
D3.4
Second Report on the Security of the TPM

Project number: 779391
Project acronym: FutureTPM

Project title:
Future Proofing the Connected World: A Quantum-Resistant
Trusted Platform Module

Project Start Date: 1st January, 2018
Duration: 36 months

Programme: H2020-DS-LEIT-2017

Deliverable Type: Report
Reference Number: DS-LEIT-779391 / D3.4 / v1.1

Workpackage: WP 3
Due Date: July, 2020

Actual Submission Date: 30 September, 2020

Responsible Organisation: SUR
Editor: Georgios Fotiadis , José Moreira

Kaitai Liang
Dissemination Level: PU

Revision: v1.1

Abstract:

In this report, we deliver the main contributions towards mod-
elling of TPM abstractions, with the predefined ideal function-
alities, and showcase how this can be integrated in the secu-
rity modelling for a specific application domain (Secure Device
Management).

Keywords: TPM, modelling, ideal functionalities

The project FutureTPM has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 779391.

D3.4 - Second Report on the Security of the TPM

Editor

Georgios Fotiadis (UL), José Moreira (UB)
Kaitai Liang (SURREY)

Contributors (ordered according to beneficiary numbers)

Kaitai Liang, Liqun Chen (SURREY)
José Moreira (UB)
Georgios Fotiadis (UL)
Roberto Sassu (HWDU)
Thanassis Giannetsos (DTU)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The content of this document reflects only the author’s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability. This document has gone through the consortiums
internal review process and is still subject to the review of the European Commission. Updates to the
content may be made at a later stage.

FutureTPM D3.4 PU Page I

D3.4 - Second Report on the Security of the TPM

Executive Summary

In order to provide the FutureTPM project’s envisioned services with the appropriate levels of
security, privacy and assurance, we need to define trust models that are able to capture the
complex relationships between all involved entities and components. This model must not only
capture the FutureTPM and the applications (and use cases) that rely on it, but also the TPM-
based environment in which they operate, as described in D1.1 [8].
Towards this direction, this deliverable reports on the current progress on modeling the TPM
functionalities as abstractions: ideal functionalities in order to be able to use them in mod-
els for complex protocols such as the ones used in the envisioned use cases including
remote attestation, policy-based key management, etc. This concept of “idealized functional-
ities” mean that we only expose to the (TPM) client applications, those crypto operations (of the
TPM) that are relevant to the application at hand, and we abstract from the models all the TPM
crypto functionalities that are for self-consumption (e.g., any crypto related to secure-storage, key
hierarchies, etc. that is internally used by the TPM). That is, in addition of assuming that “cryp-
tography is perfect”, as in the symbolic model, we also assume that “TPM cryptograpy operations
are perfect”. Thus, our goal is to be able to identify the right trust model that will enable us
to express fine-grained functionalities of the TPM beyond the leveraged crypto.
The focus is on further exploring the modelling of one of the FutureTPM use case and more
specifically the Device Management Scenario [8]. We proceed with a particular instance of this
use case, in which the main objective is to establish a secure TLS communication between a
Router and a Network Management System (NMS) in a network infrastructure. We first iden-
tify the TPM commands that are needed in this scenario. These are related to the creation
of TPM keys which are sealed to specific PCR values by exploiting the Enhanced Authorization
(EA) mechanism, particularly PCR policies and in addition, these commands include certification,
credential management, encryption and signature operations, which are essential for remote at-
testation.
For remote attestation, based on the Device Management use case, we opted for following the
generic version in the literature which is the IBM attestation protocol. Then we provide the ideal
functionalities for those commands based on all identified security and trust requirements require-
ments. We present the security modelling for the creation of Attestation Key (AK) and TLS key as
well as the IBM attestation protocol, which is used in order to certify the AK and finally, we sum-
marize some preliminary security features that should be considered in this reference scenario.

FutureTPM D3.4 PU Page II

D3.4 - Second Report on the Security of the TPM

Contents

List of Figures IV

1 Introduction 1
1.1 Methodology . 2
1.2 Structure of the Report . 3

2 TPM Commands and Related Protocols 4
2.1 Abstract Description of TPM Commands . 4
2.2 The IBM Remote Attestation Protocol . 10

3 Modelling TPM Commands 12
3.1 Additional Ideal TPM Functionalities . 12
3.2 Updates of Ideal TPM Functionalities in D3.3 . 16

4 Security Modelling of Use Case #3: Create and Certify the AK and TLS keys 18
4.1 Overview of the Modelling Tools Used . 20
4.2 Modelling Approach & Challenges . 21

4.2.1 Modelling Challenges . 22
4.3 Mapping Create/Load Model to Use Case #3 . 26
4.4 Modelling the IBM Attestation Protocol . 27
4.5 Security Properties . 30

5 Conclusion 32

6 List of Abbreviations 33

References 35

A SAPiC Code for AK Certification 36

FutureTPM D3.4 PU Page III

D3.4 - Second Report on the Security of the TPM

List of Figures

2.1 TPM2_Certify() command for certifying an object 6
2.2 TPM2_MakeCredential() command for protecting an object 7
2.3 TPM2_ActivateCredential() command for activating a credential 7
2.4 TPM2_Sign() command for signing a digest . 8
2.5 TPM2_VerifySignature() for verifying a signature generated by TPM2_Sign . . . 9
2.6 TPM2_PK_Encrypt() command for asymmetric encryption of a message 10
2.7 TPM2_PK_Decrypt() command for asymmetric decryption 10
2.8 IBM remote attestation protocol . 11

3.1 Ideal functionality FTPM2_Certify() . 13
3.2 Ideal functionality FTPM2_MakeCredential() . 14
3.3 Ideal functionality FTPM2_ActivateCredential() . 14
3.4 Ideal functionality FTPM2_Sign() . 15
3.5 Ideal functionality FTPM2_VerifySignature() . 15
3.6 Ideal functionality FTPM2_PK_Encrypt() . 16
3.7 Ideal functionality FTPM2_PK_Decrypt() . 16
3.8 Revised ideal functionality FTPM2_Create() . 16
3.9 Revised ideal functionality FTPM2_StartAuthSession() 17

4.1 Creation of AK by the Router and certification by the RA Server [11] 19
4.2 SAPiC syntax (a ∈ FN , x ∈ V , m, t ∈ T , F ∈ F). Note that, as opposed to

the applied pi-calculus [2], SAPiC’s input construct in(m, t);P performs pattern
matching instead of variable binding. 21

4.3 Device management use case model overview 22
4.4 Create an AK key in TPM and use it for signing 26
4.5 Create a TLS key in TPM and use it for signing 27
4.6 Modelling the AK creation and certification process 29

A.1 Example of a reachability trace of AK certification (Router side) 41
A.2 Example of a reachability trace of AK certification (RA Server side) 42

FutureTPM D3.4 PU Page IV

D3.4 - Second Report on the Security of the TPM

Chapter 1

Introduction

The main objective of Work Package (WP) 3, towards the security modelling of the Trusted Plat-
form Module (TPM), is to model the TPM commands in such a way so that we formally capture
the security of the core TPM’s functionalities, by excluding the cryptography that is used inter-
nally (e.g. hashing or asymmetric encryption) and that can be considered secure. We refer to
this model of TPM commands as “ideal functionalities”. This concept of “idealized functionali-
ties” mean that we only expose to the (TPM) client applications, those crypto operations (of the
TPM) that are relevant to the application at hand, and we abstract from the models all the TPM
crypto functionalities that are for self-consumption (e.g., any crypto related to secure-storage, key
hierarchies, etc. that is internally used by the TPM).
Instead of working with the whole TPM command set, we identify a specific subset of those
commands that are of core importance; they are widely used in most reference scenarios in the
literature, including various application domains as the ones envisioned through the FutureTPM
use cases. Such commands are related to object creation and loading in the TPM, policy-
based authorization and session management, remote attestation and those using TPM
objects for cryptographic purposes, such as for signing or for encryption. The modelling of
this subset of TPM commands will serve as a good baseline and can be enhanced in order
to formally capture the security of more complex scenarios and protocols, as well as additional
functionalities, in the context of the use cases of the project and beyond. Our goal is to be able
to identify the right trust model that will enable us to express fine-grained functionalities
of the TPM beyond the leveraged crypto.

