commands. Zhang et al. [25] 
presented a model that has a broader scope with its focus being on TPM’s key 
management API. They discovered some possible attacks with their model, but they 
noted that the source of these threats is not a failure of the TPM specification but a 
problem with some specific policy definitions. They underlined the need for fine-grained 
security policies, so that the discovered attacks could be mitigated. Finally, in [26], there 
is a formal game-based model of the TPM’s cryptographic support commands. The 
researchers used CryptoVerif to prove that honestly generated keys can be used to 
securely encrypt or authenticate messages, even if the adversary can directly interact 
with the TPM. 

• Session and Authorization: In the research of Chen and Ryan [27], they modelled the 
authorization mechanisms of TPM1.2 and showed that a mistreatment of the 
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authentication data can lead to complete usurpation of the TPM’s secure storage in 
multi-tenant scenarios, even if encrypted sessions are used. They also used ProVerif to 
prove the symbolic security properties of a modified protocol that is now used as part of 
TPM2.0’s enhanced authorization mechanism. In [26], the researchers have formalized 
the HMAC Authorization sessions of TPM2.0 using CryptoVerif. They proved that the 
TPM only executes protected commands when called by a user who possesses the 
appropriate credentials and that callers that are engaged in protected sessions with the 
TPM can trust that execution happened within the TPM upon receiving the results. Shao 
et al. [28] have made a SAPIC model for a subset of TPM2.0 Enhanced Authorization 
mechanism. They used Tamarin to obtain proofs of symbolic authentication for most 
modes of authorization, and identify some cases where misuse is possible and needs to 
be managed by careful usage of the TPM’s API. 

• Direct Anonymous Attestation: The direct anonymous attestation does not fit into the 
previous category (i.e., Cryptography, Storage and Key management) since it is a case 
of its own. It was developed specifically for the TPM and it encapsulates standard 
cryptography as well as novel and somewhat untested methodologies. A game-based 
model was proposed in [29] but it was difficult to apply in larger systems as well as it 
focused on the RSA-based implementation of TPM1.2. [30] found in its ProVerif model 
that attacks were possible where anonymous credentials could be delivered to the 
wrong TPM. An ECC-based DAA was analysed in [31] that have led to the development 
of equivalence-based notions of symbolic security that are used to express strong 
secrecy properties alongside privacy properties. In [32] the DAA API of the TPM2.0 was 
modelled in ProVerif that resulted to the introduction of forward anonymity property that 
was not met in the implementation of TPM2.0. Finally, universally composable security 
models where used in [33] and [34] that allowed for further refinements of the trust 
models such as the effect of compromised TPMs to uncompromised ones. Moreover 
[34] proposed protocol changes for the TPM2.0 DAA that improved its overall security 
with provable forward anonymity. 

The threat modelling of the TPM is a joint effort between WP3 and WP4. The outputs of WP3 
will be utilized from WP4 towards the implementation of the risk analysis and the vulnerability 
assessment processes. 

2.2.1.1 TSS Threat and Vulnerability Modelling 

The threat modelling we discussed so far, is targeted at both the TPM and the TSS. These two 
entities are strongly tied together and there is a thin line that separates one from the other. If we 
were to target the TSS specifically, we first need to abstract the nature of the TSS to the bare 
minimum. The TSS is a middleware that provides an API abstraction to the commands of the 
TPM, and as such it should be handled as a common software. All common software threat 
modelling techniques apply to the TSS, which are divided in two main categories: white-box and 
black-box. In the white-box scenario, we have access to the source code of the implementation, 
and the prime target of this technique is to verify the design, i.e. to assess whether the software 
does what it is supposed to. On the other hand, the black-box approach, is suited for the 
“attacker’s perspective” scenario, where all we have is access to the compiled and running 
software, and our target is to enumerate all the vulnerabilities that we can find with this in hand. 
These approaches remind of the penetration testing process, but threat modelling is nothing 
more than a systematic method for the identification and the assessment of vulnerabilities to a 
system, while penetration testing is a systematic process for just the identification (only) of the 
vulnerabilities. 

In the case of the TSS, since we have the source code and a working implementation, we can 
approach both scenarios. With the use of standard threat modelling tools, we are going to 
pinpoint all the possible threats to the TSS, and with the results of this process we will attempt 
to detect all its vulnerabilities. The main techniques that we are going to use are code analysis 
and fuzzing. The white box approach will be comprised of both automatic and manual code 
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analysis, which are the basic methodologies for vulnerability detection. We are going to pass 
the code through automatic code analyzers that will produce a number of possible 
vulnerabilities then, we will assess these results and identify whether they are actual 
vulnerabilities or not. After this process, we will compare the vulnerabilities we identified with the 
results of the threat modelling process, and if we find threats that were not covered by the code 
analyzers, we are going to manually inspect these points of interest to assess if there are any 
missed vulnerabilities. 

There are four basic techniques for code analysis, all of these techniques are used in automatic 
code review tools, but some of them could also be applied to manual code reviews too:  

• Control Flow Graph [35]: These graphs are the representation of each possible path 
that an application might take during its execution. More specifically, each node of the 
graph represents a block of code that does not contain any out of order execution 
commands (jumps). All the jumps of the code are represented as directed edges, that 
point to the target address of the command to be executed after the jump. This way, we 
can fully map a piece of software and better understand its architecture. 

• Data Flow Analysis [36]: This technique uses control flow graphs, in order to better 
understand the values that a variable might get. It is a data centric technique, that aims 
to simplify the code by aggregating the entirety of the commands that act on a variable 
and produce a smaller subset of these commands with the same result. This method is 
mainly used in the optimization process of compilers, but it also helps in static code 
analysis, as it helps to better understand what changes are applied to data and pinpoint 
possible vulnerabilities or bugs. 

• Taint Analysis [37]: This method, once again expands on the previews one (Data Flow 
Analysis), with the target of finding how untrusted sources of data are propagated to the 
system. It utilizes the results from the data flow analysis, in order to “taint” the data from 
untrusted sources and follow the path of this data throughout the system. This way we 
have a visual representation of how far an attacker can reach in the system and what 
components he can access. Taint analysis can be used to identify both information 
disclosure vulnerabilities and tainted flow vulnerabilities, with the latter being the 
scenario we described, and the former is the scenario where sensitive information can 
“sink” into outputs that an attacker might have access to, i.e. the reverse process of the 
aforementioned scenario. 

• Lexical Analysis [38]: This procedure is applied by automated tools, in order to 
tokenize source files. With the tokenization, it is easier to spot vulnerable patterns and/or 
commands that should not be used. This method is mainly used by automated tools.  

In the case of the black box (or gray) scenario, we do not have access to the source code, (or 
we have access to it in the gray scenario) and our main focus is to try and identify vulnerabilities 
just by a running implementation of the software. The basic and most widely adopted method 
for the black box scenario is fuzzing.  Fuzz testing is an effective technique for finding security 
vulnerabilities in software. Fuzzers have initially been developed for testing protocol 
implementations on possible security flaws due to improper handling of malicious input. In [39] 
the authors present a model-based fuzz framework for systematic automated testing of a TCG 
Trusted Software Stack implementation. This framework is based on black box fuzz testing 
methods, integrated with target profiling, data modelling and test algorithm etc. They also 
demonstrate how their model-based fuzz framework can identity several vulnerabilities in the 
Daonity TSS [22] implementation. However, what makes fuzzers difficult to use is the fact that a 
fuzzer by design cannot be general–purpose. [40] is another work that applied fuzzing to a TSS 
implementation with a tool named Flinder that specializes in discovering typical security-related 
programming bugs. Although this case study was applied to a TSS that is not used anymore 
(opentc implementation), the Flinder fuzzer could be also used in the fuzzing of the FutureTPM 
implementation as it offers custom test suite development capabilities, Linux support and it can 
be used for both black box and white box fuzzing. 
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Additionally, there is a technique called symbolic execution which can be considered as a form 
of white box fuzzing [41].  Symbolic execution has garnered a lot of attention in recent years as 
an effective technique for generating high-coverage test suites and for finding deep errors in 
complex software applications. This technique tries to find what parts of the code are triggered 
by specific inputs that are fed into the program as variables. On each branch of the program, 
the variable input takes many values so as to check for each possible value what branches of 
the program are taken. Its main aim is to capture various kinds of errors including assertion 
violations, uncaught exceptions, security vulnerabilities, and memory corruption in an 
automated way that may have been missed during the development [42]. Symbolic execution is 
also used in cryptographic protocols automated verification in conjunction with CryptoVerif as 
seen in [43]. All things considered, symbolic execution can provide a new perspective in 
dynamic code analysis and allow for a more precise coverage of the program by potentially 
finding previously unidentified bugs in the FutureTPM implementation. 

 

 

Figure 4: The TCG TSS, the green tinted area will be subject to general purpose fuzzers for testing the 
TSS, while the yellow area would provide a starting point for fuzzing the TPM. 

 

The architecture of a TCG compliant TSS (see Figure 4), is composed of multiple layers of 
abstraction. Most of these layers can be accessed by normal or root users and they need to be 
assessed for the vulnerabilities they might have. On each layer we are going to need 
specialized fuzzing tools that will cover all possible vulnerabilities. More specifically, general 
purpose security fuzzers are the best candidates as they cover a wide range of use cases that 
include the functionality that we need. These fuzzers will be used on all the layers of the TSS, 
as they cover a broad spectrum of vulnerability detection and they can be configured for most 
test case scenarios. Furthermore, we will evaluate the need for specialized TPM fuzzers that will 
increase the effectiveness of the testing process. As of the time of writing, there are no such 
specialized tools available, it is our purpose to research and develop one, if we find that it is 
required to reach the FutureTPM goals.  The TCTI layer is a special case, as it is responsible for 
the communication between the functional layers and the lower utility layers of the TSS, that is, 
it marshals the data to be sent, and forwards them to be handled by the TPM. Because of this, it 
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provides a good target to test the underlying TPM, and how it handles each packet sent, as we 
can manipulate these exact packets that the TPM will receive.  

2.2.1.2 (QR) TPM Threat Modelling and Vulnerability Analysis 

Until now there aren’t many research works related to TPM threat and vulnerability modelling let 
alone for QR TPM, while modelling focused on specific threats in TPM and TPM commands is 
still missing from the literature. A QR-TPM has both software and hardware components that 
can provide attack surfaces. There are no solutions in the bibliography that combine both 
software and hardware threat modelling, with only minor exceptions. A recent paper [44] 
presented the Lamellae threat modelling framework. In this research, an architectural threat 
modelling solution is proposed, which combines many modelling techniques in order to cover all 
the aspects of a system and identify possible multi-level threats. These threats are 
vulnerabilities that an attacker can build by exploiting the system on different architectural 
levels. The main absence of this research is the security modelling of cryptography, since it 
focuses only on threat modelling. In the research of Almohri et al. [45], we can find a similar 
approach in the threat modelling of medical cyber physical systems. The researchers here 
proposed a threat model that covers the system on multiple levels (Communication Links, 
Software, Platform and Users). 

