PQC TSS and PQC TPM

a prototype

Andreas Fuchs, 19th October 2018

Introduction

- Due to the thread of quantum computers, we expect that asymmetric cryptography will transition to Post-Quantum Cryptography in the next ten years.
- PQC-schemes tend to have larger resource requirements than RSA, DH and ECC.
- In particular for resource restricted embedded systems, PQC might be hard to implement efficiently.
- TPMs have highly restricted resources.
- \Rightarrow Investigate the usability of PQC for TPMs.

Introduction

Communication between Application and TPM:

POC TSS and POC TPM | Andreas Fuchs | 19th October 2018 | 2 (11)

Hash-based Signature Schemes

Introduction

Properties:

- Hash functions as only building block.
- Well understood, high security guarantees.
- Limited number of signatures per public key!
- Some schemes need to maintain a state!

Examples:

- Stateful:
 - LMS, XMSSXMSS
- State-less:
 - SPHINCS, SPHINCS⁺

Code-based Encryption Schemes

Introduction

Properties:

- Use *error correcting codes* for cryptography.
- Studied since 1978, security depends on code family.
- Conservative schemes require large keys!
- Decoding errors may enable attacks (for some code choices)!

Codes for the McEliece/Niederreiter system:

- binary Goppa
- GRS, Reed-Muller, BCH
- LDPC, QC-MDPCQC-MDPC

Lattice-based Encryption Schemes

Introduction

Properties:

- Use hard *lattice problems* for cryptography.
- Plenty of security proofs.
- Choice of parameters not yet well understood!
- Very promising, efficient schemes.

Examples:

- KEX: New Hope,
- KEM: NTRU, qTESLA, KyberKyber

Post-Quantum TPM

Approach

Simulation:

- Extend an existing TPM simulator by adding PQC schemes.
- Test functionality.

Prototype:

- Transfer the TPM simulator to an embedded RISC-V processor.
- Measure performance and memory demand.

Optimization (ongoing work):

- Optimize TPM "simulator" software.
- Provide hardware accelerators for PQC primitives.

Post-Quantum TPM

Demonstration

Post-Quantum TPM

Performance

Scheme	Key Generation		Encrypti	on	Decryption		
	Cycles	Time	Time Cycles		Cycles	Time	
Kyber	35.7×10^{6}	0.715 s	44.5×10^{6}	0.891 s	$9.36 imes 10^{6}$	0.187 s	
QcBits	231×10^{6}	4.63 s	$8.34 imes10^6$	0.167 s	167×10^{6}	3.34 s	

Scheme	Key Generation				Verification			Signing				
<i>h</i> = 10	Cycles T		Time		Cycles		Time		Cycles		Time	
XMSS XMSS HW*	209 311	imes 10 ⁹ $ imes$ 10 ⁶	4190 6.22	s s	130 589	imes 10 ⁶ $ imes$ 10 ³	2.60 0.0118	s B s	209 1.7	× 10 ⁹ 7 × 10 ⁶	4190 0.03	s 354 s

*estimation based on experiments

time at 50 MHz

Limitations of the TPM 2.0 Specification

Standard TPM Parameters

IO Buffer Size:

The default maximum size of the IO buffer is 4096 Bytes. (This limitation is vendor-specific and not fixed in the specification.)

The default buffer size allows the following parameters:

- XMSS (SHA256):
 - Tree height: $24 \Rightarrow 2^{24} = 16,777,216$ signatures.
 - Limitation: computing time (key gen and sign).
 - NVRAM of TPM is perfect for storing state!
 - NVRAM size limits number of keys.
 - \Rightarrow Increase NVRAM size if more keys are required.
- QC-MDPC:
 - Buffer size fine for 80-bit and 128-bit security parameters.
 - Data structures for 256-bit security parameters too large.
 ⇒ Double IO buffer size.

Limitations of the TPM 2.0 Specification

Limitations of the Specification

Additional Commands for XMSS:

Optimized tree traversal algorithms (for signing) require to cache inner tree nodes in order to avoid recomputing the entire tree for each signature.

Solutions:

- Store caching data in NVRAM. Limited resource!
- Use pseudo-persistent storage outside the TPM.
 ⇒ Requires additional commands to send and retrieve cache data.
 XMSS state (next leaf index) remains in NVRAM.
 Data on inner tree nodes is pseudo-persistently cached.
 Drop outdated caching data!

Conclusion

Take away:

- The TPM 2.0 specification is sufficiently agile for PQ crypto.
- Some limits on computation and communication need to be lifted.
- Some additional commands are required for efficiency.
- Hash-based signature schemes may be enabled by firmware updates. ⇒ No need for new hardware.
- Fast and efficient lattice-, code-, or *MQ*-based implementations require

new crypto accelerators. \Rightarrow New hardware required.

Thank you!

Kontakt Information

Andreas Fuchs Ruben Niederhagen

Cyber-Physical Systems Security

Fraunhofer Institute for Secure Information Technology

Addresse: Rheinstraße 75 64295 Darmstadt Germany Internet: www.sit.fraunhofer.de/en/pqc-tpm/

 Telefon:
 +49 6151 869-228

 Fax:
 +49 6151 869-224

 E-Mail:
 andreas.fuchs@sit.fraunhofer.de

Image Sources

Title Page: ©IBM Research, CC BY-ND 2.0 https://creativecommons.org/licenses/by-nd/2.0/

Clip Art (slide 7): Public Domain https://creativecommons.org/publicdomain/zero/1.0/

