User Controlled Hardware Security

Anchors: Evaluation and Designs
Dr David Oswald, Prof Mark Ryan, Prof Flavio Garcia

—

The University of Birmingham

Industry partners: HP Labs, Yubico

UNIVERSITYOF
BIRMINGHAM

Why Hardware Security Anchors?

@& https://haveibeenpwned.com

'*--have i been pwned?

Check if you have an account that has been compromised in a data breach

d.f.oswald@pham.ac.uk pwned? }

Good news — no pwnage found!

No breached accounts and no pastes (subscribe to search sensitive breaches)

Why Hardware Security Anchors?

Google (0]

Someone has your password

Hi Wiliam
Someone just used your password to try 10 sign in to your Google Account
Details:

Tuesday, 22 March, 14:9:25 UTC

IP Address: 134 .249.139.229

Location: Ukraine

Google stopped this sign-in attempt. You should change your password immediately.

CHANGE PASSWORD

Best,
The Gmai Team

You received tha manda‘cey emal service announcement %0 update you about Impertan! changes 0 your Google product or account

User Controlled Hardware Security Anchors:
Evaluation and Designs (1)

" WP1: Evaluate the security of available security
anchors and Trusted Execution Environments
(more later)

" WP2: Establishing secure channels between TEE
and the user through ...

— Auxiliary devices
— Platform features for secure |/O

User Controlled Hardware Security Anchors:
Evaluation and Designs (2)

@®

@

. . %
" WP3: Enhancing user authentication /

— Basis: FIDO(2) and U2F
— Addressing enrollment and revocation
— Authentication policies (e.g. location, ...)

— Formal modelling and verification

= WP4: Demonstrators
— TEE implementation
— Smartphone app
— Authentication token

Evaluating the state of

TEE security
An overview

Trusted Execution Environments in a nutshell

= Main technologies at present:
— Trusted Platform Module (separate chip or firmware)
— Intel Software Guard eXtensions (microcode w/ HW)
— AMD Platform Security Processor (separate core)
— ARM TrustZone (software w/ HW support)
— Apple Secure Enclave Processor (separate core, same die)

= All provide some form of running code or crypto
operations in isolation

"= Most require cooperation with the silicon/device
manufacturer (to different extent)

Relevant attack vectors

" “Classical” vulnerabilities, e.g. buffer overflows

" Microarchitecture (e.g. cache timing, Spectre
and Meltdown, etc)

= Software-driven fault attacks (RowHammer,
CLKSCREWHY, ...)

= Hardware-level attacks (JTAG, faults, EM and
oower side channels)

L https://www.usenix.org /conference/usenixsecurityl7/technical-
sessions/presentation/tang

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang

Intel SGX

" Highest flexibility for the user, can run arbitrary
code in “enclaves” — interesting for SW TPM

" Currently “dead” from a security perspective

— Cache-timing side channels

(https://arxiv.org/pdf/1703.06986.pdf, https://arxiv.org/abs/1702.07521,
https://arxiv.org/pdf/1702.08719.pdf)

— MemlJam (https://arxiv.org/abs/1711.08002)

— Spectre and Meltdown variants
— More?

https://arxiv.org/pdf/1703.06986.pdf
https://arxiv.org/abs/1702.07521
https://arxiv.org/pdf/1702.08719.pdf
https://arxiv.org/abs/1711.08002

@ GitHub, Inc. [US] | https://github.com/lsds/spectre-attack-sgx

Spectre attack against SGX enclave

sgx spectre attack enclave speculative-execution
D 1 commit P 1 branch T 0 releases 42 1 contributor fs Apache-2.0
l Branch: master ~ ‘ l New pull request Find file Clone or download ~

“ danokeeffe Initial commit of proof of concept SGX Spectre attack.

B SGXSpectre Initial commit of proof of concept SGX Spectre attack.
E) .gitignore Initial commit of proof of concept SGX Spectre attack.
E) LICENSE Initial commit of proof of concept SGX Spectre attack.
E) README.md Initial commit of proof of concept SGX Spectre attack.
EE README.md

>spectre-attack-sgx

Sample code demonstrating a Spectre-like attack against an Intel SGX enclave.

Overview

Latest commit d759e91 2 days ago

2 days ago
2 days ago
2 days ago

2 days ago

Given our ongoing research on Intel SGX here in the LSDS group at Imperial College London, a question that occurred to us

imrandiatahs An firct haarvina Af tha racant Maltdaim and Cihnctra attaclee e wihat ara tha cociiritir imanlicatinne Aaf cnncidativea

10

SGX

@ GitHub,
Spectre at

sgx spe

[l
\L
.