Hardware is more resistant to attack than software alone, especially regarding cryptographic 
key management; this is the strength of TPM. Also, since the TPM uses its own internal 
firmware and logical circuits for processing instructions, it does not rely upon the OS and is not 
subject to external software vulnerabilities [46]. Whilst it is widely believed a TPM would reduce 
risk to an organization, to date there has been no formal risk assessment to confirm it [47]. The 
threat modelling scheme proposed by Di and Smith [48], focuses on hardware. More 
specifically, its purpose is to propose a threat modelling methodology that is able to identify 
possible vulnerabilities that the hardware might have and assess its trustworthiness. The 
TRUTH tool [49] was proposed in 2008 as a hardware threat modelling tool that uses structural 
checking [50] attacker-centric checking mechanism. This tool utilizes an RTL (register-transfer 
level) design of an integrated circuit in order to automatically analyze the possible threats and it 
also incorporates a method to factor in third party blocks to the overall assessment. In [51] the 
authors present a risk assessment model based on Bayesian networks. In this model, each risk 
event influencing the TPM. Bayesian network inferring method was used to evaluate the risk 
probability and its influence, while the whole system's risk value and risk priority were 
determined. 

Finally, in the research of Ando et al. there is an attempt to improve the quantum resistance of 
the TPM by embedding a hash-based primitive into its design. The researchers have presented 
security models for TPM cryptographic functionalities that offload some of the storage to the 
main memory. These models could be interesting as a basis for our QR TPM setting. 

2.2.2 Vulnerability Analysis of QR Algorithms 

Now, we will focus on the cryptographic security of the QR FutureTPM algorithms in terms of 
identifying any possible vulnerabilities. In the work of [52], the researchers have made an effort 
to identify side channel leakages of an implementation of the lattice-based signature scheme 
ring-TESLA. They employed both manual code inspection alongside with automated program 
analysis to find four possible cache side channels vulnerabilities, two of which appear on code 
that is common across lattice-based implementations. They finally proposed mitigations for the 
found attack vectors. Furthermore, in [53] the researchers have presented two side-channel 
differential power analysis vulnerabilities on XMSS(MT) and SPHINCS-256. In the case of 
XMSS they have successfully recovered all the secret keys of W-OTS+ which allowed them to 
compromise the security of the scheme. In the case of SPHINCS-256 they managed to 
reconstruct a 32-bit chunk of the secret key, something that with further research could be 
extended produce an attack vector that will recover the entire key. Moreover, in the work of 
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Aysu et al. [54], it has been shown that a new possible side channel vulnerability exists within 
the matrix/polynomial multiplication of the LWE and R-LWE based key exchange protocols 
Frodo and NewHope. The main difference between conventional attacks and this one, is that 
instead of a vertical DPA (Differential Power Analysis), it facilitates a horizontal one that 
compares traces captured within the same line of operations of a cryptographic function to find 
leakages. 

Adrien et al. [55] have developed an interesting tool for detecting cache-timing vulnerabilities of 
post-quantum algorithms. The tool inspects the code base of the implementation and makes its 
judgement based on three factors: 

• Secret dependent conditional instruction 

• Secret used as index in an array 

• Secret used by third-part libraries 

Based on these factors, the FutureTPM project can start to identify possible vulnerabilities 
within the algorithm implementations it will utilize. According to the publishers of the tool, they 
found that the 80% of NIST submitted QR algorithms contain some potential flaw, with three of 
them containing more than 1000 reported flaws. The most common flaws between these 
algorithms that where found with this tool are: gaussian sampling leaks, generic sampling leaks, 
GMP library usage and operations in finite fields [56]. On the subject of side channel detection, 
the MicroWalk [57] framework is a useful tool in finding indications of side channels in binaries. 
It uses dynamic binary instrumentation to locate memory based and control-flow based 
microarchitectural leakages in binaries and it was used by the researchers to locate possible 
side channels in closed source implementations of cryptographic algorithms. 

Another approach to side channel detection, is to observe the power trace produced during the 
runtime of the algorithm with different data sets as input. If different data sets, produce 
statistically different power traces then it is safe to assume that there might be a side channel 
vulnerability in the implementation. This method is named test vector leak assessment (TLVA) 
[58] and it utilizes statistical t-tests that can provide a level of assurance that the difference 
between the power traces is reliable and not a random coincidence. Lei et al. [59] proposed an 
improvement on this technique that used a frequency spectrum analysis of the power traces. In 
the conventional TLVA, the power traces had to be aligned in order for the method to be 
effective, this might not be feasible in some cases, and this new method avoids this constraint 
by comparing the frequency spectrum analysis results. 

In the FutureTPM project we will try to identify and assess possible side-channel attack vectors 
against the implemented algorithms. Due to the complexity of the task, it is unsure whether 
there will be any hard evidence for the existence of side-channels. The path that the FutureTPM 
project will follow, is to first analyze the source code of the algorithm implementation based on 
the work we described before [55]. Depending on when the final hardware will be available, we 
will consider to further assess the vulnerabilities of the final hardware implementation using 
techniques such as TLVA and Differential Power Analysis.  With the use of current research 
endeavors we will enhance our attempt in improving the security of QR cryptography. This work 
will be part of WP3, WP4 and WP5. 
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Chapter 3 FutureTPM Risk Assessment (RA)   

Methodology 

This chapter aims at giving a more detailed description of the underpinnings of the risk 
management phase (documented in D1.2 [1]) covering all aspects of the core services to be 
offered from risk identification and quantification to run-time risk assessment and 
security policy enforcement. This will serve as the guide for the development of the 
FutureTPM RA framework to be presented in the subsequent deliverables of WP4.  

Risk assessment is a key aspect for the efficient operation of Information and Communications 
Technology (ICT) deployments. Various standards and good practices exist for the 
establishment of risk assessment which are used to evaluate the effectiveness of mitigation 
actions and policies that are associated with a given risk. Within the context of FutureTPM, a 
risk assessment framework will be developed tailored to the security requirements of TPM-
based systems capable of providing a risk quantification methodology, which is model 
driven, and a run-time risk assessment and software verification mechanism (especially, 
for the TPM Software Stack (TSS)) towards achieving operational assurance even against 
newly identified attacks and exploits. While the investigation will cover a wide palette of threats 
and an identified segmentation of vulnerabilities for the TPM, it will start with the analysis of the 
core functionalities (more information can be found in Chapter 4) as have been identified in the 
context of the envisioned use cases (i.e., sealing, DAA and key storage creation and storage).  

There is a wide range of generic and TPM specific vulnerabilities that have been identified in the 
literature, however, what has been lacking is a holistic risk and vulnerability assessment that 
covers all core components, including QR TPM and the host device, both during design- and 
run-time. A work that leverages novel tracing techniques (i.e., use of eBPFs) against a side-
channel attack on Java heap management is presented in [60]. Also, [61] presents a run-time 
kernel attack surface reduction framework restricting the amount of kernel code accessible to an 
attacker controlling a process, in a quantifiable and a non-by passable way. Both research 
works will serve as a basis for the FutureTPM risk assessment methodology.  

3.1 FutureTPM Risk Assessment Framework 

The main part of the Risk Management Phase, is the development of a generic model to 
identify threats and vulnerabilities, and a risk assessment methodology for a TPM-based 
system. The goal of such a model is to formalize: a) the risks that quantify the possibility of 
harming an asset; b) all threats that relate to specific risks that have been identified in the 
previous step (this detailed threat modelling is the output of WP3 as (will be) documented in 
D3.2 and D3.3); c) the assets that may be exploited in order to manifest some of the threats; d) 
the attack types that are related to the attack surfaces exposed by the assets; e) the 
vulnerabilities along with their exploitability and impact; f) the control elements that can 
mitigate the effect of exploitation attempts and g) the attestation properties that are bound to 
the control and tracing mechanisms, that were aforementioned (i.e., eBPFs), for ensuring the 
integrity/verification of the control flow of the executed TPM commands. The high-level overview 
of the RA framework flow is presented in Figure 5.  

As depicted, the core functionality of this framework is the creation and update (in real-time) of 
the risk graph based on the envisioned application and the types of security properties of 
interest to be achieved. These properties can be described as security policies that have to be 
enforced to the deployed cyber-physical system hosting the QR TPM in order to secure the 
overall platform against the identified risks, or any new vulnerabilities that will be identified 
during run-time. 
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Figure 5: Risk Assessment Framework. 

 

In more details, the four main steps of the Risk Management Phase are as follows: 

1. Design-time Risk Assessment of the overall FutureTPM architecture towards the 
creation of asset cartographies coupled with all identified threats and vulnerabilities that 
can exploited by an adversary. This formalization will allow the definition of adequate 
security policies and policy sets, capturing all the necessary security requirements (as 
will be documented in D3.2), that will be made available to the deployed cyber-physical 
systems which can then start enforcing them and make decisions based upon the results 
of the run-time risk assessment (including the control flow attestation as part of the 
FutureTPM Attestation Toolkit) processes. 

2. Policy Modelling and Specification of adequate policies required to mitigate the 
identified risks. Such policies must be expressive, deployable and enforceable within the 
Policy Enforcement Toolkit and may be dynamically updated if the attack graph 
(produced and maintained by the RA framework) is amended with new types of 
vulnerabilities. Example of such policies may include specific properties that will need to 
be attested during the execution of a system. 

3. Run-time Risk Assessment on the host device interacting with the (QR) TPM through 
the TSS. The goal is to provide a real-time calculation of all the risks that have been 
identified using the Risk Quantification Engine; yet the calculation will not only take 
into consideration a design-time model, that has been produced, but the verified 
(through attestation) configuration of the deployed platforms. More specifically, through 
the detailed tracing (based on the use of eBPFs) of the TSS including all the TPM 
commands and interfaces, kernel shared libraries, etc., an in-depth investigation of the 
system’s behavior and execution flow will be performed to detect any cheating attempts 
or if any type of (non-previously identified) exploit is resident to the program and data 
memory. 

4. Dynamic update of the Policy Models based on any collected evidence regarding the 
execution behavior of the system; in case of any identified run-time vulnerabilities and 
exploits and/or data leakage, the RA framework allows the dynamic change of already 
established policies. Run-time security policies may need to be dynamically refined as 
a response to newly identified attacks that were not evaluated during the Design-time 
Risk Assessment phase.  
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In addition to the aforementioned services, as already pointed out in D1.2 [1], the FutureTPM 
architecture (D1.2 – Figure 7) consists of three main components: the QR TPM, the Risk 
Assessment and the Policy Enforcement components. The overall architecture of the Risk 
Assessment framework will take into account all the necessary components and interfaces and 
how they will interact with the QR TPM through the TSS. Indeed, this is where the novelty of 
FutureTPM RA lies; the detailed risk and vulnerability analysis of the whole TPM and TSS 
environment. Towards this direction, several commodity TSS implementations exist, namely 
the Intel and IBM TSS implementation instances. While they share many similarities, Intel TSS 
[16] provides some additional functionalities (especially when it comes to resource management 
[70]) that have not been full incorporated yet in the IBM TSS [15]. On the other hand, the current 
IBM TSS version is at a more stable state. Based on these observations and in order to be able 
to perform a more holistic investigation in the context of FutureTPM, we decided to leverage 
both instances: the Intel TSS will be used as the baseline for the risk assessment analysis 
whereas the IBM TSS will provide the cornerstone for the implementation and demonstration of 
the QR-based TPM (WP5). 

3.2 Design-time Risk Assessment Phase 

As described in the previous section, the goal of the Design-time Risk Assessment phase is 
the modelling of the processes (i.e., functions) that are performed through the synergy of 
various assets; either cyber or physical. Moreover, the modelling toolkit allows the creation of 
asset cartographies; i.e., the formal representation of the assets and their relationships. In 
parallel, the toolkit will make use of open databases in order to associate the modelled 
assets with existing vulnerabilities (e.g., Common Vulnerabilities & Exposure – CVE 
Database). Finally, the detailed sampling and tracing of all the processes will be performed 
that allows the in-depth investigation of the execution flow of all performed functionalities so 
as to document a baseline of correct executional behaviour against which the attestation 
during run-time will then be performed. 