As a starting point, we have chosen to focus on the modelling of the Device Management use
case, which is described in detail in Deliverables D4.1, D6.1 and D6.3 [10, 9, 11]. The network de-
vice management demonstrator intends to show how system integrity challenges can be solved,
at scale, in the scenario of a distributed telecommunications infrastructure composed of many
network devices that are centrally managed. In the demonstrator, network routers equipped with
a QR-TPM are required to prove their hardware identity and software integrity to a Network Man-
agement System (NMS). The process is integrated with the usual management operations that
the NMS is performing across the entire lifecycle of the router, from deployment stage through
regular operation until their decommissioning, by leveraging the concept of Remote Attestation.
Based on the outcome of this process, the NMS can decide whether any given router can be
trusted for routing user traffic or, if it cannot be trusted, whether it should be avoided, e.g. by
adjusting the routing policy on its neighbouring routers.
Due to the nature of this application domain, it serves as an excellent baseline for our modelling
due the fact that it considers all core TPM functionalities that are a common reference in most
TPM-based applications in the literature. These include the object creation operations, policy

FutureTPM D3.4 PU Page 1 of 42

D3.4 - Second Report on the Security of the TPM

session management (especially Platform Configuration Register (PCR) policy), the EA mech-
anism for session-based authorization and also remote attestation, which can be accomplished
either by the TPM Direct Anonymous Attestation protocol, which is a built-in TPM functionality, or
by more generic protocols, such as the IBM remote attestation protocol [14].

Towards this abstract mdelling, we are going to use the abstract description of TPM commands [12]
that are used in order to create a TPM key and load it into the host trusted platform. These com-
mands have been modelled, in the context of D3.3 [12], as ideal functionalities, in other words
a model that idealizes all TPM functionalities except those that serve to provide cryptography
to a consumer application and further captures their intended semantics rather than their actual
implementation. The key creation process is based on the Enhanced Authorization (EA) mecha-
nism which is a new feature in the TPM2.0. In particular, following the description of the Device
Management use case, there are keys that need to be sealed to specific PCR values and hence
they are linked to a PCR policy. This is a common practice in other TPM scenarios as well, in
addition to the use cases of this project.

1.1 Methodology

From a high-level perspective, the Device Management use case consists of three main entities:
a (set of) Routers equipped with a TPM, a Remote Attestation (RA) Server and the Network
Management System (NMS), which is responsible for managing the Routers through Transport
Layer Security (TLS) connections. In order to establish this TLS channel, each new Router needs
to create a TLS key via the TPM and this TLS key has to be certified by the RA Server. For this
certification, the Router needs to first create an Attestation Key (AK), which is also certified by
the RA Server. This later process is achieved through the IBM remote attestation protocol. In
this deliverable, we continue the work that was started in D3.3 and we focus on the modelling
of the creation of both the AK and TLS keys, as well as the certification of the AK. The process
of certifying the TLS key is ongoing and will be integrated in our model in the next and final
deliverable (D3.5).

We start our modelling approach by first presenting an abstract description of additional TPM
commands that are needed in order to create the AK and TLS keys and for their certification.
In particular, these are TPM2_Certify, TPM2_MakeCredential, TPM2_ActivateCredential, as
well as TPM2_Sign/TPM2_VerifySignature and TPM2_PK_Encrypt/TPM2_PK_Decrypt. The aim
of this abstract description is to realize how these commands operate in real-life, based on the
TPM specification manuals [22, 23]. These TPM commands are necessary in this use case, in
which they reflect (i) credential operations, (ii) secure data communication via encryption, and
(iii) data integrity verification via signature. We also present a detailed description of the IBM
remote attestation protocol [14], which is used in the certification of the AK. In the description, we
make use of the commands TPM2_MakeCredential and TPM2_ActivateCredential which are
basically used to provide a “challenge-response” mode of remote attestation.

The next step is to model these additional TPM commands, in terms of ideal functionalities, as it
was done in Deliverable D3.3. For the modelling of these ideal functionalities we use the Stateful
Applied Pi Calculus (SAPiC) [15] language, which was also used in Deliverable D3.3. When
integrating the ideal functionalities of D3.3 in our model, we realized that certain updates need to
be done. Thus, we also present a revised version of these ideal functionalities, in particular for the
commands TPM2_Create and TPM2_StartAuthSession in Chapter 3, where we also justify the
reasons for these revisions. Finally, we present an overview of the modelling tools we are going

FutureTPM D3.4 PU Page 2 of 42

D3.4 - Second Report on the Security of the TPM

to use, introduce the technical roadmap and challenges in the use case modelling and model
the AK and TLS key creation and IBM attestation protocol. We also present a preliminary set of
security properties that should be tested in the use case.

1.2 Structure of the Report

Chapter 2 provides the abstract description of TPM commands which are needed for the deploy-
ment of the Device Management use case and the description of the IBM attestation protocol.
In Chapter 3, we present the modelling of the new TPM commands as ideal TPM functionalities
and the revised version of specific ideal functionalities from D3.3. Finally, Chapter 4 presents the
security modelling for creating the AK and TLS keys as well as the certification of the AK with the
IBM remote attestation protocol and further mention some security features.

FutureTPM D3.4 PU Page 3 of 42

D3.4 - Second Report on the Security of the TPM

Chapter 2

TPM Commands and Related Protocols

In Deliverable D3.3 [12] we presented an abstract description of the TPM commands that are
used in the process of creating and loading a TPM key. In particular, we focused on a specific
instance of EA, where the TPM key to be created is linked to a certain Platform Configuration
Register (PCR) value, via a PCR policy session. This was done due to the remote attestation and
configuration integrity verification process of the device management use case, in which the TPM
keys that are created are linked with a PCR policy. In this chapter we will present an abstract
description of additional TPM commands that are needed in order to integrate the model of D3.3
to the device management use case, as this is described in D6.3 [11].

In brief, the commands that we describe here are used by the RA Client, running in the Router,
which communicates with a TPM that is embedded in the Router. This interaction between the
RA Client and the TPM is used in order to the RA Client to create an Attestation Key (AK) and
a TLS key as well as in the certification of both by the RA Server. In particular, the certification
of the AK by the RA Server is accomplished by the IBM remote attestation protocol, which we
describe in detail in Section 2.2. The exact scenario that uses the commands we describe here,
as well as the entities that are involved, is presented in Chapter 4. This corresponds to the
user story HWDU.NO.1 of the device management use case [11, page 38]. We note here that
in Deliverable D3.3 we have used the notation tpm.CommandName for describing specific TPM
commands. From now on we will use the notation TPM2_CommandName in order to be in line with
the TPM2.0 specification manual [22, 23, 24].

2.1 Abstract Description of TPM Commands

The main TPM commands for creating and loading a key into the TPM are TPM2_PCRExtend,
TPM2_StartAuthSession, TPM2_PolicyPCR, TPM2_Create and TPM2_Load. These are described
in D3.3 [12, Section 2.2]. In order to model the device management use case, we will also need
to describe the following additional TPM commands:

1. TPM2_Certify: provides a specific type of attestation. A TPM attests to an asymmetric key
pair in order to vouch that a key pair is protected by a genuine but unidentified TPM and has
particular properties. This attestation has the form of a signature signed by the TPM over
information that describes the key pair. The signature is created using an AK protected by
the TPM where the AK also needs to be attested by the “Attestation CA” [22].

2. TPM2_MakeCredential: uses a TPM public key in order to protect a given secret. De-
pending on the usage of the command this secret can be used directly to encrypt an AK
certificate, or it can be used as a challenge before issuing the AK certificate.

FutureTPM D3.4 PU Page 4 of 42

D3.4 - Second Report on the Security of the TPM

3. TPM2_ActivateCredential: verifies that the secret in TPM2_MakeCredential is indeed
protected by the right TPM public key and it is bound to the right AK and returns the secret.

4. TPM2_PK_Encrypt/TPM2_PK_Decrypt: refer to public key encryption/decryption. In partic-
ular they correspond to TPM2_RSA_Encrypt and TPM2_RSA_Decrypt, but we are replacing
the “RSA” by “PK”, so that the commands are not dependent on the underlying algorithm.

5. TPM2_Sign/TPM2_VerifySignature: refer to the process of signing a message and verify-
ing the signature.

As in D3.3, our abstract description of the above TPM commands is based on the TPM Specifi-
cation Parts 1 and 3 [22, 24].

Certify an object: TPM2_Certify [24, page 170]

It is used as a specific type of attestation, where a TPM attests to an asymmetric key pair, via a
signature that is created with an AK that is certified by an external entity called the “Attestation
CA”. Hence, this command proves that an object (key) with a specific name is loaded in the
TPM. This proof implies that the public area of the object (public key) is self consistent and it is
associated with a valid sensitive area (secret key) [24]. The command takes the following input:

• objectHandle: The handle of the object to be certified. Session-based authorization (pol-
icy or HMAC) is needed to access the content of the objectHandle.

• signHandle: The handle of the signing key (AK) that will be used to sign the attestation
structure. Session-based authorization (policy or HMAC) is needed to access the content
of the signHandle.

• qualifyingData: Additional data provided by the user that will be included in the attesta-
tion structure. This is usually a nonce to indicate the freshness of the attestation [22].

• inScheme: The asymmetric signature scheme that is used to sign the object.

