
 

 

 

 

 

 
 

D5.1 
First version of implementation 

 

Project number: 779391 

Project acronym: FutureTPM 

Project title: 
Future Proofing the Connected World: A Quantum-Resistant 

Trusted Platform Module 

Start date of the project: 1st January, 2018 

Duration:  36 months 

Programme:  H2020-DS-LEIT-2017 

 

Deliverable type: DEM 

Deliverable reference number: DS-06-779391 / D5.1/ DRAFT | 1.0 

Work package contributing to 

the deliverable: 

WP 5 

Due date:  June 2019 – M18 

Actual submission date: 1st July, 2019 

 

Responsible organisation: RHUL 

Editor: Daniele Sgandurra (RHUL) 

Dissemination level: PU 

Revision: 1.0 
 

  
 
The project FutureTPM has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 779391. 

 

 

Abstract: 
This deliverable will report the status of the first version of 

SW-based QR TSS and QR TPM. 

Keywords: 

Software TPM, Implementation, TSS 

 

 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page I 

 

Editor 

Daniele Sgandurra (RHUL) 

Christian Hanser (Infineon) 

 

 

Contributors (ordered according to beneficiary numbers) 

Luís Fiolhais, Paulo Martins and Leonel Sousa (INESC-ID) 

 

Internal Reviewers 

Christian Hanser (Infineon), Roberto Sassu (Huawei) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer 

The information in this document is provided “as is”, and no guarantee or warranty is given that 
the information is fit for any particular purpose. The content of this document reflects only the 
author`s view – the European Commission is not responsible for any use that may be made of 
the information it contains. The users use the information at their sole risk and liability. 

  



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page II 

Executive Summary 

The goal of FutureTPM is to design a Quantum-Resistant (QR) Trusted Platform Module (TPM) 
by designing and developing QR algorithms suitable for inclusion in a TPM. The algorithm 
design will be accompanied with implementation and performance evaluation, namely 
hardware, software and virtualization environments. Use cases in online banking, activity 
tracking and device management will provide environments and applications to validate the 
FutureTPM framework. This deliverable reports the status of the design and implementation of 
the first version of the software-based quantum-resistant TPM, called Software TPM. In 
addition, we describe how the TPM Software Stack (TSS) has been updated to support the new 
QR cryptographic primitives. The deliverable also provides indication on how to extend both the 
software TPM and TSS with further algorithms. 
  



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page III 

 

Table of Contents 
 

Chapter 1 Introduction .............................................................................................. 1 

1.1 Scope and Purpose .............................................................................................. 1 

1.2 Relation to Other WPs and Deliverables ............................................................... 3 

1.3 Deliverable Structure ............................................................................................ 3 

Chapter 2 Key Performance Indicators .................................................................... 4 

Chapter 3 Software TPM Overview........................................................................... 6 

3.1 Software TPM ....................................................................................................... 6 

3.2 Basic Operations of the Software TPM ................................................................. 6 

3.2.1 New Endpoints .................................................................................................. 6 

3.2.2 How to Add New algorithms .............................................................................. 8 

3.3 TPM Software Stack (TSS) ................................................................................. 11 

3.3.1 New Commands .............................................................................................. 12 

3.3.2 How to Add New algorithms ............................................................................ 14 

3.4 Using the Software TPM ..................................................................................... 14 

3.4.1 Example .......................................................................................................... 15 

3.5 Open Issues ........................................................................................................ 18 

Chapter 4 Conclusions ............................................................................................ 20 

List of Abbreviations ................................................................................................... 21 

Bibliography ................................................................................................................. 22 

List of Figures 

Figure 1: Types of TPM according to TCG ("Trusted Platform Module 2.0 ................................. 2 

Figure 2: Overview of Software TPM .......................................................................................... 3 

Figure 3: Communication Diagram between Alice and Bob ...................................................... 15 

Figure 4: Software TPM Workflow of Commands ..................................................................... 18 

List of Tables 
Table 1: Key Performance Indicators for Software TPM ............................................................. 5 

file:///C:/Ursula/SVN/SVN-FutureTPM/03-WPs/WP5/D5.1/D5.1-FutureTPM-1st_version_of_implementation-PU-M18_final.docx%23_Toc12873056


D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 1 of 22 

Chapter 1 Introduction 

In this Chapter we recall the scope and purpose of this deliverable, we describe its relationship 
with other work packages (WPs) and deliverables, and finally we outline the deliverable’s 
structure. 

 

1.1 Scope and Purpose 

Research on quantum computers has drawn attention from governments and industry. If, as 
predicted, a large-scale quantum computer becomes a reality within the next 15 years, existing 
public-key algorithms will be open to attack. FutureTPM is aimed at designing and developing a 
Quantum-Resistant (QR) Trusted Platform Module (TPM). FutureTPM main goal is to enable a 
smooth transition from current TPM environments, based on existing widely used and 
standardised cryptographic techniques, to systems providing enhanced security through QR 
cryptographic functions, including secure authentication, encryption and signing functions. 

According to TPM 2.0 specifications, there are five different types of TPM 2.0 implementations: 

• Discrete TPMs: they are dedicated chips that implement TPM functionality in their own 
tamper-resistant semiconductor package. Theoretically, they are the most secure type of 
TPM as, for instance, their packages are required to implement some form of tamper 
resistance. 

• Integrated TPMs: they are included as part of another chip. While they use hardware 
that resists software bugs, they are not required to implement tamper resistance.  

• Firmware TPMs: these are software-only solutions that run in a CPU's trusted execution 
environment. Since these TPMs are entirely software solutions that run in trusted 
execution environments, these TPMs are more likely to be vulnerable to software bugs.  

• Software TPMs: they are software emulators of TPMs that depend on the environment 
that they run in. Typically, they offer the same level of security of their execution 
environment, and so are vulnerable software bugs, therefore they are typically used for 
development purposes. 