Towards this direction, the overall architecture of the Risk Assessment platform will take into 
account the following functionalities provided by the QR TPM and operated through the TSS:  

a) the Components and Interfaces,  
b) the Commands and Data Communication Architecture,  
c) the Entities,  
d) the Hierarchies and  
e) the PCRs.  

As aforementioned, in order to achieve all the activities of the Risk Assessment, tracing 
techniques will be employed coupled together with the developed Control Flow Attestation 
mechanisms (Section 3.3). In addition, both the design-time risk assessment and the security 
modelling of WP3 will give a first input towards the creation of the necessary policies to be 
enforced. These policies can then be updated and re-enforced during run-time. 

Operating systems and applications are crucial parts of a computer system, but due to their 
inherent complexity, there are situations related to bugs, incorrect system setup that lead to 
incorrect behaviour. Compunding these issues, performance statistics collection and their 
analysis, debug or system audit can help to the system administrator to perform system 
instrumentation. Two common approaches to instrumentation are [62]:  

• sampling - when you collect state of the system: values of some variables, stacks of 
threads, etc. at unspecified moments of time and  

• tracing - when you install probes at specific places of software. Profiling is a most 
famous example of tracing 

Sampling is very helpful when is unknown what happened. With tracing a probe can be 
installed to that function(s) of interest, gather information on lists and collect cumulative 
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execution of function, and then cross-reference them, searching for a pattern in lists whose 
processing costs too much CPU time [62]. Tracing is used for statistics collection and 
performance analysis, dynamic kernel or application debug, system audit. Tracing is very 
powerful but it can also be cumbersome for whole system analysis due to the volume of trace 
information generated. Unlike other approaches, dynamic tracing tools embed tracing code 
into working user program or kernel, without need of recompilation or reboot. Since any 
processor instruction may be patched, it can virtually access any information you need at any 
place. Dynamic tracing system logic is quite simple: you create a script in C-like language 
which is translated to a probe code by a compiler. Modern kernel versions have Extended 
Berkeley Packet Filter (eBPF) integrated, and there is experimentation on using it as a 
platform for generating probe code. 

eBPF has been evolving since 2013 and is a Linux feature which allows safe and efficient 
monitoring of kernel functions. This has dramatic implications for security monitoring. More 
specifically, eBPF extends BPF and redefines and extends the set of instructions, relying on 
common subset from several assembly languages. It is like BPF but with more resources, such 
as 10 registers and 1-8 byte load/store instructions. eBPF introduces new elements in the 
architecture, for example the introduction of global data store called maps, whose state persists 
between events. eBPF gives us a lot of functions called helpers that helps us during the 
implementation of a BPF program. Therefore, eBPF can also be used for aggregating statistics 
of events. Further, an eBPF program can be written in C-like functions, which can be compiled 
using a GNU Compiler Collection (GCC)/LLVM compiler. eBPF can map some memory space 
so that it can be shared between user and kernel space. It also makes it possible to call certain 
kernel functions from programs. eBPF programs are loaded from user space but will run in 
kernel space. The Just-in-time compilation (JIT) is preserved. eBPF has been designed to be 
JIT’ed with one-to-one mapping, so it can generate very optimized code that performs as fast as 
the natively compiled code. JIT compiler translates eBPF bytecode into a host system's 
assembly code and speed up program execution. For instance, on x86 systems, the code is 
turned by the user space compiler into some “simplified x86 assembly”, which is in turn verified 
in the kernel, and then each “simplified” instruction is translated into real x86 by the JIT 
compiler. The process is efficient, as: 

• all registers map one-to-one, 
• most of instructions map one-to-one, 
• BPF call instruction maps to x86 call. 

These powerful features make eBPF suitable not only for packet filtering, but also for general 
networking, event tracing, kernel optimizations, and also for the Risk Assessment of the TSS. 
For clarity, these are some types of eBPF programs (it depends how it is attached to the hook 
point): 

• The TC (Traffic Control) programs can be attached to the traffic control layer of the 
Linux networking stack, both in ingress and in egress. These programs can perform 
packet manipulation, redirect, clone and in general implement a network function. 

• The XDP (eXpress Data Path) that provides high performance in the networking (new). 
XDP programs are attached at the earliest networking driver stage and trigger a run of 
BPF program upon the packet reception. 

• The Socket Filters programs can be attached to a socket and they can perform the 
classic packet filtering process: inject the filter program into the kernel and then the 
program can return the filtered packet to the user space, and drop the other packets; it 
was the original tcpdump use case. 

• The Tracing the idea behind this kind of program is to trigger the eBPF program every 
time a kernel or system wide event is intercepted. A program can be loaded, and then 
attached to some events: kprobe, tracepoints, uprobes, USDT probes. 

The IO Visor Project [63] is an open source project and a community of developers to 
accelerate the innovation, development, and sharing of new IO and networking functions. With 
IO Visor, you can write in-kernel programs that implement atomic networking, security, tracing 
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or any generic IO function. You can also attach these programs to sockets, so that they’ll be 
executed as traffic arrives in the kernel. The IO Visor Project lists eBPF features available by 
kernel version (see Figure 6).  eBPF is not (yet) backed by a rich ecosystem of tools and 
libraries aimed at simplifying the life of potential developers; the BPF Compiler Collection (BCC) 
[64] is a toolkit to make eBPF programs easier to write, with front-ends in Python and Lua. BCC 
project reduces the difficulty for writing, compiling (invokes LLVM/Clang) and loading eBPF 
programs.  

 

Figure 6: Tracing options [63]. 

In D1.2, we provided an introduction regarding the TPM Access Broker (TAB) and the 
Resource Manager (RM) – two components that are of particular interest due to their inherent 
functionalities that may lead to sensitive data leakage (e.g., information about stored keys). The 
TAB controls multi-process synchronization to the TPM. Basically, it allows multiple processes 
to access the TPM without stomping on each other, while the RM acts in a manner similar to the 
virtual memory manager in an OS due to limited on-board memory [65]. TPMs generally have 
very limited memory and objects, sessions, and sequences need to be swapped from the TPM 
to and from memory to allow TPM commands to execute. RM must parse the command byte 
stream before the command is sent to the TPM and take any actions required to ensure that all 
transient objects used by that command are loaded into the TPM. This includes all sessions 
referenced in the authorization area and all objects, sessions, and sequences whose handles 
are in the command’s handle area. Very recently, the Linux kernel 4.12 have included in-kernel 
RM [66] to provide isolation between objects & sessions created by different connections which 
is the core functionality required by applications. Eventually, all of the required features will end 
up in the kernel RM and it will become the default [66]. 

FutureTPM will perform a thorough vulnerability analysis of all identified threats and risks that 
can affect the final product. More specifically, there will be a security analysis of the various 
TPM environments to ensure that the implementation does not undermine the overall security 
goals of the FutureTPM platform. A low-level interception at the TPM host device to identify and 
provide erroneous usage of the TPM that considered QR broken, without interrupting the TPM 
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is necessary. In D1.2 the cartography of broken commands is provided and can serve as a 
basis for the implementation of a transparent tracer who intercept these commands (along with 
the specific reference scenarios TPM commands), based on the eBPF. More specifically, we 
need to trace the aforementioned TAB and RM between the user land and the kernel (Section 
3.3.3). The main Risk Assessment components are the Risk Modelling Toolkit and the Risk 
Quantification Engine. The following subsections describe the risk modelling and risk evaluation 
phases and how the Risk Modelling toolkit and the Risk Quantification Engine intercommunicate 
between them. 

3.2.1 Risk Modelling 

All WP3 deliverables will serve as a reference point when it comes to the subsequent risk 
modelling. More specifically, the risk modelling will get the necessary input from the threat 
modelling and trust definitions that will be conducted in the context of WP3. In terms of the 
FutureTPM Risk Assessment, the risk model output will formalize:  

• risks that quantify the possibility of harming an asset;  

• all threats that relate to specific risks that have been identified during the design time;  

• assets that may be exploited in order to manifest some of the threats;  

• attack types that are related to the attacking surfaces that are exposed by the assets;  

• vulnerabilities along with their exploitability and impact;  

• the control elements that can mitigate the effect of exploitation attempts and  

• attestation properties that are bound to the control mechanisms of the TPM.  

To develop a holistic QR TPM-solution, it is crucial to take into consideration the complex threat 
landscape posed by the ecosystem of the devices hosting the QR TPM. As already pointed out 
eBPFs will be used to capture the execution of the command flows in the device (hosting the 
TPM) so that we can check and attest the integrity of the execution behavior based on already 
defined policies. Failing to adequately tackle this increased surface of attack, may allow an 
adversary with quantum capabilities to mount successful attacks and recover secret information. 
Therefore, in addition to a risk assessment methodology during design-time, it is also required 
to develop a reactive run-time risk assessment (Section 3.3) and mitigation framework (Section 
3.4) for the whole TPM-based solution to ensure security of use cases in the face of emerging 
threats and vulnerabilities.  

As depicted in Figure 5 through the usage of the Risk Modelling toolkit a security analyst will 
model several processes that are performed through the synergy of the various services within 
a TPM environment. Moreover, the Risk Modelling toolkit will allow the creation of asset 
cartographies i.e. the formal representation of the assets and their relationship. In parallel, the 
toolkit will make use of open databases in order to associate the modeled assets with existing 
vulnerabilities (e.g., Common Vulnerabilities & Exposure – CVE - database). Finally, the 
properties that can be potentially attested per each asset will be also provided as an input to the 
Risk Modelling toolkit. Based on the asset cartography, the cyber physical ecosystem 
envisioned on the use cases and databases of existing vulnerabilities, the design-time risk 
assessment module is going to produce a risk graph. After the creation of model instances, the 
security analyst may trigger the Risk Quantification Engine. 

3.2.2 Risk Evaluation  

After the model creation, the security analyst may trigger the Risk Quantification Engine. This 
engine will be multi-threaded (by-design) since each separate risk quantification request 
requires different set of calculations. One of the FutureTPM consortium members (UBITECH) 
has implemented and launched the OLISTIC Risk Assessment Platform covering cybersecurity, 
information security and privacy impact assessment [67]. OLISTC platform can assist to perform 
dynamically, continuously and near-real-time risk assessment, addressing the various possible 
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cascading effects that are associated with incidents occurring from interacting entities and 
assets. In addition, OLISTIC is constantly updated via the US National Vulnerability Database 
with the latest identified vulnerabilities and exposures (CVE) and the naming scheme for 
information technology systems, software, and packages (Common Platform Enumeration - 
CPE Dictionary). OLISTIC calculates risk levels across assets, asset groups, process, 
organizational units or other business aspects. This platform will be used to perform the 
FutureTPM risk evaluation and calculate the overall risk graph. Moreover, the Drools [68] 
efficient expert system will possibly be used as a cornerstone component for the sake of the 
engine implementation. This technical choice implies that several rules have to be created 
(automatically) regarding the calculation of vulnerabilities, generation of attack trees, 
propagation of an exploitation (cascading effect), etc. As any expert system, the developed 
engine will be able to be used in two modes, forward-inferencing and reverse-inferencing mode. 