In our case, the authorization for accessing both handles is performed via PCR policy sessions.
This means that the TPM will lookup for the authPolicy of each key and will compare it with the
policy digest value of the corresponding policy session. If the two comparisons are successful,
the TPM will allow access to the contents of the two keys. The TPM will lookup for the Name

and the qualified name qualName of the two keys in the corresponding creationData field (see
Section 2.2.1 in D3.3 [12]) and will create the attestation structure attestStruct, based also
on some additional information in qualifyingData, if any, provided by the user. Hence, the
attestation structure has the form:

attestStruct← (Name1, qualName1, Name2, qualName2, qualifyingData),

where Name1, qualName1 refer to the object’s name and qualified name and Name2, qualName2

refer to the name and qualified name of the AK that is used for signing. Then the TPM will sign
the attestation structure and it will output the following parameters:

• certifyInfo: This is the attestation structure that was signed by the TPM.

• signature: The signature on certifyInfo, using the signing key that is referenced in
signHandle (AK).

An abstract description of the command TPM2_Certify is given in Figure 2.1.

FutureTPM D3.4 PU Page 5 of 42

D3.4 - Second Report on the Security of the TPM

TPM2_Certify(objectHandle, signHandle, qualifiedData, inScheme)

1: objectAuthCheck ←− Authorization() //authorization check for objectHandle

2: if objectAuthCheck == TRUE then

3: signAuthCheck ←− Authorization() //authorization check for signHandle

4: if signAuthCheck == TRUE then

5: retrieve Name1 and qualName1 from objectHandle

6: retrieve Name2 and qualName2 from signHandle

7: retrieve SIGN algorithm from inScheme

8: retrieve secret signing key sk from signHandle

9: attestStruct ←− (Name1, qualName1, Name2, qualName2, qualifyingData)

10: certifyInfo ←− attestStruct

11: signature←− SIGN(sk, certifyInfo)
12: output(certifyInfo, signature)

13: else output(FAIL)

14: else output(FAIL)

Figure 2.1: TPM2_Certify() command for certifying an object

Create a credential: TPM2_MakeCredential [24, page 72]

This command protects a “plaintext" using a public key, and binds this “plaintext” to an object
Name. This “plaintext" can be a message, a key, a challenge, a piece of secret information, etc. It
takes the following input:

• handle: The handle of the loaded public area pk of a Storage key that will be used to protect
the “plaintext” information and to encrypt the seed which will be generated in the creation
of the credentialBlob.

• credential: This refers to the “plaintext” that will be protected by the Storage key refer-
enced in handle. In other words it is the secret information the user wishes to protect.

• objectName: The name of the object to which the credential is bound. This is contained
in the field creationData in the key structure.

Storage keys are encryption keys and can be either asymmetric or symmetric. In the case of the
TPM2_MakeCredential command, the Storage key is asymmetric and its public part referenced
in handle is loaded in the TPM1. Therefore, no authorization is required in order to use the public
part of the underlying Storage key. The TPM creates a value which is named credentialBlob.
This is a TPM custom mode of (symmetric) Authenticated Encryption (AE) of credential that is
bound to objectName under a symmetric encryption key k1 and MAC key k2. In particular, the
value credentialBlob is generated in the following way:

credentialBlob← [Enc(k1, credential), HMAC(k2, (Enc(k1, credential)‖objectName))],

where “‖” denotes concatenation2. The TPM also computes the value secret. This corresponds
to the encryption of the value seed that was used to derive the keys k1, k2, with the public part of

1It is explicitly mentioned in [24] that the loaded public area of the key referenced in handle must correspond to
a Storage Key, otherwise the credential cannot be properly sealed.

2This is similar to the Encrypt-then-MAC (EtM) AE mode, in which the credentialBlob would be created as:

credentialBlob← [Enc(k1, credential), HMAC(k2, Enc(k1, credential)].

The difference is that the TPM custom AE concatenates the objectName after the ciphertext Enc(k1, credential).

FutureTPM D3.4 PU Page 6 of 42

D3.4 - Second Report on the Security of the TPM

TPM2_MakeCredential(handle, credential, objectName)

1: retrieve pk from handle

2: create seed

3: create symmetric enc key: k1 ←− KDF1(seed‖objectName)
4: create MAC key: k2 ←− KDF2(seed)
5: c← Enc(k1, credential), hmac←− HMAC(k2, (c‖objectName))
6: credentialBlob←− (c, hmac), secret = Enc(pk, seed)
7: output(credentialBlob, secret)

Figure 2.2: TPM2_MakeCredential() command for protecting an object

the storage key. In other words secret = Enc(pk, seed). The output of the TPM2_MakeCredential

command is the credentialBlob and the ciphertext secret. The command is summarized in
Figure 2.2.

Activate a credential: TPM2_ActivateCredential [24, page 68]

This command is used in order to activate a credential that is previously generated using the
command TPM2_MakeCredential. This means that the command TPM2_MakeCredential cre-

TPM2_ActivateCredential(activateHandle, keyHandle, credentialBlob, secret)

1: keyAuthCheck ←− Authorization() //authorization check for keyHandle

2: if keyAuthCheck == TRUE then

3: objectAuthCheck ←− Authorization() //authorization check for activateHandle

4: if objectAuthCheck == TRUE then

5: validationCheck ←− ValidateInput() //check properties for activateHandle

6: if validationCheck == SUCCESS then

7: get sk from keyHandle

8: get objectName from activateHandle

9: seed←− Dec(sk, secret)
10: get c, hmac from credentialBlob

11: recreate MAC key: k2 ←− KDF2(seed)
12: checkHMAC←− ValidateHMAC(k2, (c‖objectName), hmac)
13: if checkHMAC == SUCCESS then

14: recreate symmetric decryption key: k1 ←− KDF1(seed‖objectName)
15: credential←− Dec(k1, c)
16: output(credential)

17: output(FAIL)

18: output(FAIL)

19: output(FAIL)

Figure 2.3: TPM2_ActivateCredential() command for activating a credential

ates an association between a “plaintext” with an object Name, but in order for this association
to be enabled, the command TPM2_ActivateCredential needs to be executed. The command
takes the following input:

• activateHandle: The handle of the object that is associated with the credential value in
the credentialBlob.

FutureTPM D3.4 PU Page 7 of 42

D3.4 - Second Report on the Security of the TPM

• keyHandle: The handle of the key that was used to encrypt the seed.

• credentialBlob: This is the first output of the command TPM2_MakeCredential.

• secret: The second output of the command TPM2_MakeCredential, basically the encryp-
tion of the seed with the public part of the key referenced in keyHandle.

The use of both keys referenced in activateHandle and keyHandle require authorization (pol-
icy or HMAC). For the key that is associated with the credential, extra checks are performed in
order to ensure that the key is asymmetric and that it is a restricted decryption key. The private
part sk of the key referenced in keyHandle is needed to retrieve the seed that was used in the
creation of the symmetric encryption key k1 and the MAC key k2 in the TPM2_MakeCredential

command. The Name of the key in activateHandle is required in order to reconstruct the sym-
metric encryption key k1, as well as for the verification of the HMAC value that was used to create
the credentialBlob (this is done with ValidateHMAC(k2, (c‖objectName), hmac)). The output
of the command is the initial credential. The abstraction of the activateHandle command is
summarized in Figure 2.3.

Sign a message: TPM2_Sign [24, page 209]

The command TPM2_Sign is used in order to create a signature over a message that is provided
by the user, using either a symmetric or an asymmetric signing key. For signatures that are
generated by symmetric algorithms (HMAC, SMAC), the signing key is unrestricted. In the case

TPM2_Sign(keyHandle, digest, inScheme, validation)

1: keyAuthCheck ←− Authorization() //authorization check for keyHandle

2: if keyAuthCheck == TRUE then

3: keyValidation ←− ValidateKey() //validation check for signing key

4: if keyValidation == SUCCESS then

5: validationCheck ←− ValidateInput() //validate digest

6: if validationCheck == SUCCESS then

7: retrieve ssk from keyHandle

8: retrieve SIGN algorithm from inScheme

9: signature ←− SIGN(ssk, digest)

10: output(signature)

11: else output(FAIL)

12: else output(FAIL)

13: else output(FAIL)

Figure 2.4: TPM2_Sign() command for signing a digest

of asymmetric signing algorithms, the key is restricted. That is, a particular asymmetric signing
key can be used in order to sign a digest value that is produced by the TPM, while in addition, a
validation needs to be provided, showing that the digest value is indeed created by the TPM. The
command takes the following input:

• keyHandle: The handle of the signing key that will be used for signing.

• digest: The digest value that will be signed. This is produced by the TPM.

FutureTPM D3.4 PU Page 8 of 42

D3.4 - Second Report on the Security of the TPM

• inScheme: A reference to signing algorithm that will be used. The signing key needs to be
compatible with the chosen algorithm.

• validation: If the signing key is restricted, this value is a proof that the digest is produced
by the TPM.

