
User Controlled Hardware Security
Anchors: Evaluation and Designs
Dr David Oswald, Prof Mark Ryan, Prof Flavio Garcia

The University of Birmingham

Industry partners: HP Labs, Yubico

2

Why Hardware Security Anchors?

3

Why Hardware Security Anchors?

4

User Controlled Hardware Security Anchors:
Evaluation and Designs (1)

 WP1: Evaluate the security of available security
anchors and Trusted Execution Environments
(more later)

 WP2: Establishing secure channels between TEE
and the user through …

– Auxiliary devices

– Platform features for secure I/O

5

User Controlled Hardware Security Anchors:
Evaluation and Designs (2)

 WP3: Enhancing user authentication

– Basis: FIDO(2) and U2F

– Addressing enrollment and revocation

– Authentication policies (e.g. location, …)

– Formal modelling and verification

 WP4: Demonstrators

– TEE implementation

– Smartphone app

– Authentication token

Evaluating the state of
TEE security
An overview

7

Trusted Execution Environments in a nutshell

 Main technologies at present:

– Trusted Platform Module (separate chip or firmware)

– Intel Software Guard eXtensions (microcode w/ HW)

– AMD Platform Security Processor (separate core)

– ARM TrustZone (software w/ HW support)

– Apple Secure Enclave Processor (separate core, same die)

 All provide some form of running code or crypto
operations in isolation

 Most require cooperation with the silicon/device
manufacturer (to different extent)

8

Relevant attack vectors

 “Classical” vulnerabilities, e.g. buffer overflows

 Microarchitecture (e.g. cache timing, Spectre
and Meltdown, etc)

 Software-driven fault attacks (RowHammer,
CLKSCREW1, …)

 Hardware-level attacks (JTAG, faults, EM and
power side channels)

1 https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/tang

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang

9

Intel SGX

 Highest flexibility for the user, can run arbitrary
code in “enclaves” – interesting for SW TPM

 Currently “dead” from a security perspective

– Cache-timing side channels
(https://arxiv.org/pdf/1703.06986.pdf, https://arxiv.org/abs/1702.07521,
https://arxiv.org/pdf/1702.08719.pdf)

– MemJam (https://arxiv.org/abs/1711.08002)

– Spectre and Meltdown variants

– More?

https://arxiv.org/pdf/1703.06986.pdf
https://arxiv.org/abs/1702.07521
https://arxiv.org/pdf/1702.08719.pdf
https://arxiv.org/abs/1711.08002

10

SGX vs Spectre / Meltdown

11

SGX vs Spectre / Meltdown

12

AMD Platform Security Processor

 Separate ARM core running PSP in Trustzone

 Firmware e.g. here
https://github.com/coreboot/blobs/tree/master/southbridge/amd/avalon/PSP

 Buffer overflow in firmware TPM (fTPM)
discovered on Jan 3, 2018 (bad timing…), leading
to code execution via crafted certificate

https://github.com/coreboot/blobs/tree/master/southbridge/amd/avalon/PSP

13

Trusted Platform Module

 Separate chip, limited functionality

 Chen & Ryan showed issues w/ authData

 Tarnovsky demonstrated microprobing of SLE 66

 Nemec et al: ROCA vulnerability in key
generation of secure elements / TPMs

 Boone: MITM to exploit PC-side bugs1

 Side-channel attacks?

1 https://github.com/nccgroup/TPMGenie

https://github.com/nccgroup/TPMGenie

ARM TrustZone

15

ARM TrustZone

 HW-supported TEE in bigger ARM chips

 The OS running in TZ is up to the OEM,
examples include:

– Trustonic Kinibi (aka t-base, proprietary)

– Qualcomm QSEE (proprietary)

– Trusty (open, https://source.android.com/security/trusty/)

https://source.android.com/security/trusty/

16

Previous attacks on Samsung TZ

 Long history of SW attacks on TZ,
https://googleprojectzero.blogspot.co.uk/2017/07/trust-issues-exploiting-trustzone-tees.html

 Up to Galaxy S7, attacker can roll back to old
(vulnerable) versions of trustlets