3.2.2.1 Forward Chaining Inference  

Forward-chaining is a bottom-up computational model. It starts with a set of known facts and 
applies rules to generate new facts whose premises match the known facts, and continues this 
process until it reaches a predetermined goal, or until no further facts can be derived whose 
premises match the known facts. It checks the facts against the query or predetermined goal 
and indicates that the inference moves forward from the facts toward the goal [69].  

In the context of FutureTPM, according to the forward-inferencing mode the engine will produce 
raw calculation of the risk likelihood for a specific setup of the assets. Threat assessment in 
most environments consider two metrics: Likelihood of an attack and impact of the attack. 
Underlying these metrics are a further set of metrics addressing such issues as availability 
requirements (i.e. time needed to access the vulnerability), equipment (i.e. the complexity or 
cost of equipment needed to launch the attack) and so forth which are described in some detail 
in ETS TS 102 165-1 [70]. The calculation of risk is taken most often as the product of likelihood 
and impact and categorized as high, medium or low, defining countermeasures against high 
and medium risk vulnerabilities. 

3.2.2.2 Reverse Chaining Inference  

Backward or reverse chaining it is a top-down computational design and starts with a goal or 
hypothesis and looks for rules to support the hypothesis. It attempts to match the variables that 
lead to valid facts in the data and indicates that the inference moves backward from the 
intended goal to determine facts that would satisfy that goal [69]. 

In the context of FutureTPM, according to the reverse-inferencing mode, the engine will be 
provided a specific goal regarding a risk level and then it will propose a set of setups that can 
satisfy this goal. This setup mainly constitutes the set of properties that if attested can achieve 
the desired level of assurance. Therefore, the first mode is rule-driven while the second one is 
goal-driven. The report that is generated, in both cases, can be interpreted in concrete policies. 
More specifically, the output of the Risk Quantification Engine will be assessed in order to 
evaluate if a set of specific risks are below acceptable thresholds. The thresholds will be set 
based on the envisaged deployment scenarios driven by three of the consortium leading 
industrial partners. In case of runtime RA, near real-time risk quantification of newly identified 
attacks (during runtime) will also be performed. In particular, new target values will be set as 
input to the Risk Quantification Engine which will be invoked in the mode of goal-driven 
inference engine. This means that it will propose several new setups i.e. mitigation controls that 
map to existing properties that have to be attested. These properties may be a subset of the 
configuration properties that are already defined or can be other newly-identified, high-level 
properties that can further enable semantic remote attestation, i.e., attestation of dynamic, 
arbitrary and system properties as well as behavior of executable code in an attempt to mitigate 
the newly discovered runtime vulnerabilities. This process may lead to a dynamic update of the 
already defined policies as a response to these newly identified attacks. 
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3.3 Run-time Risk Assessment & Assurance Phase 

The scope of this phase includes the provision of secure, robust and efficient run-time 
behavioural attestation methods to check the internal state of a remote “untrusted” 
CPS, hosting the TPM, towards establishing the trustworthiness of the entire “Systems-of-
Systems” (SoS). To that end, FutureTPM will build on-top of existing remote attestation 
techniques (namely, DAA and a combination of Static and Dynamic Attestation [1]) towards 
ensuring the internal state of a TPM-based CPS in order to enhance its security and privacy 
posture. These methods will be used for achieving trustworthiness of the command 
execution flows, as monitored during run-time, based on the tracing capabilities provided by 
the Design-time RA component and the use of eBPFs, for the detection of any suspicious 
activities. 

3.3.1 Remote Attestation towards System Assurance Enhancement  

Remote attestation is a means of integrity verification of software running on a remote 
device. It is a mechanism typically realized as a challenge-response protocol, which enables 
a trusted party (verifier) to obtain an authentic, accurate, and timely report about the software 
state of a potentially untrusted service, application or device (prover). The verifier can then 
check whether the reported state is trustworthy, i.e., whether only known and benign 
software is loaded on the prover. 

The standard trust assumption needed for authenticity of the attestation report requires the 
existence of a trusted component that acts as a trust anchor. Thus, in the context of 
FutureTPM, the CPS itself hosting the TPM can act as the verifier4 for attesting the 
software state of the “untrusted world” provided by the host device. The question of interest 
in this model is whether the TSS that provides the necessary API for accessing the “trusted 
world” of a TPM, and runs in the untrusted world, can be protected against a wide surface of 
attacks (or, at least, sufficiently monitored so that any malicious activities can be identified) 
so that we can attest its state of trustworthiness towards performing the required 
functionalities and commands. In a more general context, this question can be translated to: 
what types of services can be placed in the untrusted world without compromising the overall 
security and privacy of the system? 

The reason behind employing remote attestation mechanisms as a means of operational 
assurance is twofold: First of all, one of the main challenges in managing device and network 
security in today’s heterogeneous and scalable infrastructures is the lack of adequate 
containment and sufficient trust when it comes to the behaviour of a remote system that 
generates and processes mission-critical and/or sensitive data. An inherent property in 
FutureTPM is the codification of trust among computing entities that potentially are 
composed of heterogeneous hardware and software components, are geographically and 
physically widely separated, and are not centrally administered or controlled. By leveraging 
the artefacts of traditional security infrastructure (such as digital signatures, certificates and 
assurance statements) coupled with advanced crypto primitives (such as run-time property-
based attestation) and building upon emerging trusted computing technologies and concepts, 
FutureTPM will convey trust evaluations and guarantees for each network entity. 

This high level of trustworthiness which will not only include integrity of system hardware and 
software but also the correctness and integrity of the generated data flows will, in turn, 
reduce the overall attack vector and allow for the more effective operation of the FutureTPM 
security framework. This will allow the secure configuration, deployment and operation of 
distributed, scalable “Systems-of-Systems” infrastructures. 

Most current remote attestation approaches are static in nature. In such schemes, the 
prover’s report is typically authenticated by means of a cryptographic signature or a MAC 

                                                
4 Or it can be that the security analyst acts as the verifier 
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computed over the verifier’s challenge and a measurement (typically, a hash) of the binary 
code to be attested. However, static attestation, though efficient, only ensures integrity of 
binaries and not of their execution. In particular, it does not capture software attacks that 
hijack the program’s control flow [71]. These attacks tamper with the state information on the 
application’s stack or heap to arbitrarily divert execution flow. State-of-the-art memory 
corruption attacks take advantage of code-reuse techniques, such as return-oriented 
programming, that dynamically generate malicious programs based on code snippets 
(gadgets) of benign code without injecting any malicious instructions [72]. As a result, the 
measurements (hashes) computed over the binaries remain unchanged and the attestation 
protocol succeeds, even though the prover is no longer trustworthy. These sophisticated 
exploitation techniques have been shown effective on many processor architectures, such as 
Intel x86 [73], SPARC [74], ARM [75], and Atmel AVR [76]. 

The problem arises because static attestation methods do not capture a program’s runtime 
behaviour (i.e., timely trustworthiness) of the underlying code. To be truly effective, an 
attestation technique should report the prover’s dynamic state (i.e., its current execution 
details to the verifier) so that it can capture control-flow attacks at the binary level of the OS 
and the SAPI level of the TSS (Figure 4).  

Current defences against such control-flow hijacking include control-low integrity [77], fine-
grained code randomization [78] and code-pointer integrity [79]. However, simply integrating 
these approaches into the FutureTPM RA framework would provide limited state information 
to the verifier. In particular, these techniques only report whether a control-flow attack 
occurred, and provide no information about the actually executed control-flow path. 
Therefore, the verifier cannot determine which (of the many possible) paths the prover 
executed. This limitation allows an attacker to undermine such defences by means of so-
called data-oriented exploits [80]. These attacks corrupt data variables to execute a valid, yet 
unauthorized, control-flow path. Hence, the need for enhanced tracing so that adequate 
information (evidence) can be collected on the execution instance of the TSS.5 

3.3.2 FutureTPM Control Flow Attestation Toolkit 

Compounding these issues and in order to cope with the ever-increasing attack surface 
targeting the dynamic execution properties of CPS, FutureTPM RA shall enable the provision 
of automated and scalable behavioural-based attestation services (through the 
FutureTPM Attestation Toolkit), reflecting the identified (and configured during run-time) 
preventive, access control, information flow and functional safety policies that will be 
enforced by the Security Policy Enforcement component (Section 3.4). To this end, the 
properties (of interest) to be attested by the deployed cyber-physical systems will vary 
depending on the type of functionality that each such device offers. A generic assurance 
technique needs to be applied capable of coping with all these different specifications. 
FutureTPM aims to overcome this challenge by having a general behavioural-based 
attestation mechanism developed based on the novel concept of control-flow 
attestation.  

Control-flow attestation [81] is one of the most important dynamic properties at the software 
layer since it captures diverse instantiations of software exploits that hijack a program's 
control flow. Such attacks tamper with state information in the program’s data memory area, 
e.g., the stack and the heap. Software bugs allow an attacker to arbitrarily alter state 
information and hijack the program flow of applications to induce malicious operations. While 
traditional attacks require the attacker to inject malicious code [82], state-of-the-art attacks 
such as return-oriented programming leverage code that is already present in the vulnerable 
application thereby bypassing modern mitigation strategies [83]. In other words, the attacker 
resembles malicious codes through a combination of already existing benign code pieces.  

                                                
5 To alleviate this problem, eBPFs are employed in the context of FutureTPM RA. 
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Figure 7: FutureTPM Control Flow Attestation Toolkit 

The general approach of control-flow attestation that will be developed as part of the 
FutureTPM Attestation Toolkit is depicted in Figure 7. It shows a cyber-physical component 
(hosting a TPM), acting as the verifier, that first receives the necessary security policies 
containing the specifics of the properties to be attested (see Section 3.3.2.1 for more details). 
Based on the interpretation of these policies, it then computes all legitimate control-flow 
paths of a software (i.e., TSS), and store its measurements in a database (Steps 1 and 2). 
To trigger the run-time attestation, as dictated by an already defined security policy, the 
verifier sends a request to the device which acts as the prover (Step 3). The prover device 
executes the software that the verifier desires to attest (Step 4) and the TPM measures the 
taken control-flow paths (Step 5). For instance, this can be achieved through a hash 
function. Finally, the attestation result is send back to the verifier for validation (Steps 6 and 
7). In the case of a failed attestation about a system’s integrity, the information might not be 
sufficient to understand the device’s behaviour. Thus, in this case, a more in-depth 
investigation of the system’s behaviour is needed to detect any cheating attempts or if any 
type of (non-previously identified) malware is resident to the system. The goal of this 
functionality is to then feed this detailed analysis to the Risk Assessment component of the 
Security Policy Enforcement mechanisms for dynamically defining new attestation policies 
against this newly identified attack vector (Section 3.4.1).  

This conceptual architecture will steer the implementation of the proof-of-concept FutureTPM 
Attestation Toolkit that will be documented in details in D4.2 for the envisioned use cases. In 
this context, further investigation will be conducted on operation specifics including: (i) the 
channel on which the attestation results will be reported, (ii) the interval and frequency of 
attestation, (iii) the enforcement of the attestation process on the prover’s device, (iv) group 
attestation of a SoS, and (v) the analysis and categorization of the trust assumptions based 
on hardware characteristics of the devices hosting the TPM (for each use case). For the 
latter, these trust assumptions will be documented in the D3.2. 
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3.3.2.1 Proof-of-Concept Architecture 

As aforementioned, in order for the FutureTPM RA framework to perform control flow 
attestation, the verifier asks for a measurement of the prover’s execution path. This 
measurement should allow the verifier to efficiently determine and verify the prover’s control-
flow path. For instance, in the context of the TSS attestation, information of interest will 
include: execution time, process name of invoked libraries, process id, time of internal 
operations, parsed TPM commands, etc. As will be described later in this section, this 
information is the output of the tracing process performed through the use of eBPFs (Section 
3.3.3 gives more details on the already investigated TSS Resource Manager). 