The abstract description of this command is presented in Figure 2.4. The use of the signing
key requires authorization, using sessions. In our case, this corresponds to PCR policy session-
based authorization. ValidateKey() refers to the the process of checking whether the signing
key is compatible with the chosen algorithm that is referenced in inScheme. On the other hand,
ValidateInput() is the process of checking the validity of the digest value, i.e. whether the
digest is produced by the TPM. The output of the command is the signature, generated by the
TPM, or FAIL, if either the key authorization process, or at least one of the validity checks fails.

TPM2_VerifySignature(keyHandle, digest, signature)

1: retrieve psk from keyHandle

2: validation ← VerifySIGN(psk, digest, signature)

3: output(validation)

Figure 2.5: TPM2_VerifySignature() for verifying a signature generated by TPM2_Sign

The verification of a signature that is generated by the TPM command TPM2_Sign is done with the
command TPM2_VerifySignature. This is summarized in Figure 2.5. Note that the use of the
public signing key psk requires no authorization, since the command uses keys that are already
loaded in the TPM [24]. In addition, VerifySIGN() refers to the verification of the signature and
it depends on the algorithm that was used for creating the signature.

Encrypt/Decrypt a message: TPM2_PK_Encrypt/TPM2_PK_Decrypt [24, pages 100, 104]

We assume that the command TPM2_PK_Encrypt refers to the asymmetric encryption process,
using a quantum-resistant cryptographic algorithm. The abstract description we will present here
will be independent from the chosen algorithm. It takes the following input:

• keyHandle: The handle of the asymmetric encryption key.

• message: The message to be encrypted.

• inScheme: A reference to encryption and padding algorithms that will be used.

• label: An optional label associated to the message. This is used in the descryption, where
the association with the message might need to be verified.

The command process is described in Figure 2.6. Note that as in the case of TPM2_Sign, the va-
lidity of the public key needs to be verified, but no authorization is required. The command outputs
the encrypted message outData. The decryption process is performed via the TPM2_PK_Decrypt

command, which takes as input the handle keyHandle of the public key pair, whose public part
was used for encryption, the ciphertext, the inScheme parameter which refers to the padding al-
gorithm that was used during encryption and the field label, which as we pointed out earlier is
an optional field in case the message needs to be verified. Since the private part sk of the key
referenced in keyHandle is used, authorization for accessing this private key is required. Recall
all key authorizations in our model will be based on PCR policies. The command outputs either
the original plaintext message, of FAIL, depending on whether the authorization was successful.

FutureTPM D3.4 PU Page 9 of 42

D3.4 - Second Report on the Security of the TPM

TPM2_PK_Encrypt(keyHandle, message, inScheme, label)

1: keyValidation ←− ValidateKey() //validation check for signing key

2: if keyValidation == SUCCESS then

3: retrieve pk from keyHandle

4: retrieve ENC algorithm from inScheme

5: outData ←− ENC(pk, message)

6: output(outData)

7: else output(FAIL)

Figure 2.6: TPM2_PK_Encrypt() command for asymmetric encryption of a message

TPM2_PK_Decrypt(keyHandle, ciphertext, inScheme, label)

1: authCheck ←− Authorization() //authorization for secret key

2: if authCheck == TRUE then

3: retrieve sk from keyHandle

4: retrieve DEC algorithm from inScheme

5: message ←− DEC(sk, ciphertext)

6: output(message)

7: else output(FAIL)

Figure 2.7: TPM2_PK_Decrypt() command for asymmetric decryption

2.2 The IBM Remote Attestation Protocol

In this section we give a brief and simplified description of the IBM remote attestation protocol [14]
that is used in the device management use case, in particular in HWDU.NO.1 [11, §3.1.3.1], for
the certification of the AK and it can be viewed as a “challenge-response” protocol between a
client and a server. In the device management use case, the IBM remote attestation protocol
is executed between the RA Client, which is equipped with a TPM and the RA Server. This
interaction that captures the certification of the AK by the RA Server is summarized in Figure 2.8.
The RA Client sends to the RA Server its Fully Qualified Domain Name (FQDN), the public part
of the AK akpsk and the certificate of the EK certM(ekpk), which is an X509 certificate containing
the signature of the ekpk with the TPM Root Endorsement Key (EK) (this is denoted as M). This
initiates the enrollment process. Upon receipt, the RA Server first performs certain validation
checks on the received values. In particular, it checks whether this particular FQDN is already
enroled, whether the certM(pkek) is valid and whether the AK satisfies the required properties
e.g. the AK must be a signing restricted key and compatible with a specific signing algorithm.
Then the RA Server proceeds with the creation of the challenge, in order to verify that the EK and
AK are indeed created by the specific TPM.

This challenge is the result of the command TPM2_MakeCredential, which as described in Fig-
ure 2.2. Note here that the RA Server does not have to be equipped with a TPM in order to
execute this command. It can either emulate the TPM2_MakeCredential command by following
the exact same steps, as it is described in Figure 2.8 (steps 4–10), or for convenience, it can use
a local TPM in order to execute the command. In any case, it requires the public part of the EK,
which is extracted by the certM(ekpk) certificate (step 2 in Figure 2.8) and the name akName of
the AK (step 3 in Figure 2.8). According to [23, page 99], the name of an object that is created
in a TPM corresponds to the hash of its public part. Steps 4–10 correspond to the steps of the

FutureTPM D3.4 PU Page 10 of 42

D3.4 - Second Report on the Security of the TPM

RA Client RA Server

(FQDN, akpsk, certM(ekpk))

1: ServerChecks

2: extract ekpk from certM(ekpk)
3: create akName form akpsk
4: new cred

5: new seed, secret← ENC(ekpk, seed)
6: k1 ← KDF1(seed‖akName)
7: k2 ← KDF2(seed)
8: c← Enc(k1, cred)
9: hmac← HMAC(k2, (c‖akName))
10: blob← (c, hmac)
11: store [FQDN, cred, certM(ekpk)] in DB

(blob, secret)

12: cred←
TPM2_ActivateCredential(akH, ekH, blob, secret)

(FQDN, cred)

13: check if FQDN, cred in DB

14: certak ← certPCA(akName‖FQDN)certak

Figure 2.8: IBM remote attestation protocol

TPM2_MakeCredential command, where cred is the protected value generated by the RA Server
and (blob, secret) is the RA Server’s challenge which is sent to the RA Client. Further, the
RA Server stores the triple [FQDN, cred, certM(ekpk)] in its Database DB (step 11 in Figure 2.8).

The RA Client upon receiving the challenge (blob, secret) it executes, via the TPM, the com-
mand TPM2_ActivateCredential, with input the handle akH of the AK, the handle ekH of the EK
and the pair (blob, secret), in order to verify the validity of the received parameters (see Fig-
ure 2.3 for the checks that are performed). The command will return the credential cred that was
initially generated by the RA Server (step 12 in Figure 2.8). Then the RA Client sends back to the
RA Server the pair (FQDN, cred). The RA Server checks that the received values are match-
ing the corresponding entry in the DB (step 13 in Figure 2.8) and asks the Privacy Certification
Authority (PCA) to create a certificate for this AK, namely certak ← certPCA(akName‖FQDN) (step
14 in Figure 2.8). This is returned to the RA Client in clear and hence the RA Client now has the
certificate certak of the AK. A successful completion of the protocol implies that the RA Client is
enrolled at the RA Server.

FutureTPM D3.4 PU Page 11 of 42

D3.4 - Second Report on the Security of the TPM

Chapter 3

Modelling TPM Commands

In Deliverable D3.3 [12, Section 2.3] we presented the modelling of specific TPM commands that
are related to the process of creating a TPM key and loading it into the TPM, where a TPM key
is associated to a PCR policy. In this chapter we model the additional TPM commands that are
described in Section 2.1, which are necessary in order to model the process of creating an AK
and a TLS key, as well as their certification.

Following Deliverable D3.3 [12, Section 2.3], we use the term “ideal functionality” which refers to
our modelling approach for each TPM command. The key feature of our concept of the ideal func-
tionality, is that it idealizes all TPM functionalities except those that serve to provide cryptography
to a consumer application (e.g., hashing or asymmetric encryption), capturing their intended se-
mantics rather than their actual implementation. As mentioned in D3.3, idealizing cryptography
that is used internally allows one to study the security of applications and systems that rely on the
TPM by: i. checking that the TPM is used in a way that allows this idealization; and ii. analyzing
only cryptography relevant to the application itself.

An example of idealizing cryptography is also presented in [12, Section 2.1.1], concerning a
scenario where EA authorization is used by an honest user in order to create a TPM-protected
(non-primary) object sealed to a PCR state (that is, protected by a policy constructed by mea-
suring the state of some subset of the PCRs). Recall that in reality, the TPM key needs to be
bound to the policy digest value of a PCR policy session. That is, the authorization policy of the
key must be set as the digest value of the policy digest of a PCR policy, which is constructed
iteratively through hash chaining the parameters of successive policy commands. In our ideal
functionality, we model this by keeping all measurements in a policy digest list pD, where in each
new policy evaluation we simply append the new measurement in this list.