Branch: ma

|;;| danok

B SGXSpe
E) .gitignc
E) LICENS
E) READMN

READN

FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with
Transient OQut-of-Order Execution

Jo Van Bulck!, Marina MinkinZ, Ofir Weisse>. Daniel Genkin’, Baris Kasikci®. Frank Piessens’.
Mark SilbersteinZ, Thomas F. Wenisch®, Yuval Yarom*, and Raoul Strackx'

imec-DistriNet, KU Leuven, >Technion, > University of Michigan, *University of Adelaide and

Data61

Abstract

Trusted execution environments, and particularly the Soft-
ware Guard eXtensions (SGX) included in recent Intel
x86 processors, gained significant traction in recent years.
A long track of research papers, and increasingly also real-
world industry applications, take advantage of the strong
hardware-enforced confidentiality and integrity guaran-
tees provided by Intel SGX. Ultimately, enclaved execu-
tion holds the compelling potential of securely offloading
sensitive computations to untrusted remote platforms.
We present Foreshadow, a practical software-only mi-
croarchitectural attack that decisively dismantles the se-
curity objectives of current SGX implementations. Cru-
cially, unlike previous SGX attacks, we do not make any
| assumptions on the victim enclave's code|and do not

necessarily require kernel-level access. At its core, Fore-
shadow abuses a speculative execution bug |n modern
Intel processors, on top of Which we develop a novel ex-

ploitation methodology to reliably leak plaintext enclave

secrets nstrate our attacks
by|extracting full cryptographic keys from Intel’s vetted

architectural enclaves, and validate their correctness by
launching rogue production enclaves and forging arbitrary
local and remote attestation responses. The extracted re-
mote attestation keys affect millions of devices.

distrusting enclaves with a minimal Trusted Computing
Base (TCB) that includes only the processor package and
microcode. Enclave-private CPU and memory state is
exclusively accessible to the code running inside it, and
remains explicitly out of reach of all other enclaves and
software running at any privilege level, including a po-
tentially malicious operating system and/or hypervisor.
Besides strong memory isolation, TEEs typically offer an
artestation primitive that allows local or remote stakehold-
ers to cryptographically verify at runtime that a specific
enclave has been loaded on a genuine (and hence pre-
sumed to be secure) TEE processor.

With the announcement of Intel’s Software Guard eX-
tensions (SGX) [2,27,43] in 2013, hardware-enforced
TEE isolation and attestation guarantees are now available
on off-the-shelf x86 processors. In light of the strong se-
curity guarantees promised by Intel SGX, industry actors
are increasingly adopting this technology in a wide varniety
of applications featuring secure execution on adversary-
controlled machines. Open Whisper Systems [50] re-
lies on SGX for privacy-friendly contact discovery in its
Signal network. Both Microsoft and IBM recently an-
nounced support for SGX in their cloud infrastructure.
Various off-the-shelf Blu-ray players and initially also the
4K Netflix client furthermore use SGX to enforce Digi-
tal Rights Management (DRM) for high-resolution video

11

AMD Platform Security Processor

= Separate ARM core running PSP in Trustzone

" Firmware e.g. here
https://github.com/coreboot/blobs/tree/master/southbridge/amd/avalon/PSP

= Buffer overflow in firmware TPM (fTPM)
discovered on Jan 3, 2018 (bad timing...), leading
to code execution via crafted certificate

u&’@g@ Full Disclosure mailing list archives

+] By Date e O By Thread (| Custom Search Search

AMD-PSP: fTPM Remote Code Execution via crafted EK certificate

From: Cfir Cohen via Fulldisclosure <fulldisclosure () seclists org=
Date: Wed, 3 Tan 2018 09:40:40 -0800 12

https://github.com/coreboot/blobs/tree/master/southbridge/amd/avalon/PSP

Trusted Platform Module

" Separate chip, limited functionality
" Chen & Ryan showed issues w/ authData
" Tarnovsky demonstrated microprobing of SLE 66

" Nemec et al: ROCA vulnerability in key
generation of secure elements / TPMs

= Boone: MITM to exploit PC-side bugs?
" Side-channel attacks?