However, it is clearly infeasible to record and transmit every execution instruction, since this 
would: (1) result in a very long attestation response, and (2) require the verifier to walk 
through every single instruction/command. Compounding these issues and to allow fast 
verification, FutureTPM will enable property-based attestation based on the 
configuration and execution properties of the target device. The intuition behind this 
approach is that we are not interested in the attestation of the overall device execution 
(which is infeasible to achieve efficiently during run-time) but on specific execution properties 
that constitute the core functionalities of a device featuring specific services. These services 
are the core TPM functionalities that will be investigated in the context of the envisioned use 
cases, namely sealing, DAA and key creation and storage (Chapter 4).  

This is to include both behavioural properties and low-level concrete properties about 
the entity’s configuration and execution, such as the current firmware version it is running, 
the version of its configuration file or presence of certain hardware properties, integrity of 
sensor measurements, execution paths to specific memory regions, ports and network 
interfaces, etc. It also includes abstracting these low-level values to higher level security 
properties or functions. Should an entity deviate from the current security policy, the 
FutureTPM RA framework will instruct the entity to collect additional evidence that can be 
used to either prove its trustworthiness or to determine a route to meeting the security policy. 
For example, it may request the entity to collect more logging information through more 
intense tracing. While some static properties may be already defined at design-time, most of 
them will require runtime verification. Furthermore, while some of the properties can be 
evaluated for a single entity in the system and can, thus, be verified by a node-to-node 
attestation, others will require a larger SoS viewpoint and can potentially only be identified on 
a central verification entity. 

 

Figure 8: Proof-of-concept Architecture 

Figure 8 provides an overview of the proof-of-concept architecture to be implemented within 
the context of the FutureTPM Run-time RA framework and that will be presented in detail in 
the context of D4.2. This includes two main components: (1) a Runtime Tracer based on the 
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use of eBPFs and a trusted Measurement Engine to trace and measure the run-time 
control flow path leveraging the output of the execution of the eBPFs. The former can be 
realized either as: (1) a static binary analyzer that generates the program’s CFG by 
identifying basic blocks and their connection, or (2) a dynamic analyzer that produces valid 
measurements for a set of inputs by tracing execution of the target program. The eBPF-
based tracer needs to be programmed to intercept (as much as possible) all internal 
operations. One inherent assumption made is that the Measurement Engine needs to be 
trusted; basically, cannot be the altered or compromised during execution since this will allow 
an adversary to manipulate the monitoring of the control-flow path execution. This can be 
achieved through incorporating traditional static attestation techniques of securely measuring 
and keeping the hash of this engine binary signature (during boot-up) in the TPM and 
periodically verifying its correctness. 

3.3.3 Case Study: TSS Resource Manager (RM) Instrumentation 

This section gives an overview of the first instance of the implemented Runtime Tracer and 
how it operates in the context of trying to extract detailed information for two core 
components of the TSS stack: 

➢ TPM Access Broker (TAB), and  
➢ Resource Manager (RM).  

TPMs are very limited in their memory (this is mainly due to reduce their cost). This means 
objects, sessions, and sequences must be swapped in and out of the TPM as needed, much 
like a virtual memory manager swaps memory pages to and from disk drives. In both cases, the 
calling application thinks it has access to many more objects and sessions (in the TPM case) or 
much more memory (in the virtual memory case) than can actually be present at any given time. 
For a system where only, a single application sends commands to the TPM, these swapping 
operations can be performed by the application itself. However, when multiple applications 
and/or processes are accessing the TPM, two components of the TSS stack are required [84], 
namely the TAB and the RM. 

The TAB and RM were first described in D1.2 [D1.2] as layers in the TSS. A TPM command can 
use at most three entity handles and three session handles. All of these need to be in TPM 
memory for the TPM to execute the command. The job of the Resource Manager is to intercept 
the command byte stream, determine what resources need to be loaded into the TPM, swap out 
enough room to be able to load the required resources, and load the resources needed. In the 
case of objects and sequences, because they can have different handles after being reloaded 
into the TPM, the RM needs to virtualize the handles before returning them to the caller. As 
already pointed out the TAB and RM transparently isolate TPM applications and processes from 
the messiness of arbitrating multi process access to the TPM and swapping objects, sessions, 
and sequences in and out of TPM memory as needed. The TAB and RM are closely related and 
typically integrated into the same software module. Depending on system design, they may 
reside in the top layer of a TPM device-driver stack, or they may be integrated as a daemon 
process sandwiched between the TSS system API layer above and the TPM device driver 
below. The TAB’s responsibility is fairly simple: arbitrate multiple processes accessing the TPM, 
while the RM is responsible for transparently handling all the details of swapping objects, 
sessions, and sequences in and out of the TPM.   

RM provides isolation between objects & sessions created by different connections which is the 
core functionality required by applications and very recently included in the Linux kernel. If a 
transient entity is used in a command, it must be loaded into TPM memory. This means that an 
RM must parse the command byte stream before the command is sent to the TPM and take any 
actions required to ensure that all transient objects used by that command are loaded into the 
TPM. This includes all sessions referenced in the authorization area and all objects, sessions, 
and sequences whose handles are in the command’s handle area. Also, we will think the TPM 
as a black box. As already pointed out, the Linux kernel 4.12 have included in-kernel RM [66] 
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and eventually, all the required features will end up in the kernel RM and it will become the 
default [66].  

As described in the previous section, one important aspect of the FutureTPM Attestation Toolkit 
is the interdependence with the employed eBPF hooks for extracting detailed information on the 
execution path. This is one of the main goals here: to hook eBPF in the in-kernel RM, trace all 
the TPM commands and identify possible object, sequence, session leakage and proven broken 
TPM commands. We will focus on the northbound interface of the TSS stack the SAPI. The first 
release of the framework will be further analysed in D4.2. 

In this first release, we will mainly focus on the three use cases and on how to trace the all the 
needed TPM commands per use case (see Chapter 4). Currently the framework is a work in 
progress, and an initial tracing example of the TPM2_Create command achieved during run-
time. We trace the read (R) and write (W) operations from/to the kernel. Extracted information re 
provided through appropriate figures in Appendix A, where the TPM first loads the parent key 
and then creates the new one. We can see the TPM_CC_ContextLoad and TPM_CC_Create 
command codes send to the TPM with the corresponding TPM_RC_SUCCESS responses. This 
example is a part of our initial implementation for the FutureTPM Risk Assessment Framework. 
At this stage, the output provides the following information (see Table 2). 

Table 2: FutureTPM Risk Assessment output information 

 Output Information 

Kernel 
Space 

• the amount of time passed since the framework was executed in seconds 
(e.g. 2193.54) 

• the process name (e.g. tpm2_create) 
o Is limited (truncated) to 16 bytes.  

• the process id (pid) (e.g. 8094) 

• the Virtual File System (VFS) function hooked 
o VFS Open, VFS Read and VFS Write operations (e.g. O, R, W) 

• the number of bytes read (e.g. 938 of 938) 

• the time of the operation to complete in milliseconds (e.g. 37.89) 

• the type of files (e.g. CHAR DEVICE) 
o The Linux kernel considers nearly everything to be a file. That 

includes directories and devices: They're just special kinds of files 
such as: 

▪ Directory 
▪ Symbolic Link 
▪ Block Device 
▪ Character Device 
▪ Named Pipe (FIFO) 
▪ Socket 

• the device / file name (e.g. tpmrm0) 
o in our case the resource manager  

• the parsed data from kernel with eBPF  
o in ascii format and  
o in hex for non ascii characters  

User 
Space 

• the parsed TPM commands  
o output is based on the TPM specification (e.g. Command Header 

and Parsed Command)  
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3.4 Security Policy & Mitigation Enforcement Phase 

The Security Policy Enforcement (PE) mechanism will utilize the results from the risk 
assessment process in order to provide a re-active policy enforcement methodology. Defined 
policies must be expressive, deployable and enforceable within the PE tool and may be 
dynamically updated if the attack graph (produced and maintained within the Risk Management 
phase) is amended with new types of vulnerabilities. As described in the previous section, 
FutureTPM’s Run-time Risk Assessment and Assurance toolkit must also address the dynamic 
run-time properties of all deployed CPSs which cannot be modelled completely at design-time; 
taking into consideration their changing control objectives and system configurations as well as 
the changing communication and computation resources and allocation. Such run-time system 
models are also enhanced with hierarchical control layers providing different levels of assurance 
for various types of behavioural properties. 

The enforcement process will take place in both the design- and run-time phases of the 
development lifecycle. During the design time, the enforcement process, will interpret the 
security policies generated by the risk assessment and enforce them as applicable rules to be 
checked against the TPM attested values. Likewise, during the run-time risk assessment, risk 
goals alongside with actual run-time attested values are fed into the risk quantification engine in 
reverse chaining inference mode, in order to assess the actual threat levels of the deployed 
system and mitigate any deviations from the expected results. 

The Drools Expert business rule management system (BRMS) will be used to assist in the 
development of the policy enforcement mechanism. More specifically, the Drools system, is a 
rule-based system, that stores rules in order to be able to interpret input data in a useful way 
and produce verdicts on how the data should be handled. The Drools system uses an improved 
implementation of the Rete algorithm for pattern matching between the input data and the 
patterns that exist in the rules. 

3.4.1 Design Time & Run Time Enforcement 

In our case, we are going to use the Drools system in order to create enforceable mitigation 
controls both during design- and run-time. For the former, the system will propose several 
controls that will map to a subset of properties that should be attested by the end device 
in order to reach the desired level of assurance. On the other hand, during the run-time, the 
mechanism will collect data and evidence from the end device in order to calculate the actual 
run time threats. Depending on the results, there could be enough indications that may support 
a dynamic update of the design-time pre-defined security policies that will enforce new 
properties to be attested by the TPM.  

The risk assessment and enforcement process is briefly demonstrated in Figure 9 with the 
green coloured components being part of the enforcement mechanism. More specifically, during 
the design-time, the enforcement mechanism is responsible for interpreting the risk levels 
produced by the risk quantification engine and assessing if they are acceptable or not. If the risk 
level is above a certain threshold, then the model is deemed as not acceptable and the 
quantification engine is called again in backward chaining inference mode, in order to produce a 
new model that contains new controls that directly map to a sub-set of the already identified 
properties of the system. This procedure will be run iteratively until the risk levels are below the 
acceptable threshold. When this is achieved, then the minimum set of needed properties to be 
attested are selected and enforced. The ultimate target of this process is to retain a specific 
level of assurance (risk level) while, at the same time, safeguarding the privacy of the attested 
device. 

Furthermore, during the run-time of the system, there will be an extra set of actions that will 
check the attested values in order to assess the actual risk level of the device. The risk 
enforcement process is responsible for checking these attested values, collect any evidence 
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related to any found divergences and analyse this evidence in order to provide useful 
information to the risk analysis process. This process will lead to another iteration of the design-
time process that will create updated enforceable and attestable properties. 