For the rest of this report, the ideal functionality of a command TPM2_CommandName will be denoted
as FTPM2_CommandName. In addition and following Deliverable D3.3 [12, Section 2.3], our modelling of
the ideal functionality FTPM2_CommandName will be presented in SAPiC [15]. For the syntax in SAPiC,
see Table 4.2, or [15].

3.1 Additional Ideal TPM Functionalities

Ideal functionality for certifying an object: FTPM2_Certify

The ideal functionality for certifying a key is described in Figure 3.1. It takes as input the handle
objh of the object that we wish to certify, the corresponding session handle sH that was used
in the creation of that object and the handle of the AK akh. As the description of the command

FutureTPM D3.4 PU Page 12 of 42

D3.4 - Second Report on the Security of the TPM

TPM2_Certify suggests (see Figure 2.1), both keys need proper authorization. However, as we

FTPM2_Certify :=
1: in(<`Certify', objsh, objh, akh>); //input: key handles and object's session

handle

2: lock objsh; lock objh; lock akh;

3: lookup <policyDigest, objsh> as pD in //get policy digest from policy session

4: lookup <authPolicy, objh> as aP in //get authPolicy value from object

5: if aP == pD then

6: lookup <publicPart, objh> as objpk in //get object's public part

7: lookup <publicPart, akh> as akspk in //get AK public part

8: lookup <privatePart, akh> as akssk in //get AK private part

9: let certifyInfo = <objpk, akspk> in

10: let signature = revealSign(certifyInfo, akssk)
11: out(certifyInfo, signature);

12: unlock objsh; unlock objh; unlock akh
13: else unlock objsh; unlock objh; unlock akh

Figure 3.1: Ideal functionality FTPM2_Certify()

discussed in the previous section, in our modelling we assume that the AK is not bound to any
policy and hence authorization for the AK is not required.

The ideal functionality checks whether the authorization policy aP of the object matches the policy
digest value pD of the corresponding session and if this is true, it retrieves the public parts of the
object and the AK, as well as the private part akssk of the AK. This will be used to sign the attesta-
tion structure (or certifyInfo) and the ideal functionality will return both the attestation structure
certifyInfo and the signature on that structure under the private part of the AK. Note that the
attestation structure is constructed with the public parts of the two keys, instead of their names
as it is described in the TPM2_Certify command. In addition, the signature on the attestation
structure is modelled via the Tamarin built-in revealSign/2 function [4]. The signature can be
then verified using the equational theory:

revealVerify(revealSign(certifyInfo, akssk), certifyInfo, akspk) = true.

Tamarin also contains the function symbol getMessage/1, which given the signature that is cre-
ated as revealSign(certifyInfo, akssk) it outputs the message that is signed, via:

getMessage(revealSign(certifyInfo, akssk)) = certifyInfo.

Ideal functionality for creating a credential: FTPM2_MakeCredential

We model the TPM command TPM2_MakeCredential, for protecting a credential cred. In order to
do so, we need to note that the storage key that will be used the EK with handle ekh, represented
as the key pair (eksk, ekpk = pk(ekpk)). On the other hand, the object to which the credential
cred is bound is the AK with handle akh, represented as the pair (akssk, akspk = pk(akspk)).

The binding of cred with the AK is done with the function symbol makeCredential/3, in line
5 of Figure 3.2. This function outputs the value credBlob which will be used in order to ac-
tivate the credential cred. We also define the function symbols activateCredential/3 and

FutureTPM D3.4 PU Page 13 of 42

D3.4 - Second Report on the Security of the TPM

FTPM2_MakeCredential :=
1: in(<`MakeCredential', ekh, cred, akh>); //input: handles of EK and AK & cred to

be protected and bound to AK

2: lock ekh; lock akh;

3: lookup <publicPart, ekh> as ekpk in //get EK's public part

4: lookup <publicPart, akh> as akspk in //get AK's public part

5: let credBlob = makeCredential(ekpk, cred, akspk) in

6: out(credBlob);

7: unlock ekh; unlock akh

Figure 3.2: Ideal functionality FTPM2_MakeCredential()

verifyCredential/3, which satisfy the equational theory:

activateCredential(akspk, eksk, makeCredential(ekpk, cred, akspk)) = cred, (3.1)
verifyCredential(akspk, eksk, makeCredential(ekpk, cred, akspk)) = true. (3.2)

In this way we avoid the modelling of the cryptographic operations that are needed in the actual
TPM2_MakeCredential command, such as the key derivation functions, asymmetric encryption
and HMAC computations. In our model that will be presented in Chapter 4, the EK will be consid-
ered as an object that is already loaded into the TPM.

We note that this command does not use any TPM secrets nor does it require authorization. It is
a convenience function, using the TPM to perform cryptographic calculations that could be done
externally [24]. Indeed, from the point of view of modelling, the party executing this command can
simply create a term by invoking the verifyCredential/3 function symbol, and the equational
theory defined above will follow. Also, the output of this ideal functionality is just the single object
credBlob, rather than the pair of objects credentialBlob, secret returned by a TPM (see
Figure 2.2), since the semantics of the theory is not affected.

FTPM2_ActivateCredential :=
1: in(<`ActivateCredential', ekh, credBlob, akh, aksh>); //input: handle of EK,

credBlob, handle of AK & AK session handle

2: lock ekh; lock akh; lock aksh
3: lookup <`policyDigest', aksh> as pD in

4: lookup <`authPolicy', akh> as aP in

5: if aP == pD then

6: lookup <`publicPart', akh> as akspk in

7: lookup <`privatePart', ekh> as eksk in

8: if verifyCredential(akspk, eksk, credBlob) = true then

9: let cred = activateCredential(akspk, eksk, credBlob) in

10: out(cred);

11: else unlock ekh; unlock akh; unlock aksh
12: else unlock ekh; unlock akh; unlock aksh

Figure 3.3: Ideal functionality FTPM2_ActivateCredential()

FutureTPM D3.4 PU Page 14 of 42

D3.4 - Second Report on the Security of the TPM

Ideal functionality for activating a credential: FTPM2_ActivateCredential

For the ideal functionality FTPM2_ActivateCredential, no authorization is needed for the EK, since we
assume that it is globally defined and already loaded into the TPM. The process of activating a
credential that was previously generated by the ideal functionality FTPM2_MakeCredential is described
in Figure 3.3. Note that the verification of the credBlob in step 8 is done using Equation (3.2)
and the activation of cred in step 9, using Equation (3.1).

Ideal functionality for signing/verifying: FTPM2_Sign/FTPM2_VerifySignature

Our model for the signing command is presented in Figure 3.4. For the creation of the sig-
nature sign under the secret signing key kssk, referenced in the handle kh we use the built-in
revealSign/2 function of Tamarin [4]. The verification command is summarized in Figure 3.5.

FTPM2_Sign :=
1: in(<`Sign', kh, ksh, m>); //input: key & policy session handles & message

2: lock kh; lock ksh;

3: lookup <`policyDigest', ksh> as pD in //get policy digest from policy session

4: lookup <`authPolicy', kh> as aP in //get authPolicy value from key

5: if aP == pD then //compare authPolicy against policy digest

6: lookup <`privatePart', kh> as kssk in //get secret signing key

7: let sign = revealSign(m, kssk) in

8: out(sign);

9: unlock kh; unlock ksh
10: else unlock kh; unlock ksh

Figure 3.4: Ideal functionality FTPM2_Sign()

FTPM2_VerifySignature :=
1: in(<`VerifySign', kh, m, sign>); //input: key handle & message & signature

2: lock kH;

3: lookup <`publicPart', kh> as kspk in //get public signing key

4: let validation = revealVerify(sign, m, kspk) in

5: out(validation);

6: unlock kh

Figure 3.5: Ideal functionality FTPM2_VerifySignature()

Ideal functionality for public key encryption: FTPM2_PK_Encrypt

The model of the ideal functionalityFTPM2_PK_Encrypt is summarized in Figure 3.6. For the decryption
process, authorization is needed for using the private part of the key referenced in the handle kh.
As usual, this is done using the authorization policy of the key and the policy digest of the PCR
policy session. Note here that for the creation of the ciphertext in 3 of Figure 3.6 we use the
function symbol aenc/2, while for the decryption process in step 6 of Figure 3.7, we use the
function symbol adec/2 [4]. These are linked by the relation:

adec(aenc(m, kpk), ksk) = m.