• Virtual TPMs: they are meant to be provided by a hypervisor to allow virtual machines to 
share a single instance of a TPM. They rely on the hypervisor to provide them with an 
isolated execution environment that is hidden from the software running inside virtual 
machines to secure their code from the software in the virtual machines.  

Figure 1 shows the security level, security features, relative cost and typical applications of the 
different types of TPMs. 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 2 of 22 

 

Figure 1: Types of TPM according to TCG ("Trusted Platform Module 2.01 

 

FutureTPM is investigating technologies for a new generation of TPM-based solutions, including 
hardware, software and virtualization environments, by incorporating robust and physically-
secured QR cryptographic primitives. In addition, FutureTPM aims to prove and validate the 
applicability, usability, effectiveness and value of the QR TPM concepts, models and algorithms 
in real-world settings, including industry and e-commerce, which may be affected by the advent 
of quantum computing. 

In this deliverable we will describe the current implementation of the Software TPM. A high-level 
view of the current architecture of the Software TPM is illustrated in Figure 2. The components 
in yellow colour are inherited from the IBM Software TPM 2.0 implementation, the light blue 
components are the new components implementing the QR functionalities, and the green 
components shows those components that have been updated to also work in the new QR 
environments. The new and updated functionalities will be described in more detail in Chapter 
3. 

 

                                                
1 A Brief Introduction", Available at: https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-
A-Brief-Introduction.pdf) 

https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf


D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 3 of 22 

 

Figure 2: Overview of Software TPM 

 

1.2 Relation to Other WPs and Deliverables 

Within WP5, Task 5.1 (Implementation and Evaluation of Software QR TPM) is devoted to the 
design, implementation and evaluation of the QR algorithms which were selected in WP2 in a 
software TPM emulator. This task is essential for developing the application layer of the TPM. 
The main output of this task is this deliverable (D5.1). In addition, the application layer code will 
be reused by the virtualized TPM (Task 5.2) and the hardware TPM (Task 5.3). This task is 
dependent on WP2, where the cryptographic algorithms have been defined. Furthermore, Task 
5.4 deals with the development of a Trusted Software Stack (TSS) API that covers the newly 
introduced QR cryptographic algorithms. The outputs of these future activities will be also 
documented in D5.2, D5.3 and D5.4. 

1.3 Deliverable Structure 

This deliverable is structured as follows: 

• Chapter 2 provides the Key Performance Indicators (KPI) for the Software, Virtual and 
Hardware TPM. 

• Chapter 3 reports on the design of the first version of the quantum-resistant software-
based Trusted Platform Module (TPM). We also provide additional pointers on how the 
software-based TPM may be used and extended with further algorithms. Moreover, we 
describe the changes to the TPM Software Stack (TSS) necessary to support the new 
cryptographic primitives, and we explain how the TSS may be further extended. 

• Chapter 4 concludes the deliverable. 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 4 of 22 

Chapter 2 Key Performance Indicators 

One of the metrics to measure the success of FutureTPM is the extent to which it can replace 
the current TPM standard, whilst providing quantum-resistance. While metrics such as memory 
requirements can be readily measured from cryptographic specifications, like those featured on 
NIST’s post-quantum standardization effort, other metrics require concrete implementation. In 
the following, we identify the key performance indicators that can be specifically obtained from 
the Software, Virtual and Hardware TPMs. These metrics will enable us to perform an 
evaluation of: i) the impact quantum-resistance has on the execution time of cryptographic 
primitives; ii) the ability of the FutureTPM specification to remain secure upon the possibility of 
successful cryptanalysis of one of its primitives; iii) the ability to support different security levels 
according to the targeted application; and iv) the extensibility of implementations. There metrics 
are discussed in more detail in the following. 

i) Performance metrics will measure the impact quantum-resistance has on key-exchange 
mechanisms, public-key encryption schemes, signature schemes, and direct anonymous 
attestation. For each of the following primitives, a TPM command, or combination of, which is 
representative of that operation, will be systematically chosen for each implementation and its 
execution time will be measured: 

• Key exchange mechanism: 
o Key generation 
o Key encapsulation 
o Key decapsulation 

• Public-key encryption schemes: 
o Key generation 
o Encryption 
o Decryption 

• Signature schemes: 
o Key generation 
o Signature generation 
o Signature verification 

• Direct anonymous attestation: 
o Opening 
o Key generation 
o Signature generation 

Moreover, as far as possible, reference execution times will be given for each operation for their 
counterparts standardized in TPM 2.0. 

ii) Since FutureTPM implementations will include recent cryptographic schemes, which have not 
yet undergone intensive scrutiny, there is a non-negligible risk of cryptanalysis developments 
towards some of them. A second metric will measure the number of different supported security 
assumptions for each of the following schemes: 

• Key exchange mechanism 

• Public-key encryption scheme 

• Signature scheme 

• Direct anonymous attestation 

A qualitative evaluation of how the schemes supported on different security assumptions may 
share computational resources and thus reduce their combined implementation costs will also 
be provided. We define in Table 1 a target value for the aggregate number of supported 
schemes for each TPM implementation medium. 

iii) As previously recalled, for each scheme, we will provide the number of supported 
cryptographic parameters, by measuring the adaptability of FutureTPM implementations to 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 5 of 22 

applications with different security and performance requirements. We expect all TPM 
implementations to support multiple parameters, as described in Table 1.  

iv) A qualitative evaluation of the level of extensibility of implementations will be given, 
describing, for instance, the coverage level of regression tests, to ensure that future 
functionalities will not break currently implemented security primitives. All the developed 
systems will be made adequately extensible, as foreseen in Table 1. 