However, the minimization of different risks may end-up in conflicting enforcement of controls. 
The enforcement mechanism will provide indications of salience in order for the quantification 
engine to end up in an optimal configuration that has to be enforced. Furthermore, the new 
“optimal” configuration, will be validated once again through the aforementioned risk 
assessment process, in order to be tested for any unchecked threats and assert that the threat 
levels of the new model are consistent with the targets of the implementation. 

 

Figure 9: Design Time & Run Time Risk Analysis 

 

3.4.2 Policy Based Access Control 

A central point of the enforcement mechanism are the policies, which should be utilized and 
managed in a proper way. Furthermore, determining what policies, and classes of policies, need 
to be expressed and enforced within our architecture is critical and will be documented in the 
context of WP3 (D3.2). It is imperative that we are able to express policies that: (i) when 
enforced, mitigate the risks of the safety and security of the critical systems we wish to 
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compose, (ii) regard properties that can be attested to by the resource constrained embedded 
components of which systems are composed, (iii) safeguard the privacy of attesting devices by 
specifying the general principles for attestation data protection, and (iv) specify the type of 
evidence to be collected from a system, in case it fails to attest some of its properties, so as to 
perform a more in-depth investigation of the system’s behavior to detect if any type of malware 
is resident to the program and data memory. The Policy Models and Specification acts as the 
interface between the outputs of the RA framework and the FutureTPM Policy Enforcement 
Toolkit.  

To that end, FutureTPM will consider the usage of Policy-Based Access Control (PBAC) 
models that mandates access to system resources by reading a pre-specified set of rules and 
policies and provides a great level of granularity over the access rights of entities to resources. 
The architecture of this system is shown in Figure 10. The two basic entities of the proposed 
system are the Policy Decision Point (PDP) and the Policy Enforcement Point (PEP) like the 
ones found on RFC 2753 Framework for Policy-based Admission Control [85] on which the 
system is based. The PDP is a remote trusted server that will perform the risk analysis process 
and generate the properties to be attested, whereas the PEP entity resides within each TPM 
and it is materialized in the form of the TPM2.0 Enhanced Authorization (EA) in combination 
with the tracing from the eBPF system. 

 

 

Figure 10: Policy Enforcement Architecture 

 

In the PBAC model the PEP is responsible for managing all local requests and forwarding them 
to the PDP. The PDP will then make a decision to grant or deny permission based on some 
predefined policies that has stored and send the final verdict for the PEP to enforce. The 
FutureTPM will attempt a slightly different approach, as the end devices will have more authority 
since they will be able to grant or deny access to resources based on installed TPM2.0 
Enhanced Authorization policies. The enhanced authorization function is based on policies that 
can check many attributes of the system in order to authorize inbound commands. The main 
metric that the TPM has in order to check the system are the PCR values that store a hash-
based system status checksum. When PCR checks or other installed checks fail, then the TPM 
will have to resort to the PDP policy server to assess the situation. The PDP policy server will 
respond with new and updated policies to be enforced, that where generated with the run-time 
process we described before. The TPMs should have enough flexibility to manage most normal 
use cases and send requests to the PDP server only on unknown scenarios and/or unexpected 
check values. 

Aside from the aforementioned special requests the policy server might receive, it should also 
receive periodical attestations from each device in order to assess its risk status. When an 
attestation arrives at the policy server, it starts a run-time risk assessment process and it 
generates a possibly updated set of policies that are translated to new attestable properties. If 
the threat level of the TPM is below the specified threshold, then the process finishes as there is 
no need for any changes, on the other hand, if the threat is not acceptable, new policies are 
dynamically generated in order to mitigate the threat. The properties that correspond to these 
policies are forwarded to the end device, where they are enforced through enhanced 
authorization functionality. 
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The server should provide an end point where a security expert can configure it. It is through 
this interface that the design-time risk analysis will be instrumented. The administrator has the 
ability to create new policies, and import models to the system, to generate updated enforceable 
properties that will be pushed to all the relevant end devices. This way the system will have a 
dynamic set of policies and will be resilient to future threats. The server could provide the 
following functionalities: 

• Attack Surface Appraisal Tool: The tool that will support the security analyst in 
developing the first valid model of the system. 

• Model Validation: A tool to automatically check the models before they are fed into the 
quantification engine. The main purpose of this tool is to make sure that the model is 
compliant with what the quantification engine expects and also find possible logical 
errors in the model. 

• Risk Quantification Engine (forward and backward chaining modes): This engine 
utilizes the Drools Expert System in order to assess the threat level of models (forward 
chaining mode) and to generate new models based on threat level goals (backward 
chaining mode). Each model contains policies to be enforced on the end devices. 

• Manual Conflict Resolution: A tool to help security analysts in resolving conflicts found 
within models. 

• Automatic Assessment of Attestations and Evidence sent from the TPM: The TPM 
will send attestations of its state periodically and also send any related collected 
evidence when appropriate. This tool will try to translate this data to help the security 
analyst understand it. 

• Tools to support the analysis of divergences from the expected attested 
properties: This tool will propose changes to mitigate any deviations found. The aim of 
this tool is to support the security analyst in creating a new model that contains updated 
policies which take into account the newfound attestation divergences and minimize the 
related threats. 
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Chapter 4 Risk Assessment of the Reference 

Scenarios 

Within the context of FutureTPM project, the Risk Assessment framework will be developed and 
tailored to both the security requirements of the whole TPM-based system (TPM and the host 
device) but also of the targeted ICT deployments through the three envisioned use cases 
providing a risk quantification methodology which is model-driven. As a starting point we will 
focus on three main TPM functionalities, one per scenario. More specifically, the three reference 
scenarios will focus on the sealing, the Direct Anonymous Attestation (DAA) and the key 
creation and storage, respectively. These identified functionalities and the TPM commands 
supporting these functionalities are the baseline to help us a) create a concrete threat model (in 
the context of WP3) and b) trace these identified commands for possible vulnerabilities. In the 
next deliverables of WP4, we will expand this risk assessment methodology based on the 
results of QR cryptographic algorithms identified and developed in the context of WP2. A list of 
the possible TPM commands per reference scenario, and the broken-down TPM commands (as 
identified in Table 16 of D1.2 (red colour)), that are of interest for the risk assessment are 
presented in Table 3 below.  

 

Table 3: TPM commands used for the risk assessment 

Command Reference Scenario 
1 – “Secure Mobile 

Wallet and 
Payments” 

Reference Scenario 
2 – “Personal 

Activity and Health 
Kit Data Tracking” 

Reference 
Scenario 3 – 

“Device 
Management” 

TPM2_ActivateCredential  √ √ 

TPM2_Certify  √ √ 

TPM2_CertifyCreation    

TPM2_Commit  √  

TPM2_Create √ √ √ 

TPM2_CreatePrimary √  √ 

TPM2_EC_Ephemeral    

TPM2_ECC_Parameters     

TPM2_ECDH_KeyGen    

TPM2_ECDH_ZGen    

TPM2_EncryptDecrypt √   

TPM2_EvictControl √  √ 

TPM2_FlushContext √  √ 
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Command Reference Scenario 
1 – “Secure Mobile 

Wallet and 
Payments” 

Reference Scenario 
2 – “Personal 

Activity and Health 
Kit Data Tracking” 

Reference 
Scenario 3 – 

“Device 
Management” 

TPM2_GetRandom √   

TPM2_Hash  √  

TPM2_Load √ √ √ 

TPM2_MakeCredential   √ 

TPM2_PCR_Extend √  √ 

TPM2_PolicyGetDigest √  √ 

TPM2_PolicyPCR √  √ 

TPM2_RSADecrypt   √ 

TPM2_RSA_Encrypt    

TPM2_Sign  √  

TPM2_StartAuthSession √  √ 

TPM2_Unseal √  √ 

TPM2_VerifySignature  √  

TPM2_ZGen_2Phase    

 

The following subsections thoroughly describe each reference scenario by identifying how the 
risk assessment methodology will be applied based on the exact needs of each use case, the 
type of TPM environment that will be tested in each scenario and all the identified TPM 
commands that will used for the implementations. 

4.1 Reference Scenario 1 – Secure Mobile Wallet and Payments 

As described in Chapter 3, the first step in a holistic risk assessment process is to identify all the 
assets. Towards this direction and to have an overall view of this scenario, we list below all the 
assets, as have already identified in D1.1: 

• Asset 1: Web Server - A REST API web server developed in Django Web Application 
Framework (Django REST). 

• Asset 2: Mobile Device - An Android device that contains the mobile wallet FreePOS 
native mobile application. 

• Asset 3: TPM - A TPM chip hosted in the mobile device.  

 
In the context of FutureTPM, we especially focus on the risk assessment of the TPM and TSS. 
To this end, we first need to identify which TPM commands are going to be used, in order to 
create a threat model and trace them and identify possible vulnerabilities. In this use case, the 
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hardware-based TPM environment will be employed, as has already been discussed in D1.1 
and we will focus on the sealing feature. In the future, we will probably update the TPM 
commands (if needed) based on the output of D2.2. The Asset 2 is an Android device with the 
mobile wallet FreePOS application that also hosts a TPM chip. The FreePOS application 
authentication is based on the OAuth 2.0 scheme. OAuth essentially allows access tokens to be 
issued to third-party clients by an authorization server, with the approval of the resource owner. 
The third party then uses the access token to access the protected resources hosted by the 
resource server. The current implementation of the FreePOS application stores two different 
tokens necessary for the authentication on the device’s main storage: 

 
• the FreePOS token that authenticates between the client and the business logic; and 
• the bearer token required to authenticate with the Payment Card Industry (PCI) 

compliant services. 
 

However, if an attacker acquires access to the device file system or memory space, the attacker 
could be able to steal these credentials, impersonate the user and compromise the overall 
payment service. 

Sealing (or local attestation) is the process when data (e.g. data blobs or cryptographic keys) 
is locked to PCRs. In the frame of secure mobile wallet and payments scenario both the 
FreePOS and the bearer tokens need to be secured. A common practice is to protect sensitive 
data with a randomly generated password, then seal that password data blob to PCR values. 
This scheme has the advantage of having an easy password less access to the key when the 
host is in a good know state. Additionally, by storing the password offline, the user has a 
recovery solution, access to the key is always granted when the password is entered manually. 
The same approach will be followed in this reference scenario. It is common to seal a data 
value to PCR values so that the data value can only be recovered if the platform has booted in a 
satisfactory way. Sealing data means that data is encrypted. Unlike binding data which is bound 
to a specific key, the data is bound to the TPM and the systems configuration when sealing 
data. In other words, data sealed by one TPM also has to be unsealed by the same TPM [84]. 
For performance reasons and due to the limitation of the size of sealed data we will follow the 
password approach and we will seal a password that will create a symmetric key to protect the 
two tokens. The work in [86] shows the performance overhead of sealing and unsealing data, as 
the input data size increases. 