1 https://github.com/nccgroup/TPMGenie

13

https://github.com/nccgroup/TPMGenie

ARM TrustZone

LS L I..I', Ll', i

aStartOfRawMeta DCB "Start of Raw Metdlllca OTP Collected Data™,0xA,®
; DATA XREF: sub 3EEEE+ETB

DCB @
aBoot@Data DCB "Boot © Data",® ; DATA XREF: sub 30CE6+20To0
aBootlData DCB "Boot 1 Data",® ; DATA XREF: sub 38CE6+32To
aSectorData DCB "Sector Data",® ; DATA XREF: sub 30CE6+48To

aEndOfRawMetall DCB "End of Raw Metallica OTP Collected Data™,0xA,@
; DATA XREF: sub_ 3@CE6+58To

ARM TrustZone

" HW-supported TEE in bigger ARM chips
" The OS running in TZ is up to the OEM,
examples include:
— Trustonic Kinibi (aka t-base, proprietary)

— Qualcomm QSEE (proprietary)

— Trusty (open, https://source.android.com/securitv/trustv/)

15

https://source.android.com/security/trusty/

Previous attacks on Samsung TZ

" | ong history of SW attacks on TZ,

https://googleprojectzero.blogspot.co.uk/2017/07/trust-issues-exploiting-trustzone-tees.html

" Up to Galaxy S7, attacker can roll back to old
(vulnerable) versions of trustlets

" Beniamini discovered buffer overflow in OTP
trustlet, allowing code execution in the context
of this trustlet

" Lapid & Wool showed that KeyMaster Key
Encryption Key can be extracted via OTP vuln or

cache-timing side channel
16

https://googleprojectzero.blogspot.co.uk/2017/07/trust-issues-exploiting-trustzone-tees.html

Example: Samsung Galaxy S6

" Galaxy S6 runs Trustonic TEE OS

" Trustlets are .t1lbin files in /data/app/mcRegistry:

— Biometry / fingerprint matching
2150-FffFfff00000000000000000000000e . t1lbin

— KeyMaster
2178-FT+fffTf00000000000000000000003e.t1lbin

— Samsung Pay
2172-FH++ffT000000000000000000000028 .t1bin

" Can be loaded into IDA (custom loader) and
“easily” be analysed

17

Example: fingerprint matching trustlet

¥ IDA - 2150-

File Edit Jump Search View Debugger
Baln® B 3 o DO ofoh

Library function [l Regular function [l Instruction

EH @y~

|z| Functions window

164 (2150-
Optians

Data

Windows

Function name

sub_4998
sub_49Ca
sub_49E4
sub_4A38
internal_hmac
internal_cmp_hmac
internal_encrypt
decrypt_wrapper
Getkey
CreateAuthToken

generate_template_id
encode_metadata
decode_metadata
tl_do_identify_stub
decode_each_templ
decode_all_templates
sub_S5ABC

sub_3ECA

I
I
Fi
Fi
Fi
I
I
Fi
Fi
I
F3
Fi
i
I
I
i
i
I

R

IDA View-A

Albin) Z\s6_trustzone\sb-trustlets\2150-

bt FrFm X O D[Nodebugger

BExternal symbol

) @ @

S E=% RO =

IntegrityCheckAuthToken

[i e e e S e e S o o o o o e e B e e B S

Line 39 of 1181
[Z] output window

Loading type libraries...

: 00004AER
1 000BAAE2
1 000B4AEL
1 000B4AEL
: 00BBAAEA
1 BBRBAAEC
: OB0BAAEE
1 00004AF0
1 000B4AF2
1 00004AF2
: 00e04AFE
1 000B4AFE
1 000B4AFE
1 00004AFE
1 00004AFE
: Q0BB4AFA
1 08084AFC
: 000B4AFE
:0gee4Be2
:0gea4Ba4

| @ Imports | EE
MOV R1, R6
STR [SP,#Bx38+var_38]
MOV R@, R5
BL internal hmac
MOVS R4, RO
BEQ loc_4AFS
MOV R1, RO
ADR Ra, aInternalCmpHma ;
BL debug printf ;
; Args in
B loc_4Bac
; CODE
ADDS R1, R5, R6
MOVS R2, #8x20
ADD R@, SP, #Bx38+var 34
BL memcmp_probably ; return
CBZ RO, loc_4BOC
ADR RB, aHmacCmpFailed ;

ODO03AFE 0000000000004AFE: internal_cmp_hmac+36

Autoanalysis subsystem has been initialized.