 Beniamini discovered buffer overflow in OTP
trustlet, allowing code execution in the context
of this trustlet

 Lapid & Wool showed that KeyMaster Key
Encryption Key can be extracted via OTP vuln or
cache-timing side channel

https://googleprojectzero.blogspot.co.uk/2017/07/trust-issues-exploiting-trustzone-tees.html

17

Example: Samsung Galaxy S6

 Galaxy S6 runs Trustonic TEE OS

 Trustlets are .tlbin files in /data/app/mcRegistry:

– Biometry / fingerprint matching
2150-ffffffff00000000000000000000000e.tlbin

– KeyMaster
2178-ffffffff00000000000000000000003e.tlbin

– Samsung Pay
2172-ffffffff000000000000000000000028.tlbin

 Can be loaded into IDA (custom loader) and
“easily” be analysed

18

Example: fingerprint matching trustlet

19

Example: fingerprint trustlet

 Reverse-engineered data flow for encryption

 Note: TrustZone has no separate storage

 Some open questions remaining …

20

Future attack vectors

 Vulnerabilities in interesting trustlets
(e.g. biometrics, payment)

 Automatic detection (e.g. missing bound checks)?

 Hardware (and software) side channels and fault attack
vulnerabilities (obtain Root Encryption Key)

Apple SEP

22

Apple SEP

 Separate ARMv7A core in iOS devices and newer
Macs (cf. touchbar)

 Security anchor for

– Biometrics

– Storage encryption

– Device unlocking

– Apple Pay (together with separate Javacard chip)

– Selected crypto operations for apps

23

Using SEP in apps

Secure?

24

Understanding Apple SEP

 OS and firmware format documented at BH’161

in detail, but no attacks published

 Firmware encrypted, but decryption keys for
iPhone 5S published in 2017

 Firmware image (IMG4) can be parsed and
loaded into IDA using open tools

1
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

25

Decrypting SEP firmware (iPhone 5S)

26

- open file "sepdump07_sbio"

offset num description [bits.endian.size]
--
0007b1f0 874 SHA256 Hash constant words K (0x428a2f98) [32.le.256]
000bc5cc 536 CRC-16-IBM maxim/usb [crc16.0xa001 lenorev 1.512]
000bc5cc 529 CRC-16-IBM maxim/usb [crc16.0x8005 le rev int_min.512]
000bc7cc 648 CRC-32-IEEE 802.3 [crc32.0xedb88320 lenorev 1.1024]
000bc7cc 641 CRC-32-IEEE 802.3 [crc32.0x04c11db7 le rev int_min.1024]
000bd20c 897 Rijndael Te0 (0xc66363a5U) [32.be.1024]
000bd60c 906 Rijndael Td0 (0x51f4a750U) [32.be.1024]
000bda0c 894 AES Rijndael S / ARIA S1 [..256]
000bdb0c 895 AES Rijndael Si / ARIA X1 [..256]
000bdc30 878 Hash constant words K for SHA-384 and SHA-512 [64.le.640]
000bdeb0 1036 SHA1 / SHA0 / RIPEMD-160 initialization [32.le.20&]
000bdeb0 2402 Lucifer (outerbridge) DFLTKY [..16]
000bdebc 2053 RIPEMD-128 InitState [32.le.16&]
000bdee4 1030 SHA256 [32.le.288&]
000bdee4 876 SHA256 Initial hash value H (0x6a09e667UL) [32.le.32&]
000bdee8 2364 Crypton kp [32.le.16]

27

Future possible vulnerabilities

 Understand implementations of relevant applets
(fuzzing, static/dynamic analysis)

 Side-channel vulnerabilities with physical access
(BH’16 authors recommend: “Stick to the A7 (newer ones are
more resistant)”)

 Software side channels and faults

28

Conclusions

 Hardware security anchors and TEEs solve many
important security problems (e.g. user auth) …

 … but are hard to get right (all TEEs covered in
this talk have vulnerabilities)

 Potential issues include

– Software vulnerabilities

– Side channels and shared resources

– Large flexibility/complexity = large attack surface

Thanks for your attention!

Questions?
d.f.oswald@bham.ac.uk