4.1.1 TPM Commands 

A session is an internal TPM object that encodes an authorization value. First, we need to 
extend PCR with a value and create a trial session object with the TPM2_StartAuthSession 

command. Trial policy sessions are neutered policy sessions. They can’t authorize any actions, 
but they can be used to generate policy digests before creating entities. Then the user executes 
the command TPM2_PolicyPCR, passing in again the handle of the trial session and the PCRs 

selected, and the policy_digest is calculated. This command updates a folding hash field in the 
session object called policy_digest. The policy_digest value can be read through the 
TPM2_PolicyGetDigest. Finally, we plug the policy digest into authPolicy field and pass it to the 

TPM2_Create to seal the data blob. After the creation, the object needs to be explicitly loaded 

with the TPM2_Load. A possible alternative is to use the TPM2_CreateLoaded command to seal 

and load the object, however this is something that needs further investigation. The 
aforementioned procedure is depicted in Figure 11. 
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Figure 11: Calculating the authPolicy digest using a trial session [87] 

 
Once an object is protected with an authPolicy, it can only be used with a session that encodes 
the expected digest. We create a new session object using TPM2_StartAuthSession and not a trial 

session. A call to TPM2_PolicyPCR hashes the contents of the actual PCR values into the session 

policy_digest field. Finally, when we call TPM2_Unseal, the TPM evaluates the session's policy 

digest and compares it against the expected authPolicy digest. If they match, the sealed data is 
returned to the user, otherwise, it fails with an error. This procedure is depicted in Figure 12. 

 

 
Figure 12: Policy session or Enhanced Authorization (EA) [87] 

 

Table 4 and Table 5 below summarize the core TPM commands that will be investigated in the 
context of this reference scenario.  

 

Table 4: TPM commands for sealing a password and encrypting the tokens, in sequence  

Command Description 

TPM2_PCR_Extend Extend PCR with a value. 

TPM2_GetRandom Randomly generated password. 

TPM2_CreatePrimary Primary key necessary to create the objects. 

TPM2_StartAuthSession Create a trial session in order to calculate a policy. 

TPM2_PolicyPCR The auth policy digest of expected PCRs calculated using a 
trial session. User defined PCR values that must be present 
at the time of the unseal operation. 

TPM2_PolicyGetDigest Reads the policy digest value. 



D4.1 – Threat Modelling & Risk Assessment Methodology  

FutureTPM D4.1 Public Page 39 of 58 

Command Description 

TPM2_Create Protects the password with an auth policy. Seals that data 
blob (the password) to PCR values. Both the sensitive data 
(the password) and the policy are passed to the 
TPM2_Create. The PCR values represent the environment in 
which the object was created. 

TPM2_Load Load the created object in TPM, since it is not loaded 
automatically. 

TPM2_EvictControl Make the Transient Object into a Persistent Object. 

TPM2_Create Creates a password-protected symmetric encryption key. 

TPM2_Load Load the created object in TPM, since it is not loaded 
automatically. 

TPM2_EvictControl Make the created symmetric encryption key into a Persistent 
Object. 

TPM2_EncryptDecrypt Encrypt the two tokens with the password-protected 
symmetric key. 

TPM2_FlushContext Unload the primary. 

 

 

Table 5: TPM commands for unsealing the password and decrypting the tokens, in sequence  

Command Description 

TPM2_StartAuthSession Start a new authorization (policy) session. 

TPM2_PolicyPCR Assertion that a selected set of PCRs have a specific value. 
Hashes the contents of the actual PCR values into the 
session policy digest field. 

TPM2_Unseal TPM evaluates the session's policy digest and compares it 
against the key's expected authPolicy digest. If they match, 
the sealed data is returned to the user (the password), 
otherwise, it fails with an error. 

TPM2_FlushContext Unload the session. 

TPM2_EncryptDecrypt Decrypt the encrypted tokens with the password-protected 
symmetric key. 

TPM2_EvictControl Flush the persistent keys. 
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4.2 Reference Scenario 2 – Personal Activity and Health Kit Data 
Tracking 

The assets belonging to the Personal Activity and Healthkit Data Tracking (S5 Tracker) 
scenario, as identified in D1.1 are the following: 

• Asset 1: Personal Web Application (S5PersonalTracker or S5DataAnalysis) – A 
personal web application, residing in the computer of a user (an individual) which is used 
to push data (in the case of individuals), to the S5Tracker Analytics Engine. In view of 
the TPM commands section below, this entity is referred to as the “host”, who wishes to 
send data in an anonymous manner. 

• Asset 2: TPM - A software TPM bundle hosted in the device hosting Personal Web 
Application, which is responsible for signing the messages of the host. The TPM 
alongside with the “host” are referenced thereafter as the “platform”. 

• Asset 3: Web Server and Analytics Engine (S5Tracker Analytics Engine) - A REST API 
web server developed in Django Web Application Framework (Django REST). In view of 
the TPM commands section below, this entity is referred to as the “verifier”, who tries to 
verify that the “host” is a legitimate machine that can perform the data upload operation. 

 
As already introduced in deliverable D1.1, this reference scenario demonstrates the case of the 
software-based TPM and attempts to implement data transfer preserving anonymity and 
privacy, using the Direct Anonymous Attestation (DAA) method. In this case, the TPM 
commands which are presented in the following sub-section relate to the DAA scheme.  

Currently, the overall S5Tracker infrastructure relies on the OAuth 2.0 scheme for authentication 
between the different clients that provide or retrieve data from the system. This scheme, 
however, as used in the infrastructure, does not allow for privacy preservation and anonymity as 
necessary for the business evolution of the S5 Tracker. Data are indeed anonymised and 
obfuscated prior of being uploaded to the platform. Nonetheless, this method has two main 
drawbacks; firstly, privacy and anonymity is not preserved in case someone gains access to the 
S5Tracker Analytics Engine, and secondly, data may lose part of their value as the current 
obfuscation methods may lead to inaccurate assumptions (or to better put it, not highly accurate 
results), as the higher degree of anonymity, the more obfuscation filters are applied. 

The first issue can be tackled through the use of DAA in order to offer a higher level of trust and 
privacy to the different individuals who choose to provide their data through the S5Tracker 
implementation. More specifically, employing a DAA mechanism, will allow the verifier machine 
(e.g. the S5Tracker Analytics Engine), to accept connections (and, thus, data push/pull 
requests) from remote machines (e.g. the hosts), which either belong to individuals or to 
analysts, without being able to distinguish and identify to whom they belong to. In this case, 
stronger cryptographic mechanisms are included in the overall picture, while the authenticity of 
the host machine is also examined by the TPM, which is something that is not supported by the 
current OAuth 2.0 scheme. 

It needs to be noted that the envisaged scenario also expands to one step further, by having 
TPMs of other hosts (of the ones that will retrieve data – e.g. belonging to data analysts) to also 
examine if the verifier (S5Tracker Analytics Engine) is a trusted machine (booted in the correct 
order and being in a good state). However, this implies the insertion of new assets and methods 
into the scenario which shall follow the implementation of the DAA execution (in terms of the 
demonstrator – but are in reverse order in the logical flow, meaning that the S5PersonalTracker 
should first trust the S5Tracker Analytics Engine (through a proxy third party source), and then 
establish an anonymous connection). Nevertheless, this is not in the core focus of the scenario 
describe in this section. 
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4.2.1 TPM Commands 

As discussed in the exemplary paper of [88], a DAA signature can be used to sign an arbitrary 
message given by the host such as a nonce from a verifier and a public key created by the host. 
In this case, DAA can be used to construct anonymous authentication by combining it with TLS 
[89], which prevents the sharing of credentials under the assumption that users cannot extract 
secret keys from TPMs. 

The above-mentioned example is highly relevant to the current use case, as for the S5Tracker 
implementation the desired security properties for DAA are anonymity, unforgeability and 
non-frameability [88] of the messages (e.g. the data) to be send to the verifier. As such, in this 
DAA scheme, there are four types of parties: TPM Mi and host Hj constituting a platform, issuer 
I and verifier V, which are illustrated in the following picture. 

 

 

Figure 13: DAA Protocols [90] and the case of the S5TRacker 

 
The DAA scheme consists of three algorithms Setup, Verify and Link, and two protocols 
Join and Sign. How to implement these algorithms and protocols by using the TPM2.0 
commands are explained thoroughly in [88]. These commands are listed in the following tables. 
In our case, all client platforms (S5PersonalTracker) want to provide a cryptographic assertion 
that are genuine devices with certified characteristics. By using DAA in this use case we can 
avoid profiling user’s online activities through analysis of their signatures and thus trace back 
these host devices to real users. 

As shown in the figure above, the host platform must first receive credentials from an Issuer 
(who has already implemented the Setup algorithm (not shown in the figure) to generate the 
public and private keys). This is done by the Join protocol. This operation needs to be 
performed a single time, as then the platform is listed as valid and is allowed to become a 
member. 
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Table 6: TPM commands used in the DAA-Join Protocol  

Command Description 

TPM2_Create Creates a restricted key blob. 

TPM2_Load Load the created object in TPM, since it is not loaded 
automatically. 

TPM2_Hash Compute a hash digest with different message lengths. The 
results of the hash will be used in a signing operation that 
uses a restricted signing key and the ticket returned by this 
command can indicate that the hash is safe to sign. 

TPM2_Commit TPM Join by commit an ephemeral secret for signing. 

TPM2_Sign Host Join by generating a signature. 

TPM2_ActivateCredential Enables the association of a credential with an object in a 
way that ensures that the TPM has validated the parameters 
of the credentialed object. Allow the DAA issuer to 
authenticate the public key of a TPM. 

 

After the Join protocol, once the platform (S5 Personal Tracker) needs to send data to the S5 
Analytics, Engine, it will use the Sign protocol to sign these messages in order to be able to 
prove to the S5 Analytics Engine that it is a genuine platform, without however disclosing its 
identity. 

Table 7: TPM commands used in the DAA-Sign Protocol  

Command Description 

TPM2_Commit Performs the first part of an ECC anonymous signing 
operation. 

TPM2_Create Generate the new authentication key pair. 

TPM2_Load Load the created object in TPM, since it is not loaded 
automatically. 

TPM2_Certify Proves that an object with a specific Name is loaded in the 
TPM. 

TPM2_Sign ECC anonymous signature. The same secret should be used 
in the TPM2_Commit command. 

 

Finally, once messages are retrieved by the S5 Tracker Analytics Engine, the verifier checks the 
validity of those messages and decides if they are acceptable or not. Based on the DAA, any 
verification software on the host device can be used for this purpose. However, in the context of 
risk assessment and completeness proposes we will examine to use the TPM on host device for 
verification. Table 8 summarizes the TPM commands for verification.  
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Table 8: TPM commands used in the Verify Protocol 

Command Description 

TPM2_Commit Performs the first part of an ECC verify operation. 

TPM2_Create Generate the new authentication key pair. 

TPM2_Load Load the created object in TPM, since it is not loaded 
automatically. 

TPM2_Certify Proves that an object with a specific Name is loaded in the 
TPM. 

TPM2_VerifySignature Validates the message with the message digest passed to 
the TPM. 

 

4.3 Reference Scenario 3 – Device Management 

In the Device Management use case, there are three main assets: 

• Asset 1: network devices – routers, switches etc., which are processing network traffic 
of users; 

• Asset 2: user devices and servers – endpoints of a communication established with the 
purpose of accessing data from a repository; 

• Asset 3: NMS (Network Management System) – centralized system which is 
responsible for managing network devices in the infrastructure. 

• Asset 4: TPM - Virtual TPM.  

 

It leverages the virtual-based TPM environment to protect the communication keys that are 
used between network devices and the NMS, and to prevent that user data is processed by 
compromised devices. Currently, identification of network devices is weak, due to the fact that 
the key used to establish a secure channel is stored unprotected in the disk, and can be easily 
moved to another device (possibly controlled by an attacker).  