Database for file

‘2150 ff00000000000000000000000e . t1bin"

I

has been loaded.

internal_hmac

internal_cmp_hmac+24%1j

Example: fingerprint trustlet

" Reverse-engineered data flow for encryption
" Note: TrustZone has no separate storage

= Some open questions remaining ...

Key Key Key Key
Fingerprint Sign with HMAC, Signature Encryption using
Encryption using) Sign with HMAC,
Ke :
AES 256 Cipher Ciph‘;r SHA256 S'Q”T“re

R Fingerprint
» Template

FIGURE 3.9: Diagram shows fingerprint encryption flow.

Future attack vectors

= Vulnerabilities in interesting trustlets
(e.g. biometrics, payment)

= Automatic detection (e.g. missing bound checks)?

* Hardware (and software) side channels and fault attack
vulnerabilities (obtain Root Encryption Key)

20

Apple SEP

__const:0004BB6@ ; Segment type: Pure data

__const:0004BB60 AREA _ const, DATA, ALIGN=4
__const:0004BB68 -_(OF B E

_ const:0004EE6E aDerivedKey “derived key",0 DATA XREF: sub
_const:PER4ABE6C aSepDerivedKey "SEP derived key",0

__const:0004BB7C aSeWhat "SE what?",0 DATA XREF: sub

__const:0004BB35

__const:0004BB88 DCD sub 14716+1

Apple SEP

" Separate ARMV7A core in iOS devices and newer
Macs (cf. touchbar)

" Security anchor for
— Biometrics
— Storage encryption
— Device unlocking
— Apple Pay (together with separate Javacard chip)
— Selected crypto operations for apps

22

‘ @ GitHub, Inc. [US] | https://github.com/trailofbits/SecureEnclaveCrypto i m— —

| Branch: master v || New pull request | Find file | Clone or download ~

. withzombies Merge pull request #12 from trailofbits/alex - Latest commit 7e22bdd on Mar 14, 2017
B SecureEnclaveObjective-C better structure in Swift project 10 months ago
B SecureEnclaveSwift better structure in Swift project 10 months ago
E) .gitignore Initial commit 2 years ago
E) LICENSE Initial commit 2 years ago
E] README.md Update README.md a year ago
E] key builder.rb move key_builder.rb a year ago
EE README.md
SecureEnclaveCrypto SE‘ l l I e p
[
This project shows you how to — ——
/ -
e create a keypair where as the private key is stored in the secure enclave ' e
* sign a string / some data with the private key ssese ico.net LTE 16.50 Mkl dd |
» use the security functions like SecKeyRawVerify, SecKeyGeneratePair and Public key

047{c86a83661b5613e99b7d2802154ad24e771...

SecltemCopyMatching in Swift 3 and Objective-C

» store the public key in the keychain Regenerate keypair

Understanding Apple SEP

= OS and firmware format documented at BH’ 161
in detail, but no attacks published

" Firmware encrypted, but decryption keys for
iIPhone 5S published in 2017

" Firmware image (IMG4) can be parsed and
loaded into IDA using open tools

1 https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

24

https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

N e e e

Decrypting SEP firmware (iPhone 5S

sepdump00_boot
sepdump01_kerne
sepdump02_SEPC
sepdump03_SEPC
sepdump04_sepSi
sepdump05_ARTN
sepdump06_sks
sepdump06_sks.i6
sepdump07_sbio
sepdump07_sbio.i
sepdump08_scrd