FutureTPM D3.4 PU Page 15 of 42

D3.4 - Second Report on the Security of the TPM

FTPM2_PK_Encrypt :=
1: in(<`PK-Encrypt', kh, message>); //input: handle of public key, message

2: lock kh;

3: lookup <`publicPart', kh> as kpk in

4: let outData = aenc(message, kpk) in

5: out(outData);

6: unlock kh

Figure 3.6: Ideal functionality FTPM2_PK_Encrypt()

FTPM2_PK_Decrypt :=
1: in(<`PK-Decrypt', kh, ksh, ciphertext>); //input: handle of public key and

session & ciphertext

2: lock kh; lock ksh;

3: lookup <`policyDigest', ksh> as pD in //get policy digest from policy session

4: lookup <`authPolicy', kh> as aP in //get authPolicy value from key

5: if aP == pD then //compare authPolicy against policy digest

6: lookup <`privatePart', kh> as ksk in

7: let message = adec(ciphertext, ksk) in

8: out(message);

9: unlock kh; unlock ksh
10: else unlock kh; unlock ksh

Figure 3.7: Ideal functionality FTPM2_PK_Decrypt()

3.2 Updates of Ideal TPM Functionalities in D3.3

The modelling of the additional TPM commands in the previous section results in the need to
perform certain updates on the ideal functionalities that we have modelled in the D3.3 [12]. In

FTPM2_Create :=
1: in(<`Create', ksh>); //input: handle of session

2: lock ksh;

3: lookup <`policyDigest', ksh> as pD in //get policy digest from policy session

4: new kh; //handle of the new key

5: lock kh;

6: new ksk; //private part of new key

7: let kpk = pk(ksk) in; //public part of new key

8: insert <`privatePart', kh>, ksk;

9: insert <`publicPart', kh>, kpk;

10: insert <`authPolicy', kh>, pD;

11: out(<kh, kpk>);

12: unlock kh; unlock ksh

Figure 3.8: Revised ideal functionality FTPM2_Create()

particular, we need to revise the modelling of the FTPM2_Create command in order to consider

FutureTPM D3.4 PU Page 16 of 42

D3.4 - Second Report on the Security of the TPM

the creation of an asymmetric key pair with a public and private part. The updated version of
FTPM2_Create is described in Figure 3.8.

In addition, in the ideal functionality FTPM2_StartAuthSession of D3.3, for creating a session, we dis-
tinguished the type of the session to be created, as “trial” and “policy” session. The type of the
session was stored in the field “SESSIONType” (see Figure 2.7 in [12]). Trial sessions are used
for creating keys and specifically for linking the authorization policy (authPolicy) of the key to
specific policy (i.e. to the policyDigest of the session). Policy sessions are used in order to load
the key in the TPM. The difference in the two session types is that in the case of a trial session,
the TPM simply updates the policy digest of the session according to the user’s input digest value.
In the case of policy sessions, e.g. using PCR policy, in order to update the policy digest value
of the session, the user’s input digest is checked against the corresponding PCR values and the
update will be performed if the two values match.

FTPM2_StartAuthSession :=
1: in(<`StartAuthSession'>);

2: new sh;

3: lock sh;

4: insert <`policyDigest', sh>, null; //policy digest is set to null

5: out(sh);

6: unlock sh

Figure 3.9: Revised ideal functionality FTPM2_StartAuthSession()

We update the ideal functionality FTPM2_StartAuthSession, is such way that when we create a session,
we do not consider the type of the session, motivated also by the work of Shao et al. [21]. That is,
In our model we will consider all sessions as policy sessions. The evaluation of the policy digest
based on PCR values is something that we will be dealing with in the final Deliverable D3.5. The
revised ideal functionality for FTPM2_StartAuthSession is presented in Figure 3.9.

FutureTPM D3.4 PU Page 17 of 42

D3.4 - Second Report on the Security of the TPM

Chapter 4

Security Modelling of Use Case #3: Create
and Certify the AK and TLS keys

The device management use case is described in full depth in Deliverables D4.1 [10], D6.1 [9]
and D6.3 [11]. The device management demonstrator consists of three main entities, the Routers
which are responsible for routing user traffic, the Network Management System (NMS) which
manages the Routers through TLS channels and the RA Server which is responsible for attesting
the Routers.

Each new Router that joins the network needs to securely establish trust with NMS. This process
is called enrollment and it is achieved with the issuance of a TLS certificate that is used to
securely communicate with the NMS or with other Routers. Therefore, the enrollment process
involves the creation of a TLS by the Router, which is certified by the RA Server and signed by
the NMS. The certification of the TLS key is achieved using the AK, which is previously generated
by the Router and certified by the RA Server. The certification of the AK is accomplished by
the IBM remote, privacy-preserving attestation protocol which we described in Section 2.2 (see
Figure 2.8). Once the AK is certified, the Router will generate a TLS signing key pair, which can
then be used for the establishment of TLS channel.

Each Router is equipped with a (quantum-resistant) TPM, which is used for certain cryptographic
operations, such as for creating cryptographic keys, quotes and Certificate Signing Requests
(CSRs). In addition, each Router consists of two components. The Zero Touch Provisioning (ZTP)
Agent, which is an agent running on each Router and it is responsible for initiating certification
of the AK and the TLS key. In addition, the ZTP Agent is responsible for responding to remote
attestation request by the NMS. Each Router also contains the RA Client, which is the component
that interacts with the TPM. On the other hand, the RA Server contains the RA Lib, which is a
library that is responsible for the enrollment of each Router and for the verification of the CSRs
and quotes that are received from the Router.

In this chapter we present our security model for the creation of the AK and TLS keys. The certi-
fication process of the two keys is split in two parts. In this deliverable we present our modelling
approach for the certification of the AK as this is described by Huawei in Deliverable 6.3 [11,
Chapter 4, HWDU.NO.1], i.e. the model for the IBM remote attestation protocol. The modelling
for the certification of the TLS key is currently in progress and it will be presented in detail in
Deliverable 3.5. We point out here that both the AK and TLS keys in this particular instance are
asymmetric keys, hence they have a public and a private part and they are both used for signing.

For the convenience of the reader, we give a brief description of the AK certification process. This
is described in Figure 4.1, which is taken from Deliverable D6.3. In particular, the AK certification

FutureTPM D3.4 PU Page 18 of 42

D3.4 - Second Report on the Security of the TPM

is composed of the following steps:

Figure 4.1: Creation of AK by the Router and certification by the RA Server [11]

1. Obtain RA Server cert: The ZTP Agent in the Router obtains the RA Server certificate from
the NMS.

2. Extract RA Server FQDN from certificate and begin the enrollment: The ZTP Agent extracts
the RA Server FQDN from the certificate and passes it to RA Client.

3. Generate AK: The RA Client generates an AK that will be used to certify the TLS key.
In particular, the RA Client executes the TPM commands: TPM2_StartAuthSession and
TPM2_Create in sequence. The first command will create a new session and initiate the
policy digest value of this session to zero digest. According to the description of the device
management use case, the AK will not be bound to any policy and hence the command
TPM2_Create will create the AK with authPolicy set to zero digest.

4. Get AK cert: The RA Client asks the RA Server to issue a certificate for the AK it generated.

5. Check if Router EK credential is in NMS DB: The RA Server asks the NMS if the EK cre-
dential of the Router requesting an AK certificate has been added to the NMS DB by the
Network Administrator; this prevents any Router from getting an AK certificate.

6. Generate credential blob and verify challenge response by Router: The RA Lib generates
a credential blob and asks RA Client in the Router to prove that the Router possesses the
EK. This is achieved through the emulated steps of the command TPM2_MakeCredential,
which correspond to steps 1–11 in the IBM remote attestation protocol (Figure 2.8). The
proof on behalf of the RA Agent created with the command TPM2_ActivateCredential

(step 12 in Figure 2.8).

7. Generate AK certificate and send it to Privacy CA: The RA Lib generates a certificate for
the Router AK and asks Privacy CA in RA Server to sign the certificate.

8. Sign AK certificate: Privacy CA signs the AK certificate; RA Server sends it to the Router.
This is done in step 14 in Figure 2.8.

9. Store AK certificate: RA Server stores the signed AK certificate in the DB.

The security modelling of the above user story is presented in Section 4.4. The code in SAPiC is
also given in the Appendix A.

FutureTPM D3.4 PU Page 19 of 42

D3.4 - Second Report on the Security of the TPM

4.1 Overview of the Modelling Tools Used

Before delving into the details of the modelling of the scenarios, we briefly present an overview
of the tools used. We perform the modelling and analysis of security properties of the use cases
using the Tamarin prover and its front-end SAPiC. We refer the reader to [19, 16, 4, 15] for further
reference.

Tamarin is a state-of-the-art tool for symbolic verification and automated analysis of security prop-
erties in protocols, under the Dolev-Yao model [13], with respect to an unbounded number of ses-
sions. We already discussed similar tools for symbolic verification in Deliverable D3.1 [7], most
notably ProVerif [5], where protocols are specified using applied pi-calculus [1]. As opposed to
Tamarin, which implements a constraint solving algorithm, ProVerif is based on a resolution al-
gorithm that works at the Horn-clause translation of the protocol under analysis. This translation
works reasonably well for protocols with monotonic global state (i.e., protocols that do not “forget”
information), but it makes difficult to model protocols with arbitrarily mutable global state, as it
occurs for the requirements of the use cases. Several extensions to ProVerif have appeared to
tackle this issue [3, 6], but they also come with some limitations (e.g., a finite number of mem-
ory cells). In our approach, we have decided to implement our models with Tamarin, since it
can handle protocols with unbounded, non-monotonic global state, even under replication, and
unbounded sessions. However, we are aware that it comes with the trade-off of loosing some
automation, i.e., the user has to provide auxiliary lemmas for complex protocols. In addition, we
note that there are related works that have been successful in proving security properties for TPM
functionalities using these tools, such as [21, 20].