 

KPIs/ 

Acceptance Criteria 

Software-based  

TPM 

 

Hardware-based  

TPM 

Virtual-based 

 TPM 

Functionalities 

(number of algorithms 
implemented/supported) 

 

>=5 >= 32 >= 53 

 

Support for cryptographic 
parameters (algorithm-agile 
parameters) 

Yes Yes4 Yes5 

Testing 

(usability, test cases, regression 
testing) 

Yes Yes Yes 

Table 1: Key Performance Indicators for Software TPM 

                                                
2 BLISS, NewHope and qTesla. 
3 The Virtual TPM will use the Software TPM algorithms with the added support for virtual environments. 
4 Hardware PM will implement NewHope 512 and qTesla2048. 
5 The Virtual TPM will use the Software TPM algorithms with the added support for virtual environments. 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 6 of 22 

Chapter 3 Software TPM Overview 

This chapter reports on the design of the first version of the quantum-resistant software-based 
Trusted Platform Module (TPM), Software TPM, giving pointers on how it may be used and 
extended with further algorithms. Moreover, the changes to the TPM Software Stack (TSS) 
necessary to support the new cryptographic primitives are described, and it is explained how 
the TSS may be further extended in the future. 

3.1 Software TPM 

The herein described Software TPM is a fork of the open-source implementation of TPM 2.0 
produced by IBM and Microsoft with added support for new quantum resistant (QR) algorithms 
and hashes, namely Kyber (Bos, et al., 2018), Dilithium (Ducas, et al., 2019), Lattice-based 
Direct Anonymous Attestation (LDAA) (El Kassem, et al., 2019), and SHA3 (NIST, 2015). 

3.2 Basic Operations of the Software TPM 

The communication with the Software TPM requires the usage of sockets to establish a TCP 
connection between a client and the server. Through this connection, the Software TPM mimics 
the physical TPM command transmission interface (TCTI) layer found in the physical TPM. 

After receiving data, the Software TPM executes the requested command by validating the 
session, its internal state, the command code, and its key handles. Then the remaining data is 
forwarded to the Command Dispatcher where the unmarshalling functions are selected from the 
decoded command code and its data is unmarshalled. Finally, the command is executed. If 
there is any data to be returned to the client, the same procedure is applied in reverse order. 
The marshalling functions are obtained from the command code, the data is marshalled and 
then sent back to the client through the same TCP connection. 

3.2.1 New Endpoints 

To support the new QR algorithms, the following endpoints were added to the Software TPM: 

• Kyber: 

◦ Key Generation: to generate a Kyber key one must use the standardized 
TPM2_Create, TPM2_CreateLoaded and TPM2_CreatePrimary functions, already 
provided by the TPM2 specification, with the TPM_ALG_KYBER value and the 
corresponding security mode k. 

◦ TPM2_KYBER_Enc encapsulates a shared secret, with the following parameters: 

▪ Input: key_handle for a loaded key handle to a Kyber public key. 

▪ Output: a shared secret and a ciphertext generated by the TPM. 

◦ TPM2_KYBER_Dec decapsulates a shared secret, with the following parameters: 

▪ Input: key_handle must reference a private loaded Kyber key and a ciphertext 
generated by TPM2_KYBER_Enc.  

▪ Output: the TPM will decapsulate the cipher object to obtain the shared_secret. 

◦ TPM2_KYBER_Encrypt encrypts a user-provided plaintext, with the following 
parameters: 

▪ Input: key_handle for a loaded key handle to a Kyber public key and the user’s 
plaintext message (the message has a maximum size of 
MAX_DIGEST_BUFFER). 

▪ Output: a ciphertext generated by the TPM. 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 7 of 22 

◦ TPM2_KYBER_Decrypt decrypts a ciphertext generated by TPM2_KYBER_Encrypt, 
with the following parameters: 

▪ Input: key_handle must reference a loaded private Kyber key and a ciphertext 
generated by TPM2_KYBER_Encrypt.  

▪ Output: the TPM will decrypt the cipher object to obtain the original plaintext 
message. 

• Dilithium: 

◦ Key Generation: to generate a Dilithium key one must use the standardized 
TPM2_Create, TPM2_CreateLoaded and TPM2_CreatePrimary functions, already 
provided by the TPM2 specification, with the TPM_ALG_DILITHIUM value and the 
corresponding security mode mode. 

◦ Signing: to sign a digest using the modified SW QR TPM the user must use the 
following functions: TPM2_Sign and TPM2_Quote. 

◦ Signature Verification: to verify a Dilithium signature the user must use the 
TPM2_VerifySignature function. 

• LDAA: 

◦ The variable notation used to describe the LDAA inputs and outputs is the same as 
in (El Kassem, et al., 2019). 

◦ Key Generation: to generate an LDAA key one must use the standardized 
TPM2_Create, TPM2_CreateLoaded and TPM2_CreatePrimary functions, already 
provided by the TPM2 specification, with the TPM_ALG_LDAA value and the 
corresponding security parameter mode. 

◦ TPM2_LDAA_Join performs a join request, with the following parameters: 

▪ Input: a reference to a loaded LDAA private and public entity (key_handle), the 
session ID (sid), the unique submission identifier (jsid), and the Issuer’s nonce 
(nonce) and basename (bsnI). 

▪ Output: the session link token (nym) and the proof of knowledge (𝜋). 

◦ TPM2_LDAA_SignProceed allows the TPM to proceed with the calculation of the 
commitments, with the following parameters: 

▪ Input: a reference to a loaded LDAA private entity (key_handle) and the session 
identifier (sid). 

◦ TPM2_LDAA_CommitTokenLink initiates the LDAA sign commit procedure, with the 
following parameters: 

▪ Input: a reference to a loaded LDAA private entity (key_handle), the session 
identifier (sid), and the Verifier’s basename (bsn). 

▪ Output: the commit token link (nym), the error polynomial (pe), and the Verifier’s 
basename polynomial (pbsn). 

◦ The three functions TPM2_SignCommit [1,2,3] process the commits for the session, 
with the following parameters: 

▪ Input: a reference to a loaded LDAA private entity (key_handle), the session 
identifier (sid), the unique subsession identifier (ssid), the basename (bsn), the 
selector for the sign states (sign_state), the error polynomial and the basename 
polynomial generated in TPM2_LDAA_CommitTokenLink (pe, pbsn), and the seed 
to generate the shared polynomial matrix in the NTT domain between the Host 
and the TPM (seed). Additionally, the TPM2_SignCommit1 function requires the 
transposed Issuer’s Polynomial Matrix issuer_at_ntt. 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 8 of 22 

The reasoning behind re-generating the polynomial matrix shared between the 
TPM and the Host is that the matrix is too big to be transferred between the Host 
and TPM for each sign commit. Using maximum security parameters, the size of 
the matrix is in the order of GBs. As such, it was selected to generate smaller 
portions of the matrix inside the TPM only when necessary through a fixed seed 
value provided by the Host. 