With FutureTPM, identification will be done with a TPM key which never leaves the TPM in plain 
text. The focus of the risk assessment will be to ensure that the key will be generated 
with safe parameters (key length, algorithm) and that it will be used only for the purpose 
of performing management tasks requested by NMS. A second aspect of the risk 
assessment is the protection of user data while in transit over the network infrastructure. At 
any point in time, it could be possible that one or multiple network devices become corrupted 
and may try to steal or modify user data. It will be the responsibility of the NMS to determine the 
risk associated with using a specific device, depending on the device integrity status, and to 
decide whether or not the traffic should be diverted to a more trustworthy device. The last 
aspect of risk assessment to consider is the protection of information stored in the NMS that 
will affect the behaviour of the whole infrastructure. The NMS will be responsible to manage 
device credentials (e.g. TPM Endorsement Credential), and sign certificates that each device 
will provide to the NMS during the establishment of a trusted channel; the NMS will also be 
responsible of managing whitelists in order to determine whether the TPM key generated by the 
devices is associated to a good software configuration; lastly, the NMS will also enforce the 
policies defined by the network administrator by instructing the network devices to divert the 
traffic if some of them become compromised. Although it could be possible to protect this 



D4.1 – Threat Modelling & Risk Assessment Methodology  

FutureTPM D4.1 Public Page 44 of 58 

sensitive information by adding a TPM to the NMS, the focus of the project will be to protect the 
TPM keys in network devices. 

4.3.1 TPM Commands 

One fundamental property of the TPM is that it is tamper resistant. Generating a key inside a 
TPM ensures that nobody, not even an attacker with physical access to the device, will be able 
to extract that key. A key can only be used by invoking a method exposed by the TPM. In the 
context of this use case, a TPM key will be used to establish a trusted channel with the NMS, so 
that the NMS can have the proof that the communication originated from a specific device (the 
proof can be added for example in a X.509 certificate extension defined by the TCG which is 
called Subject Key Attestation Evidence or SKAE). The second fundamental property of the 
TPM is that it can securely store the current system state in its Platform Configuration Registers 
(PCRs) and it will allow certain crypto operations to be performed with TPM keys only if the 
current state is the same as when the TPM key was created. For this use case, network device 
will implicitly prove to the NMS that a device is in the expected state simply by performing the 
trusted channel handshake with the NMS. If the state is different, the device TPM will not 
perform the crypto operations and the NMS can conclude that the device is in a different state (it 
could have been compromised).  

The device management demonstrator will use TPM commands similar to those listed in Table 
4 and Table 5, Table 9 and for the Secure Mobile Wallet demonstrator, with a few additions. 
The complete list of TPM commands used by the device management demonstrator is reported 
below. 

Table 9: TPM commands used during setup phase, in sequence 

Command Description 

TPM2_CreatePrimary Create the primary key. 

TPM2_Create Create an Attestation Key (AK). 

TPM2_MakeCredential Create an activation credential (symmetric key to encrypt AK 
certificate). 

TPM2_ActivateCredential Retrieve an activation credential (symmetric key to decrypt 
AK certificate). 

TPM2_StartAuthSession Create a trial session in order to calculate a policy. 

TPM2_PolicyPCR Update the policy digest with good PCR values. 

TPM2_PolicyGetDigest Reads the policy digest value. 

TPM2_Create Generate a new TLS key to establish a trusted channel and 
associated it to the policy returned by 
TPM2_PolicyGetDigest. 

TPM2_Load Load the AK and TLS keys. 

TPM2_Certify Certify the TLS key with the created AK. 

TPM2_Create Generate random data to be used as HMAC key and 
associated it to the policy returned by 
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Command Description 

TPM2_PolicyGetDigest. 

TPM2_EvictControl Make the primary key persistent to improve performance. 

TPM2_FlushContext Unload the primary, AK and TLS keys. 

 

Table 10: TPM commands used during runtime, in sequence 

Command Description 

TPM2_PCR_Extend Extend PCR with digests of loaded software. 

TPM2_StartAuthSession Start a new authorization (policy) session. 

TPM2_PolicyPCR Update the policy digest with current PCR values. 

TPM2_Load Load the HMAC key, since it is not loaded automatically. 

TPM2_Unseal TPM evaluates the session's policy digest and compares it 
against the key's expected authPolicy digest. If they match, 
the sealed data is returned to the user, otherwise, it fails with 
an error. 

TPM2_Load Load the TLS key, since it is not loaded automatically. 

TPM2_RSADecrypt Perform a crypto operation during the establishment of the 
trusted channel. 

TPM2_FlushContext Unload the TLS key. 
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Chapter 5 Summary and Conclusions 

This final section will act as a synopsis of this deliverable and will summarize its findings. The 
scope of this deliverable was to provide a detailed description of the Risk Management phase and 
more particularly the threat modelling and the risk assessment methodologies that will be 
developed within the project. FutureTPM Risk Assessment methodology aims to provide 
implementation guidance and deals with the identification of threats, determines their probability of 
occurrence, and their resulting impact. The assets of interest are the devices (e.g., processors, 
mobile devices, ASICS, etc.), hosting the TPM, the TPM itself and the TSS that provides all the 
underlying communication interfaces with the trusted hardware. 

To reflect FutureTPM’s Risk Assessment framework work and data flow and how provided 
assurance services are engrained at all stages of the development life cycle, this deliverable 
documents the envisaged architecture that consists of four (highly interdependent) phases, namely 
the Design-time Risk Assessment, the Policy Modelling and Specification, the Run-time Risk 
Assessment and the Dynamic Update of the Policy Models. This will serve as the guide for the 
development of the FutureTPM RA framework to be presented in the subsequent deliverables of 
WP4.  

The Risk Assessment phase will be executed during both the design- and run-time, to address 
initially unknown threats. During the design-time, the risk assessment will be applied by security 
experts in order to provide a cartography of their TPM supported/enabled applications and services 
ecosystem. During the run-time, it will be applied towards the serialization of all information that is 
required to perform the re-calculation of relevant risks that may lead to a (possible) dynamic 
update of predefined security policies. 

As the name suggests, the Policy Modelling and Specification phase contains all tasks related 
to the specifications of the FutureTPM composition control architecture which implements a policy-
based approach for allowing proofs of a system’s integrity based on the identified CPS 
configuration and execution properties to be attested. Defined policies must be expressive, 
deployable, and enforceable and may be dynamically updated if the attack graph (produced and 
maintained within the Risk Management phase) is amended with new types of vulnerabilities. 
Within the context of this phase, security properties formal verification and proofs of FutureTPM 
architecture (at design-time) are also performed. However, FutureTPM’s run-time assurance 
framework must also address the dynamic runtime properties of all deployed CPSs which cannot 
be modelled completely at design-time; taking into consideration their changing control objectives 
and system configurations as well as the changing communication and computation resources and 
allocation. 

In this context, we also have the Policy Enforcement phase where the defined access control 
policies and policy sets are made available to the deployed CPSs which can, then, start enforcing 
them and make decisions based upon the results of the remote property-based attestation 
processes. Remote property-based attestation denotes the attestation of high-level CPS 
configuration and execution properties as identified in the design-time risk assessment phase; i.e., 
current firmware version, presence of certain hardware properties, integrity of measurements, 
integrity of TSS software and control flow integrity, etc. Attestation will focus on the design space 
between the two extremes of software-only and hardware-based attestation to provide features 
such as “secure boot, tamper protection, isolation of safety-critical systems, and behavioural 
monitoring” against sets of vulnerabilities and risks as modelled in the Risk Management phase. 

Another distinct feature of this phase is the provision of functionalities regarding modelling policy 

dynamics and dynamic change of policies. Considering the complexity of TPM-based 
systems where the deployed software may be updated to a more sophisticated version with new 
capabilities, the threat model has to take into consideration, e.g., zero day attacks that were not 
evaluated in the RA phase at design-time. On top of that, a decision about a system’s integrity 
might not be sufficient to understand a system’s behaviour when the attestation output is negative. 
In this case, another stream of assurance functionality is needed which entails a more in-depth 
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investigation to detect any cheating attempts or if any type of malware is resident to the system’s 

program and data memory. This is the goal of the Run-time Risk Assessment phase: based 
on collected evidence regarding the behaviour of a system, runtime verification mechanisms are 
applied for monitoring and verifying both the execution behaviour of a single system as well as the 
communication patterns of a set of attesting systems against a set of specific requirements as 

identified in the design phase. 

Overall, full transparency of all cyber-physical systems and how they operate in this complex 
environment, in terms of operational assurance, verification and security policy enforcement, 
mandates the continuous execution of the above described phases and functionalities throughout 
the whole life cycle of a TPM-based deployed ecosystem. This means that the FutureTPM’s RA 
framework internal technical components run in parallel exchanging the necessary information for 
triggering actions, within the previously described assurance and risk management phases, in 
order to achieve its overall goal of providing “security-by-design” and during operation. Given the 
overall description of FutureTPM’s RA framework conceptual architecture and the 
dependencies and interactions between its internal components, the detailed 
documentation and implementation of each one of these integral components will follow in 
the context of WP4. 

Last but not least, this deliverable highlights the possible TPM commands that are going to be 
investigated per reference scenario, in order to detail how the risk assessment methodology will be 
applied based on the exact needs of each scenario. As a starting point for the modelling and 
tracing, the identified commands will be used, with a possible expansion based on the output of the 
implementation of the QR crypto algorithms in the various TPM environments (WP5).   
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Chapter 6 List of Abbreviations 

Abbreviation Translation 

APT Advanced Persistent Threat 

BCC BPF Compiler Collection 

BRMS Business Rule Management System 

CAPEC Common Attack Pattern Enumeration and Classification 

CFI Control Flow Integrity 

CIA Confidentiality, Integrity and Availability 

CM Countermeasure 

COBIT Control Objectives for Information and Related Technologies 

COTS Commercial of the Shelf 

CPE Common Platform Enumeration 

CPS Cyber Physical Systems 

CRRA Cyber Risk Remediation Analysis 

CTSA Cyber Threat Susceptibility Assessment 

CVE Common Vulnerability and Exposure 

CVSS Common Vulnerability Scoring System 

DAA Direct Anonymous Attestation 

EA Enhanced Authorization 

eBPF Extended Berkeley Packet Filter 

ESE Enterprise Systems Engineering 

FAIR Factor Analysis of Information Risk 

GCC GNU Compiler Collection 

ICT Information and Communications Technology 

IEC International Electrotechnical Commission 

ISMS Information Security Management System 

ISO International Organization for Standardization 
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Abbreviation Translation 

JIT Just-in-Time 

LEF Loss Event Frequency 

MAE Mission Assurance Engineering 

OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation 

PBAC Policy-Based Access Control 

PCI Payment Card Industry 

PDP Policy Decision Point 

PEP Policy Enforcement Point 

PID Process ID 

PLM Probable Loss Magnitude 

QR Quantum-Resistant 

RA Risk Assessment 

RM Resource Manager 

RMF Risk Management Framework 

SDLC System Development Life Cycle 

SEI Software Engineering Institute 

TAB TPM Access Broker 

TARA Threat Assessment & Remediation Analysis 

TEF Threat Event Frequency 

TPM Trusted Platform Module 

TTP Tactics, Techniques, and Procedure 

VFS Virtual File System 

WP Work Package 
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Appendix A 

 

Figure 14: Trace Write TPM2_create TPM command | TPM_CC_ContextLoad 

 

 

Figure 15: Trace Read TPM2_create TPM command | TPM_RC_SUCCESS 
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Figure 16: Trace Write TPM2_create TPM command | TPM_CC_Create 
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Figure 17: Trace Read TPM2_create TPM command | TPM_RC_SUCCESS 

 