More concretely, we develop our models using the SAPiC front-end, which enables to define
protocols in a calculus (similar to applied pi-calculus) rather than directly into multiset rewrite
rules, and converts them into (labeled) multiset rewriting rules (MSRs) to be analysed by Tamarin.

Fig. 4.2 describes the SAPiC syntax. The calculus comprises an order-sorted term algebra with
infinite sets of publicly known names PN , freshly generated names FN , and variables V . It also
comprises a signature Σ, i.e., a set of function symbols, each with an arity. The messages are
elements of a set of terms T over PN , FN , and V , built by applying the function symbols in Σ.

These rules, when fired, model the state transitions and generate a sequence of labels called
trace. Every transition is labeled by facts.

The set of facts is defined as F = {F (t1, . . . , tn) | ti ∈ T , F ∈ Σ of arity n}. The special fact
K(m) states that the term m is known to the adversary. For a set of roles, the Tamarin MSRs
define how the system, i.e., protocol, can make a transition to a new state. An MSR is a triple of
the form [L] −[A]→ [R], where L and R are the premise and conclusion of the rule, and A is a
set of action facts, modeled by SAPiC events. For a process P , its trace Tr(P) = [F1, . . . , Fn] is
an ordered sequence of action facts generated by firing the rules in order.

Tamarin allows to express security properties as temporal, guarded first-order formulas, modeled
as trace properties. The construct F@i states that fact F occurs (i.e., is true) at timepoint i.
A property can be specified as a lemma or as a restriction, depending if the property is being
verified or enforced [19].

Except for observational equivalence, Tamarin is sound and complete, but it may not terminate,
because the verification problem is undecidable in general. In that case, user intervention is re-
quired in the form of auxiliary lemmas. Everything SAPiC does can be expressed in MSRs in
Tamarin. However, compared to direct MSR encoding, modelling using SAPiC helps to develop

FutureTPM D3.4 PU Page 20 of 42

D3.4 - Second Report on the Security of the TPM

〈P ,Q〉 ::= processes
| 0 terminal (null) process
| P | Q parallel composition of P and Q
| !P replication of P
| ν a; P binds a to a new fresh value in P
| out(m, t); P outputs message t to channel
| in(m, t); P inputs message t from channel m
| if Pred then P [else Q] P if predicate Pred holds; otherwise Q
| event F; P executes event (action fact) F
| P + Q non-deterministic choice
| insert m, t; P inserts t at memory cell m
| delete m; P deletes the content m
| lookup m as x in P [else Q] if m exists, bind it to x in P ; otw. Q
| lock m; P gain exclusive access to cell m
| unlock m; P waive exclusive access to m
| [L] −[A]→ [R]; P (L,R,A ∈ F∗) provides access to Tamarin MSRs

Figure 4.2: SAPiC syntax (a ∈ FN , x ∈ V , m, t ∈ T , F ∈ F). Note that, as opposed to the
applied pi-calculus [2], SAPiC’s input construct in(m, t);P performs pattern matching instead of
variable binding.

a concise model that guarantees that the user cannot make mistakes in modeling state, concur-
rency, locks, progress, reliable channels, or isolated execution environments. For some of these,
the encoding is likely more clever than ad-hoc modelling a user would come up with using MSRs.
In that case SAPiC has a better chance for termination. In general, it is more convenient, although
some things, like state machines, are more natural in MSRs, but these are out of the scope of our
models.

4.2 Modelling Approach & Challenges

As stated in the introduction, our goal is to show how the ideal functionalities of the TPM that
we have described in Section 3.1 can be used to demonstrate security properties in the device
management reference scenario. In particular we are interested in modelling the core TPM func-
tionalities which appear in most “real life” TPM-based applications in the literature and which are
related to the management of PCRs, the creation of objects and their sealing to PCRs and the
remote attestation mechanisms, either DAA or the IBM remote attestation protocol.

To this end, the properties that are within the scope of the model for the Network Management
use case are:

• The legitimate certification of AKs,

• The legitimate certification of TLS Keys and

• The successful establishment of a TLS connection between Router and NMS.

Properties that we consider as out of scope in our model are the certification of the EKs, as well
as any other certification of keys that are assumed to be trusted. In addition, some components
will be aggregated into the same process. Observation of communications between these com-
ponents will be outside the scope of the adversary. Particularly, we distinguish the following four
processes in our model for the device management use case:

FutureTPM D3.4 PU Page 21 of 42

D3.4 - Second Report on the Security of the TPM

• Process: Router = [Router, ZTP Agent, RA Client]

• Process: RA Server = [RA Server, RA Lib, Privacy CA, RADB]

• Process: NMS = [NMS, CA, NMSDB]

• Process: TPM

Figure 4.3 shows an overview of the processes and interactions that comprise our model. Our
adversarial model will be mainly a Dolev-Yao model, which allows an adversary to monitor and
modify all interactions between the processes. However, the communication between the TPM
and the Router has to be considered independently. This will be discussed in Sec. 4.2 below. Our

Figure 4.3: Device management use case model overview

model is presented in detail in Appendix A.

4.2.1 Modelling Challenges

Channel modes

One of the main aspects to define when modelling this use case involves how the communication
between the different processes takes place, in order to offer a view as close to the reality as
possible. Of course, this depends on the threat model, and on what components we assume that
are compromised in the scenario.

Ideally, we would like to test for security properties under the presence of the strongest adversary
that we can consider for the model, i.e., a standard Dolev-Yao adversary that interacts with the
four processes depicted in Fig. 4.3. It is easy to see that this adversary model is overly powerful
for practical purposes: the adversary can intercept, drop, replay, etc. any message between the
processes. In particular it can drop or send arbitrary commands to the TPM at any time point.

FutureTPM D3.4 PU Page 22 of 42

D3.4 - Second Report on the Security of the TPM

Even with the command abstractions and idealization of TPM-related cryptograpy, the adversary
can simply drop all communication between the host and the TPM, reset the TPM, and extend
the PCRs with a correct software configuration. At this point, the adversary will be able to forge
any protocol execution that relies on the TPM as a root of trust (e.g., the adversary can certify any
AK without having to interact with the router software). This would translate, in the real world, as
the capability of an adversary to detach, communicate, and reattach a physically soldered TPM
in the router at any time.

The TPM Specification Part 1 [22] allows several implementations of the device (discret, inte-
grated, software,...) as long as it is possible to guarantee that it has a separate state from the
system which it reports and that the only interaction between the host system is through the inter-
face defined in the specification. For the device management use case, and since the TPM must
act as the Root of Trust for Reporting, we assume that the TPM is implemented as a single-chip
component attached to the system using a low-performance interface, e.g., the low pin count
(LPC) interface, embedded into its motherboard. Several authors [?, ?] model this by assuming
that there is a perfectly secure channel between the host device and the TPM (i.e., the adversary
cannot read or send messages on it), whereas they impose no constraints between the communi-
cation channels between the remaining processes. This is a strong restriction on the capabilities
of the Dolev-Yao adversary, but it is indeed appropriate for the use case, since it reflects the se-
curity assumptions where the TPM is expected to act as a root of trust. Furthermore, treating this
communication separately from the other channels allows for some security assumptions to be
relaxed individually in the future. For example, considering scenarios where the router software
or the TPM are compromised by the adversary.

Due to the undecidability nature of the protocol verification problem, it is difficult to determine an
alternative to implement the channel modes without conducting tests in the model, as some of
them might lead to non-termination when querying security properties. In order to assess the
feasibility of them, we initially model the LPC bus as a standard public channel, and execute
queries for reachability of all the process branches. When provided with the SAPiC translation in
this case, Tamarin will usually terminate without much user intervention. Once we are confident
that the model is able to reach all branches, there are several alternatives that can be considered
to implement the private communication channel. The most straightforward is using the built-in
SAPiC construct for private channels as follows:

// Create a fresh private channel to model the LPC bus

ν ∼lpcBus;

// Sending a command through the private channel (Router process)
out(∼lpcBus, 〈TPM_CommandCode, param1, param2, . . . paramk〉); P

// Receiving a command through the private channel (TPM process)
in(∼lpcBus, 〈TPM_CommandCode, param1, param2, . . . paramk〉); Q

One might be tempted to think that if the verification of a model terminates when all channels
are public, it will terminate more easily when some of them are private: intuitively, the adversary
has access to less terms to manipulate, and it has also less channels to send information. Un-
fortunately, this is not the case, and using private channels might slow the verification and even
cause non-termination. The reason for that is that private channels are synchronous in SAPiC
calculus (as it is usual in traditional process calculus), in contrast to public channels. That is,
in(m,x); P | out(m, t); Q reduces to P [t/x] | Q in one step. This makes the translation more
complicated. It also introduces problems with defining when exactly channels become asyn-
chronous, i.e., when the private information is leaked/deduced.