▪ Output: the session identifier (sid), the unique subsession identifier (ssid), and 
the resulting commitment commit. 

◦ TPM2_LDAA_SignProof replies to the challenges issued by the Host, with the 
following parameters: 

▪ Input: a reference to a loaded LDAA private entity (key_handle), the session 
identifier (sid), the selector for the sign states (sign_state_sel), the generated 
challenge by the host (sign_state_type), the signature states generated in the 
host (R1, R2). 

▪ Output: the resulting sign states (R1, R2), and part of the secret values 
generated by the TPM2_LDAA_SignCommit commands (sign_group). 

• SHA3/SHAKE: 

◦ The addition of the new SHA3s and SHAKEs hashes did not result in new endpoints. 
Their addition extended the following default endpoints: TPM2_Certify, 
TPM2_Create, TPM2_CreatePrimary, TPM2_Hash, TPM2_LoadExternal, 
TPM2_Sign, TPM2_VerifySignature, TPM2_EventSequenceComplete, 
TPM2_GetCommandAuditDigest, TPM2_GetSessionAuditDigest, TPM2_GetTime, 
TPM2_HashSequenceStart, TPM2_HMAC, TPM2_HMAC_Start, 
TPM2_LoadExternal, TPM2_Import, TPM2_NV_Certify, TPM2_PCR_Allocate, 
TPM2_PCR_Event, TPM2_PCR_Extend, TPM2_PCR_Read, TPM2_PolicyPCR, 
TPM2_PolicySigned, TPM2_Quote, and TPM2_StartAuthSession. 

3.2.2 How to Add New algorithms 

The above-described software TPM may be extended in the future to support new cryptographic 
primitives, potentiating the diversification of security assumptions in a post-quantum world. The 
addition of a new algorithm to the Software TPM is a multi-step process with wide modifications 
to the codebase. Therefore, this subsection focuses solely on describing the addition of 
asymmetric algorithms used in encryption/decryption, key encapsulation/decapsulation, and 
signing and signature verification, since these are the most relevant primitives to achieve 
quantum-resistance. Furthermore, for simplicity’s sake, this subsection defines a single example 
algorithm “Empire” which can perform all the operations.  

The first step to add an algorithm to the Software TPM is to define it in Implementation.h and 
attribute an ID to it: 

 

The ID chosen for this example was selected as the smallest unused ID of the TCG registry  
(TCG, 2018) Since the Empire algorithm supports encapsulation, decapsulation, encryption and 
decryption, these operations need to be also defined and associated with their respective IDs. 

#define ALG_EMPIRE_VALUE           0x002F 

#define TPM_ALG_EMPIRE             (TPM_ALG_ID)(ALG_EMPIRE_VALUE) 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 9 of 22 

 

Again, the IDs chosen for each operation and type were selected as the smallest unused IDs.     
Finally, the TPM_CC_LAST variable is updated to reflect the addition of the new commands. In 
this case, its new definition is 0x1A8. The new command entries are also added to the 
LIBRARY_COMMAND_ARRAY_SIZE definition. 

The s_algorithms array in AlgorithmCap.c is updated so that the TPM2_GetCapability returns 
the correct information about the supported algorithms in the TPM. 

CryptCreateObject is the global function where any key creation is performed. To create new 
Empire keys CryptCreateObject in CryptUtil.c is updated with a new case entry for the Empire 
algorithm that calls the concrete Empire key creation function. Then, in the same file, Empire 
entries are added to the CryptStartup, CryptInit, CryptSecretEncrypt, CryptSecretDecrypt, 
CryptIsAsymAlgorithm, CryptIsAsymSignScheme and CryptAsymDecryptScheme functions. 
The CryptStartup and CryptInit functions can be safely ignored if the new algorithm does not 
perform any operation at startup or initialization of the TPM. For the signature portion, a new 
Empire case entry needs to be added to the CryptSign and CryptValidateSignature functions. 
Similarly, to key creation, both functions are called when using the default TPM2_Sign and 
TPM2_VerifySignature commands, respectively. Any private code which is added in this step 
must be exported to InternalRoutines.h. 

The new public data types for Empire reside in TpmTypes.h. Already defined datatypes may be 
used but it is strongly recommended that at least a different name be used in order to improve 
code readability. In Empire’s case the new definitions are: 

The respective new types are added to the following unions: TPMU_SIG_SCHEME, 
TPMU_ASYM_SCHEME, TPMU_SIGNATURE, TPMU_PUBLIC_ID, TPMU_PUBLIC_PARMS, 
TPMU_SENSITIVE_COMPOSITE, and TPMU_ENCRYPTED_SECRET. Then, union 
marshalling and unmarshalling functions are created and/or updated in Marshal.c and 
Unmarshal.c. If Empire only supported signing and verification, this would be the final step. 