44 AT IO T 4.0 DibkA C: A LD
R IDA - sepdump07 _sbio.i64 (sepdump07 sbio) Z:\ios_sep\sep_dec\sepdump07_sbio.i64 ™
File Edit | Jump | Search View Debugger Options Windows Help
EE ey i &) o DO e m X P m[:i[Nodebugger v] E>.:_[J§] BN
I e m 1 1 Al =
Library function [l Regular function [l Instruction Data Unexplored External symbol
|z| Functionswi... O & X DA ... = Strings ... [E) [E] Hex... | [A] str... | [En... [Im... | @Ex. ‘
Function name “ || Address Length Type String i
£ | sub_F916 ‘s’ __text:00054... 00000005 i 2;C"- —|
£ | sub_FoB2 ‘s'| _ text:0007B... 00000011 C ({1 ARRRRRRRAAAIN
£ | sub_FADS | FS __cstring:00... 0000003B C shio: SecureBiometricEngine application starting (%es, %es)\n
£ | sub_FADE ‘s'| __cstring:00... 00000005 c Mesa
£ | sub_FB44 E __cstring:00... 00000008 c release
| sub_FC22 ‘s’| __cstring:00... 0000001D C Could not locate AKF driver.
f | sub_FC44 E __cstring:00... 0000001E C Could not locate TRNG driver.
1| sub_FD1A ‘s’| __cstring:00... 00000020 C Could not locate expert driver.
1| sub_FD4C ‘s’| __cstring:00... 0000001E C Could not locate SKG service.
f | sub_FEGS ‘s’| __cstring:00... 00000015 C Could not locate sks
1| sub_FF2E ‘s’| __cstring:00... 00000014 C shio: %s sks foundin
1| sub_FF3A ‘s’| __cstring:00... 00000006 C _main
f | sub_FFEC ‘s’| __cstring:00... 00000025 C Could not locate ARTManager service.
£ | sub_1008A E __cstring:00... 0000001B c sbio: %s ARTManager found\n
1| sub_1014E ‘s’| __cstring:00... 0000001F C max ctx size estimate is wrong
| sub_10244 ‘s'| __cstring:00... 00000069 C /BuildRoot/Library/Caches/com.apple.xbs/Sources/Mesa_Firmware/Mesa-424.18/A
F | sub_10250 ‘s’'| __cstring:00... 00000018 C workloop RPC error r=%d
| sub_10324 ‘s’| __cstring:00... 00000025 C Could not allocate object for stack.
f | sub_10428 ‘s’ __cstring:00... 00000015 C Could not map stack.
£ | sub_10642 ‘s’| __cstring:00... 0000002D C RNG is failing to produce requested entropy.
| sub_106E4 E __cstring:00... 0000001E C _state == kSessionEstablished
£ | sub_10ACS ‘s'| __cstring:00... 0000000B c outDataOut
£ | sub_10EDA& ‘s'| __cstring:00... 0000000E C outDataLength
£ | sub_10F30 ‘s’ __cstring:00... 00000006 C patch
| sub_11042 — || 8! _cstring:00... 0000000F C encryptedPatch il
I €1 cvk 11760 Iﬂ Y a ANNAAATO ~ T ey Ty, S I [N S vt Sy - Pt Uy opur Sy |y St [[A S S
Ll 4 {11 3
Line 773 of 1363 Line 1 of 3287
| ey PR T P - o e

25

- open file "sepdump@7 sbio"

offset

description [bits.endian.size]

0007b1f0O
0PObc5cc
0PObc5ccC
©PObc7cc
©vObc7cc
000bd20c
000bd60C
000bda0c
©00bdboc
000bdc30
000bdebo
000bdebo
©0Obdebc
00Obdees
00Obdees
00Obdee8

SHA256 Hash constant words K (0x428a2f98) [32.le.256]
CRC-16-IBM maxim/usb [crcl6.0xa®0l lenorev 1.512]
CRC-16-IBM maxim/usb [crcl6.0x8005 le rev int min.512]
CRC-32-IEEE 802.3 [crc32.0xedb88320 lenorev 1.1024]
CRC-32-IEEE 802.3 [crc32.0x04c11db7 le rev int min.1024]
Rijndael Te@ (0xc66363a5U) [32.be.1024]

Rijndael Tdo (0x51f4a750U) [32.be.1024]

AES Rijndael S / ARIA S1 [..256]

AES Rijndael Si / ARIA X1 [..256]

Hash constant words K for SHA-384 and SHA-512 [64.le.640]
SHA1 / SHA® / RIPEMD-160 initialization [32.le.20&]
Lucifer (outerbridge) DFLTKY [..16]

RIPEMD-128 InitState [32.le.16&]

SHA256 [32.1e.288&]

SHA256 Initial hash value H (0x6a09e667UL) [32.le.32&]
Crypton kp [32.1e.16]

26

Future possible vulnerabilities

" Understand implementations of relevant applets
(fuzzing, static/dynamic analysis)
= Side-channel vulnerabilities with physical access

(BH’16 authors recommend: “Stick to the A7 (newer ones are
more resistant)”)

= Software side channels and faults

27

Conclusions

" Hardware security anchors and TEEs solve many
important security problems (e.g. user auth) ...

" .. but are hard to get right (all TEEs covered in
this talk have vulnerabilities)

m Potential issues include
— Software vulnerabilities

— Side channels and shared resources
— Large flexibility/complexity = large attack surface

28

UNIVERSITYOF
BIRMINGHAM

Thanks for your attention!
Questions?

d.f.oswald@bham.ac.uk