The new Empire encapsulation, decapsulation, encryption and decryption commands which 
were defined earlier can now be implemented. First the interfaces are defined for each 
command, e.g., for the Empire_Encrypt command the input, output, and its function interfaces 
can be defined in the file Empire_Encrypt_fp.h as: 

 

 

 

 

#define CC_EMPIRE_Enc               (CC_YES && ALG_EMPIRE) 

#define CC_EMPIRE_Dec               (CC_YES && ALG_EMPIRE) 

#define CC_EMPIRE_Encrypt           (CC_YES && ALG_EMPIRE) 

#define CC_EMPIRE_Decrypt           (CC_YES && ALG_EMPIRE) 

#define TPM_CC_EMPIRE_Enc           (TPM_CC)(0x000001A5) 

#define TPM_CC_EMPIRE_Dec           (TPM_CC)(0x000001A6) 

#define TPM_CC_EMPIRE_Encrypt       (TPM_CC)(0x000001A7) 

#define TPM_CC_EMPIRE_Decrypt       (TPM_CC)(0x000001A8) 

typedef TPM2B_KYBER_CIPHER_TEXT TPM2B_EMPIRE_CIPHER_TEXT; 

typedef TPM2B_KYBER_ENCRYPT TPM2B_EMPIRE_ENCRYPT; 

typedef TPM2B_KYBER_PUBLIC_KEY TPM2B_EMPIRE_PUBLIC_KEY; 

typedef TPM2B_KYBER_SECRET_KEY TPM2B_EMPIRE_SECRET_KEY; 

typedef TPM2B_KYBER_SHARED_KEY TPM2B_EMPIRE_SHARED_KEY; 

typedef TPM2B_DILITHIUM_SIGNED_MESSAGE TPM2B_EMPIRE_SIGNED_MESSAGE; 

typedef TPMS_SIG_SCHEME_DILITHIUM TPMS_SIG_SCHEME_EMPIRE; 

typedef TPMT_DILITHIUM_SCHEME TPMT_EMPIRE_SCHEME; 

typedef TPMS_SIGNATURE_DILITHIUM TPMS_SIGNATURE_EMPIRE; 

typedef TPMS_DILITHIUM_PARMS TPMS_EMPIRE_PARMS; 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 10 of 22 

 

All command definitions must be added to Commands.h. Then, the interfaces are exported to 
CommandDispatchData.h. Following the previous example one would implement the Empire 
Encrypt command descriptor as: 

 

 

 

 

 

 

 

 

 

 

 

 

typedef struct { 

    TPMI_DH_OBJECT keyHandle; 

    TPM2B_MAX_BUFFER message; 

} Empire_Encrypt_In; 

 

typedef struct { 

    TPM2B_EMPIRE_ENCRYPT outData; 

} Empire_Encrypt_Out; 

 

TPM_RC 

TPM2_Empire_Encrypt( 

   Empire_Encrypt_In      *in, // IN: input parameter list 

   Empire_Encrypt_Out     *out // OUT: output parameter list 

   ); 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 11 of 22 

 

If needed, the missing marshalling and unmarshalling functions are defined in MarshalArray and 
UnmarshalArray in the same file, and the command descriptors are added to 
s_CommandDataArray. 

At this stage the implementation for each Empire command can be defined in 
AsymmetricCommands.c (TPM2_Empire_Encrypt, etc). Finally, the s_ccAttr array in 
CommandAttributeData.h can be updated with the new Empire commands. The Empire 
algorithm is now fully implemented. 

3.3 TPM Software Stack (TSS) 

The herein described TSS is a fork of the open-source implementation of TSS 2.0 by IBM and 
Microsoft with added support for new QR algorithms and hashes, namely Kyber (Bos, et al., 
2018), Dilithium (Ducas, et al., 2019), LDAA (El Kassem, et al., 2019), qTesla (Bindel, et al., 
2019),  NewHope (Alkim, Ducas, Poppelmann, & Schwabe, 2016), and SHA3 (NIST, 2015). 

 #include "Empire_Encrypt_fp.h" 

typedef TPM_RC  (Empire_Encrypt_Entry)( 

        Empire_Encrypt_In  *in, 

        Empire_Encrypt_Out *out 

        ); 

typedef const struct { 

    Empire_Encrypt_Entry      *entry; 

    UINT32               inSize; 

    UINT32               outSize; 

    UINT32               offsetOfTypes; 

    UINT32               paramOffsets[1]; 

    BYTE                 types[5]; 

} Empire_Encrypt_COMMAND_DESCRIPTOR_t; 

Empire_Encrypt_COMMAND_DESCRIPTOR_t _Empire_EncryptData = { 

    /* entry  */          &TPM2_Empire_Encrypt, 

    /* inSize */          (UINT32)(sizeof(Empire_Encrypt_In)), 

    /* outSize */         (UINT32)(sizeof(Empire_Encrypt_Out)), 

    /* offsetOfTypes */   offsetof(Empire_Encrypt_COMMAND_DESCRIPTOR_t, types), 

    /* offsets */         {(UINT32)(offsetof(Empire_Encrypt_In, message))}, 

    /* types */           {TPMI_DH_OBJECT_H_UNMARSHAL, 

      TPM2B_MAX_BUFFER_P_UNMARSHAL, 

               END_OF_LIST, 

               TPM2B_EMPIRE_ENCRYPT_P_MARSHAL, 

               END_OF_LIST} 

}; 

#define _EMPIRE_EncryptDataAddress (&_Empire_EncryptData) 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 12 of 22 

The new QR-TSS is not backwards-compatible with other implementations of the Software TPM 
and has only been tested with the previously described Software TPM. Furthermore, the 
previously described Software TPM does not possess endpoints for the qTesla and NewHope 
algorithms. 

This section describes the new commands and how to further extend the TSS with new 
algorithms. 

3.3.1 New Commands 

New commands were added to the TSS in order to support the new endpoints in the Software 
TPM: 

• Kyber 

◦ create / createprimary => default commands to create keys inside the TPM. To 
create a Kyber key the user can execute them with the -kyber flag with a specific 
security mode k; 

◦ loadexternal => default command to load a key which may or may not have been 
created by the TPM. To load a Kyber key the -kyber flag must be used; 

◦ kyber_enc => a Kyber-only command where an encapsulation is performed using 
the selected loaded key. An example of its usage is: 

./kyber_enc -hk LOADED_KEY_HANDLE -c OUT_CIPHER -ss OUT_SHARED_SEC 

◦ kyber_dec => a Kyber-only command where a decapsulation is performed using the 
selected loaded key and a ciphertext previously generated by the kyber_enc 
command. An example of its usage is: 

       ./kyber_dec -hk LOADED_KEY_HANDLE -c IN_CIPHER -ss OUT_SHARED_SEC 

◦ kyberencrypt => a Kyber-only command where an encryption is performed using the 
selected loaded key and an input is received to be encrypted. An example of its 
usage is: 

./kyberencrypt -hk LOADED_KEY_HANDLE -id IN_PLAIN -oe OUT_CIPHER 

◦ kyberdecrypt => a Kyber-only command where a decryption is performed using the 
selected loaded key and an input is received to be encrypted. Its usage is: 

./kyberdecrypt -hk LOADED_KEY_HANDLE -ie IN_CIPHER -od OUT_PLAIN 

• Dilithium 

◦ create / createprimary => default commands to create keys inside the TPM. To 
create a Dilithium key the user can execute them with the -dilithium flag with a 
specific security mode; 

◦ loadexternal => default command to load a key which may or may not have been 
created by the TPM. To load a Dilithium key use the -dilithium flag; 

◦ sign => default command to sign and hash a file inside the TPM. To sign the 
message using the Dilithium algorithm the -dilithium flag must be used; 

◦ verifysignature => default command to verify a signature inside the TPM. To verify a 
Dilithium signature the -dilithium flag must be used. 

• LDAA 

◦ create / createprimary => default commands to create keys inside the TPM. To 
create an LDAA key the user can execute them with the -ldaa flag with a specific 
security mode lmode; 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 13 of 22 

◦ ldaa_join => LDAA specific command to start an LDAA session inside the TPM by 
performing the join procedure for a new session ID, a new unique session ID and the 
Issuer’s basename. Its usage is: 

./ldaa_join -hk LOADED_KEY_HANDLE -sid IN_NEW_SESSION_ID -jsid 
IN_UNIQUE_SESSION_ID -bsn IN_ISSUER_BASENAME -onym 
OUT_JOIN_LINK_TOKEN 

◦ ldaa_signproceed => LDAA specific command to be used by the Host to allow the 
TPM to start the signing procedure. Its usage is: 

./ldaa_signproceed -hk LOADED_KEY_HANDLE -sid IN_SESSION_ID 

◦ ldaa_committokenlink => LDAA specific command to initiate the signing commit 
procedure for a specific session and Issuer’s basename. Its usage is: 

./ldaa_committokenlink -hk LOADED_KEY_HANDLE -sid IN_SESSION_ID -bsn 
IN_ISSUER_BASENAME -onym OUT_TOKEN_LINK -ope OUT_ERR_POLY -opbsn 
OUT_BSN_POLY 

◦ ldaa_signcommit [1,2,3] => LDAA specific command to process the commit[1,2,3] 
inside the TPM for a respective session, a basename, the Issuer’s basename 
polynomial, the error polynomial, a selected sign state, and the seed value to 
generate the shared B matrix in the NTT domain. The ldaa_signcommit1 command 
requires an additional parameter from the issuer: the transposed A matrix in the NTT 
domain. Their usages are: 

./ldaa_signcommit1 -hk LOADED_KEY_HANDLE -sid IN_SESSION_ID -bsn 
IN_BASENAME -seed IN_SEED_VALUE_IN_HEX -sign [0-7] -iatntt IN_FILE_BIN -
ipe IN_ERR_POLY -ipbsn IN_BSN_POLY -ocomm OUT_COMMIT 

/ldaa_signcommit[2,3] -hk LOADED_KEY_HANDLE -sid IN_SESSION_ID -bsn 
IN_BASENAME -seed IN_SEED_VALUE_HEX -sign [0-7] -ipe IN_ERR_POLY -
ipbsn IN_BSN_POLY -ocomm OUT_COMMIT 

◦ ldaa_signproof => LDAA specific command to reply to the challenges issued by the 
Host  

./ldaa_signproof -hk LOAD_KEY_HANDLE -sid IN_SESSION_ID -signT 
IN_RESPONSE_TYPE -sign [0-7] -isign1 IN_1ST_HOST_SIGN_STATE -isign2 
IN_2ND_HOST_SIGN_STATE -osign1 OUT_SIGN_RESULT1 -osign2 
OUT_SIGN_RESULT_2 -ogroup OUT_PORTION_SECRET_VALUES 

• SHA3/SHAKE 

◦ Similarly, to the hash additions in the Software TPM, the addition of SHA3 and 
SHAKE did not result in new commands in the TSS, but the default commands were 
updated to support the new hashing algorithms. These commands are: certify, 
create, createprimary, eventsequencecomplete, getcommandauditdigest, 
getsessionauditdigest, hash, gettime, hashsequencestart, hmac, hmacstart, 
importpem, loadexternal, nvcertify, pcrallocate, pcrevent, pcrread, policypcr, 
policymaker, policysigned, quote, sign, startauthsession, and verifysignature. In all 
command instances the new hash algorithms can be used through either the -halg or 
the -nalg flag. For example, the command to create a SHA3-512 of some data is: 

./hash -halg sha3-512 -ic test_data 

 

 

 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 14 of 22 

3.3.2 How to Add New algorithms 

Adding algorithms to the TSS follows a procedure similar to the one described in Section 3.2.2, 
but applied to different files. The new TPM types are added to ibmtss/TPM_Types.h, the 
marshalling functions are defined in tssmarshal.c, the unmarshalling functions in Unmarshal.c, 
the algorithms in ibmtss/Implementation.h, the command attribute data is added to 
CommandAttributeData.h, command interfaces are exported to Commands_fp.h and to 
ibmtss/Parameters.h, and the command dispatch data is included in tssauth20.c. All command 
interfaces must be copied to the ibmtss/ folder. 

The existing commands can be updated to add support for Empire (loadexternal, create, 
createprimary, sign and verifysignature) and new commands can be created (empire_enc, 
empire_dec, empireencrypt and empiredecrypt). 

Finally, it is strongly encouraged to add regression tests for the new algorithm in the regtests/ 
folder, including key creation in initkeys.sh, signature creation and verification in testsign.sh, 
and more specific Empire tests in testempire.sh. The general regression test suite script, reg.sh, 
should also be updated with a new entry for Empire.  

 

3.4 Using the Software TPM 

Building the Software TPM requires a C compiler (e.g., gcc, clang) and the make tool. To build 
the Software TPM the user should navigate into its src/ folder and run the make command. The 
compilation step should produce no warnings and a single binary called tpm_server. The user 
can now execute the server binary. By default, the tpm_server runs its command server on port 
2321 and its platform server on 2322. The user may change the command and platform ports 
through the -port flag, where the selected port will be used for the command server and the 
selected port plus one will be used for the platform server, e.g., the command: 

runs the Software TPM command server on port 4000 and the platform server on 4001. The 
user can obtain more information about the tool by running: 

 

Similar to the Software TPM, the TSS requires a C compiler and the make tool. To build the 
TSS the user should navigate to the utils/ folder and run the make command. The compilation 
step should produce no warnings and several binaries are created. 

To assert the correct operation of the Software TPM the full regression test suite might be run. 
To do so, it is firstly advised to verify that the tpm_server is running in a separate terminal with 
the default command and platform ports. The regression test suite resides in the same folder as 
the TSS binaries and is called reg.sh. To execute the full test suite the following command 
should be run with: 

At the end of the tests the output should show: 

 $ ./tpm_server -port 4000 

 $ ./tpm_server -h 

 $ ./reg.sh -a 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 15 of 22 

Running the test suite is extensive, thorough, and time-consuming. However, this is a 
recommended practice when performing modifications to the Software TPM. 

3.4.1 Example 

This subsection will walkthrough an example, where Alice communicates with Bob to transmit 
an encrypted and authenticated message using the TPM. Figure 3 depicts the communication 
diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This scenario description assumes that the user has four shells opened, two for Bob and two for 
Alice. For each user, one shell is opened in the Software TPM src/ folder and the other in the 
TSS utils/ with all the binaries compiled. For the sake of clarity, the Software TPM shell shall be 
referred to as TPM-SH and the TSS shell as TSS-SH from this point onward. Note that to run 
two instances of the Software TPM in the same machine both must use different command and 
platform ports. For the sake of clarity Alice’s TSS and Software TPM run on command port 2325 
and on interface port 2326. To make use of these ports all of Alice’s commands in the TSS are 
prefixed with TPM_COMMAND_PORT=2325 TPM_PLATFORM_PORT=2326. 

Both Alice and Bob in their respective TPM-SHs run the server 

Success - 33 Tests 0 Warnings 

 

Figure 3: Communication Diagram between Alice and Bob 

 

$ ./tpm_server 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 16 of 22 

and then in their TSS-SHs, start up the TPM. 

It should be noted that running this command is always necessary after having started the 
server. 

Bob and Alice create a primary key each using Kyber784 (k=3) with a platform key hierarchy (-
hi), a password sto (-pwdk), an output ticket file pritk.bin (-tk) and a creation hash file name 
prich.bin (-ch): 

The createprimary command returns a key handle under which keys can be created. The 
signing and encryption keys can now be created by each party. Alice uses the Dilithium 
algorithm for signatures and Bob uses Kyber1024 for encryption/decryption.  

Alice, in TSS-SH, creates a signing (-si) Dilithium key under the Kyber784 primary key (-hp 
80000000 with password -pwdp sto) fixed to this TPM (-kt f) and to this parent key (-kt p), stores 
the public key in dil_pub.bin (-opu) and private key in dil_priv.bin (-opr) with the password 
dilithium (-pwdk) 

Bob, in TSS-SH, creates a Kyber1024 decryption (-den) key under the Kyber784 primary key 
with the same properties, and stores the public key in kyber_pub.bin (-opu) and private key in 
kyber_priv.bin (-opr) with the password kyber (-pwdk). 

Bob and Alice then exchange their respective public keys through another authenticated 
channel. 

The message which Alice will encrypt and sign is “My super secret. Please don’t share.” Alice 
will encrypt the message using Bob’s public Kyber1024 key, thus it needs to be loaded. Still in 
TSS-SH, Alice runs: 

and performs the encryption: 

 

where -id is the file which contains the secret string and -oe is the file which contains the 

encryption result. Since Alice no longer needs Bob’s encryption public key, it is safe to flush it: 

Alice then loads the Dilithium private and public keys under the Kyber784 primary key. 

$ ./startup -c 

$ ./createprimary -kyber k=3 -hi p -pwdk sto -tk pritk.bin -ch prich.bin 

Handle 80000000 

$ ./create -hp 80000000 -si -dilithium mode=2 -kt f -kt p -opr dil_priv.bin -opu dil_pub.bin -pwdp sto 

-pwdk dilithium 

$ ./create -hp 80000000 -kyber k=4 -den -kt f -kt p -opr kyber_priv.bin -opu kyber_pub.bin -pwdp 

sto -pwdk kyber 

$ ./loadexternal -hi p -ipu kyber_pub.bin 

Handle 80000001 

$ ./kyberencrypt -hk 80000001 -id test.txt -oe enc.bin 

$ ./flushcontext -ha 80000001 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 17 of 22 

 

Finally, the ciphertext (-if enc.bin) is signed and hashed using the loaded Dilithium key (-hk 
80000001 -dilithium) and the signature is stored in sig.bin (-os): 

 

Bob receives the ciphertext and Alice’s signature, but before proceeding must load its own 
Kyber1024 private and public key, as well as Alice’s public key: 

 

Bob verifies Alice’s signature in its TSS-SH: 

After successfully authenticating that the ciphertext was sent by Alice, Bob proceeds to decrypt 
Alice’s message: 

Bob can now flush the keys from the TPM: 

 

Finally, Figure 4 shows the workflow of all the commands in the current implementation of the 
Software TPM. 

$ ./load -hp 80000000 -ipr dil_priv.bin -ipu dil_pub.bin -pwdp sto 

Handle 80000001 

$ ./sign -hk 80000001 -dilithium -if enc.bin -os sig.bin -pwdk dilithium 

$ ./load -hp 80000000 -ipr kyber_priv.bin -ipu kyber_pub.bin -pwdp sto 

Handle 80000001 

$ ./loadexternal -hi p -ipu dil_pub.bin 

Handle 80000002 

$ ./verifysignature -hk 80000002 -dilithium -if enc.bin -is sig.bin 

$ ./kyberdecrypt -hk 80000001 -ie enc.bin -od dec.bin -pwdk kyber 

$ ./flushcontext -ha 80000001 

$ ./flushcontext -ha 80000002 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 18 of 22 

 

Figure 4: Software TPM Workflow of Commands 

 

3.5 Open Issues 

The following issues were identified during the development of the Software TPM and the TSS: 

• When running the complete regression test suite using a Kyber key (of any mode) as a 
primary key the suite fails in the Salt tests with an integrity error on the Software TPM 
side. However, when running just the Salt tests with the same Kyber primary, no errors 
are reported. 

• The addition of the LDAA algorithm required extensive modifications throughout both the 
Software TPM and the TSS. In doing so, the Non-Volatile Memory was increased from 
64kB to 20MB. The regression test suite does not reflect this update. 

• The LDAA only supports one session per TPM. 

• Current Kyber implementation corresponds to the unmodified submission to the NIST 
PQC challenge (i.e., to round 1). 

• When performing a hash using any of the SHAKE algorithms its output is limited to 
1024B. Furthermore, even though there is a mechanism which allows a hash state to be 
continuously update from the client there is no endpoint to continue reading a hash state 
once it is finalized. Thus, neither of the SHAKEs possess the expected Application 



D5.1 – First version of implementation  

FutureTPM D5.1 Public  Page 19 of 22 

Programming Interface (API) to interface with. This limitation is due to the Software TPM 
cryptography backend, OpenSSL, which does not provide such an interface. 

Since the aforementioned minor issues do not present any significant impediment for the usage 
of the TPM in practice, and since these cryptographic primitives might change in the future, for 
instance to improve the performance of post-quantum DAA and to add a new endpoint which 
provides proper support for extendable output functions (XOF), we believe it would be more 
efficient to resolve them on a later, more consolidated, deliverable, e.g., D5.3 “Final version of 
implementation”. 

 

 

 

 

 

 

 

 

 

 

 

 



D5.1 – First Version of Implementation 

FutureTPM D5.1 Public  Page 20 of 22 

Chapter 4 Conclusions 

In this deliverable we have provided an overview of the design and implementation of the 
Quantum-Resistant Software Trusted Platform Module. We have described the key performance 
indicators on which to measures the three different implementations of the TPM (hardware, 
software and virtual), and we have described in detail the current implementation of the software 
TPM, in particular the basic operations and how to add new algorithms. In addition, we have 
described how the TPM Software Stack (TSS) has been updated to support the new QR 
cryptographic primitives, and we have provided detailed indication on how to extend both the 
software TPM and TSS with further algorithms. The next steps involve the implementation of the 
QR virtual TPM (Task 5.2) and hardware TPM (task 5.3), which will build upon the current 
implementation of the QR software TPM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



D5.1 – First Version of Implementation 

FutureTPM D5.1 Public  Page 21 of 22 

List of Abbreviations 

Abbreviation Translation 

API Application Programming Interface 

DAA Direct Anonymous Attestation 

LDAA Lattice-based Direct Anonymous Attestation 

QR Quantum Resistant 

SW-TPM Software TPM 

TPM Trusted Platform Module 

TSS TPM Software Stack 

V-TPM Virtual TPM 

WP Work Package 

XOF Extendable Output Functions 

 

  



D5.1 – First Version of Implementation 

FutureTPM D5.1 Public  Page 22 of 22 

Bibliography 

Alkim, E., Ducas, L., Poppelmann, T., & Schwabe, P. (2016). Post-quantum Key Exchange - A 
New Hope. USENIX Security Symposium. Vancouver, Canada. 

Bindel, N., Akleylek, Alkim, E., Barreto, P., Buchmann, J., Eaton, E., . . . Zanon, G. (2019, 26 4). 
qTesla - Submission to the NIST post-quantum project. Retrieved from NIST: 
https://qtesla.org/wp-content/uploads/2019/04/qTESLA_round2_04.26.2019.pdf 

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., M. Schanck, J., . . . Stehlé, D. (2018). 
CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM. 2018 IEEE European 
Symposium on Security and Privacy, EuroS&P. London, UK. 

Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., & Stehlé, D. (2019, 03 
30). Dilithium - Submission to the NIST post-quantum project. Retrieved from NIST: 
https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf 

El Kassem, N., Chen, L., El Bansarkhani, R., El Kaafarani, A., Camenisch, J., Hough, P., . . . 
Sousa, L. (2019). More efficient, provably-secure direct anonymous attestation from 
lattices. Future Generation Computer Systems, Volume 99, 425-258. 

NIST. (2015, 4 8). SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions . 
Retrieved from NIST: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf 

TCG. (2018, 2 7). TCG Algorithm Registry. Retrieved from TCG: 
https://trustedcomputinggroup.org/wp-content/uploads/TCG-
_Algorithm_Registry_Rev_1.27_FinalPublication.pdf 

 


	Executive Summary
	List of Figures
	Chapter 1 Introduction
	1.1 Scope and Purpose
	1.2 Relation to Other WPs and Deliverables
	1.3 Deliverable Structure

	Chapter 2 Key Performance Indicators
	Chapter 3 Software TPM Overview
	3.1 Software TPM
	3.2 Basic Operations of the Software TPM
	3.2.1 New Endpoints
	3.2.2 How to Add New algorithms
	3.3 TPM Software Stack (TSS)
	3.3.1 New Commands
	3.3.2 How to Add New algorithms
	3.4 Using the Software TPM
	3.4.1 Example
	3.5 Open Issues

	Chapter 4 Conclusions
	List of Abbreviations
	Bibliography