FutureTPM D3.4 PU Page 23 of 42

D3.4 - Second Report on the Security of the TPM

The second alternative is to make use of Tamarin restrictions to limit the usage that the adversary
can make of the TPM. This requires using a template for sending/receiving messages to/from the
TPM with events placed at the appropriate locations:

// Template for sending a TPM command (Router process)
let pat_tpm_send_command = 〈TPM_CommandCode, param1, param2, . . . paramk〉 in

event TPM_SendCommand(pat_tpm_send_command);
out(pat_tpm_send_command);
P

// Template for receiving a TPM command (TPM process)
let pat_tpm_receive_command = 〈TPM_CommandCode, param1, param2, . . . paramk〉 in

in(pat_tpm_receive_command);
event TPM_SendCommand(pat_tpm_receive_command);
Q

This requires the following restriction that will limit the adversary capabilities:

∀c, t1.TPM_ReceiveCommand(c)@t1 ⇒
(∃t2.TPM_SendCommand(c)@t1 ∧ (t2 < t1))∧
¬(∃t3.TPM_ReceiveCommand(c)@t3 ∧ ¬(t3 = t1)))

Namely, the restriction will forbid the adversary from calling the TPM arbitrarily, unless the honest
process has first request a TPM call. The main drawback of this approach is that it gives the
adversary the capability to replay messages to the TPM, which might not represent a realistic
scenario.

The next alternative to model the communication between the TPM and the Router processes
consists in using the asynchronous state management capabilities from the calculus. That is,
using insert/lookup as a means of communication:

// Sending a command through global state (Router process)
insert TPM2_CommandCode, 〈param1, param2, . . . paramk〉; P

// Receiving a command through global state (TPM process)
lookup TPM2_CommandCode as 〈param1, param2, . . . paramk〉) in Q

Finally, the last alternative to model this channel would be using advanced features from SAPiC,
as it is constructiong an asynchronous secret channel by using embedded MSRs, that is

// Sending a command through embedded MSR (Router process)
[] −[]→ [!Chan(PRouter, PTPM, < TPM_CommandCode, param1, param2, . . . paramk >)];P

// Receiving a command through embedded MSR (TPM process)
[!Chan(PRouter, PTPM, < TPM_CommandCode, param1, param2, . . . paramk >)] −[]→ [];Q

Note that embedded MSRs is an advanced part of SAPiC, and they are connected with “;” just
like any other action, and variables bound in them are available to the rest of the process. Above,
Q can use the variables parami. Using the persistent state fact “!Chan” allows for replays, which
usually speeds up verification. Alternatively, it can be considered whether to avoid this by drop-
ping the “!”.

FutureTPM D3.4 PU Page 24 of 42

D3.4 - Second Report on the Security of the TPM

Open chains

Even though we are not explicitly modelling secure communications between the different com-
ponents (e.g., TLS connections), the protocols in the device management use case make usage
of cryptography to protect some secrets exchanged, as expected. For example, the primitive
TPM2_MakeCredential can be regarded as an AE, as commented above. The adversary, there-
fore, cannot access encrypted information unless some key is leaked. However, if the adversary
forwards an encrypted, unknown secret to a process, then the process might decrypt (or, in gen-
eral, execute an operation unavailable to the adversary) and output the result. That is, if Tamarin
identifies that the process outputs a message later, it might believe that it can use that honest
processes as an oracle for arbitrary encrypted terms using a key that the tool tries to derive un-
successfully. Technically speaking, this causes that the tool has partial deconstructions (open
chains) left, complicating the proof of a security property by either taking a very long time, or
not terminating. Partial deconstructions occur in the pre-processing step of the verification of the
protocol, when Tamarin tries to identify all the possible sources for all the state facts used in the
protocol. Therefore, at this point, even if a process refuses to output a malformed AE, it is not
guaranteed the absence of partial deconstructions. We refer the reader to [18] for more details.

A sources lemma is one of the possibilities to guide the proof and help Tamarin terminate. For
the particular case of the output of TPM2_MakeCredential, that is, the credentialBlob we have
found that Tamarin is unable to determine that it cannot use the honest process as oracles to
retrieve useful information. For this particular case, we need to define the events Source and
Receive as follows:

// RA server process (excerpt) creates a ν challenge and protects it

// with TPM2_MakeCredential

ν ∼challenge;
event Source(∼challenge);
let credentialBlob = makeCredential(ek_pk, ∼challenge, ak_spk) in

out(〈'RA_enrollrequest_resp', credentialBlob〉);

// TPM process (excerpt) receives the output of TPM2_MakeCredential and

// decrypts the challenge

let pat_tpm_command = 〈'TPM2_ActivateCredential', a_h, a_sh, k_h, credentialBlob〉 in

in(pat_tpm_command);
event TPM_ReceiveCommand(pat_tpm_command);

let challenge = activateCredential(a_pk, k_sk, credentialBlob) in

event Receive(challenge);
out(challenge);

These events allow us to define the following sources lemma that eliminates the partial decon-
structions left for this case:

∀s, t1. Receive(s)@t1 ⇒
(∃t2. K(s)@t2 ∧ (t2 < t1)) ∨ (∃t2. Source(s)@t2).

Indeed, the lemma states the obvious fact that whenever an honest process is able to retrieve
a secret s, then s was either known beforehand by the adversary, or it was freshly created by
another honest process. Since honest processes in our model do not leak keys, the lemma helps
Tamarin ‘realising’ that the outputs of the protocols can not be used by the adversary to gain any
additional information.

FutureTPM D3.4 PU Page 25 of 42

D3.4 - Second Report on the Security of the TPM

4.3 Mapping Create/Load Model to Use Case #3

In D3.3 [12, Chapter 2] we have presented the model for creating a TPM key and loading it into
the TPM, using the EA feature of TPM2.0. In this section we will apply this model for the AK and
TLS key creation as it is described in the device management use case [11].

Each TLS key is generated by the RA Client, running in the Router, and it is used in order to
establish a trusted communication channel between the Router and the NMS. The creation of the
TLS key requires its authorization policy authPolicy to be asserted with a PCR policy, based on
PCR extensions that correspond to the current system state. In order for the TLS key to be used,
an authorization check is required, in which the authPolicy is checked against the policy digest
of the corresponding policy session and if the two values match, the key can be used. On the
other hand, the AK is created with an empty authorization policy, in other words its authPolicy

is set to the zero digest. That is, the AK key is not bound to specific PCR values and hence can
be loaded and used without any authorization check. The validation of the AK key is performed
through its AK certificate.

Our model for the creation of the AK key is described in Figure 4.4. As pointed out earlier, the
only difference from the TLS creation process is that the AK key is not linked to a PCR policy
and hence the ideal functionality FTPM2_PolicyPCR is not required. This means that the authorization
policy of the AK key will be set to null. In addition, the AK is an asymmetric signing key and

Router TPM
FTPM2_StartAuthSession()

1: new sH

2: pD ← nullpolicy session handle sH

FTPM2_Create(sH)

4: new akH

5: new akssk
6: akspk = pk(akssk)
7: aP ← pD

(kH, akspk)

FTPM2_Sign(akH, sH)

Figure 4.4: Create an AK key in TPM and use it for signing

hence it has both private and public parts (akssk, akspk).

Unlike the EA model that we have presented in D3.3 [12], the authorization check for the TLS
key is not performed in the TPM2_Load command, but in the command that orders the TPM to
use it for some cryptographic purpose during the secure communication between the Router
and the NMS. In terms of security modelling, the process of generating the TLS and AK keys is
similar to the create/load model that we have described in D3.3 [12]. This is made clear when the
ideal functionality FTPM2_Load is replaced by the ideal functionality FTPM2_Sign, which is described in
Fig. 3.4

The command flow for creating a TLS key is described in Fig. 4.5. Note that this model is aligned
with the update in the ideal functionality FTPM2_Create, in which the key that will be created is
asymmetric and its public part is returned along with the corresponding handle kH. The TLS
key in the context of the device management use case is a signing key with private part tlsssk
and public part tlsspk. Step 8 in Figure 4.5 demonstrates the authorization check, i.e. the
authorization policy aP of the key is checked against the policy digest value pD of the session

FutureTPM D3.4 PU Page 26 of 42

D3.4 - Second Report on the Security of the TPM

Router TPM
FTPM2_StartAuthSession()

1: new sH

2: pD ← nullpolicy session handle sH

FTPM2_PolicyPCR(sH, dV)

3: pD ← pD + dV
FTPM2_Create(sH)

4: new tlsH

5: new tlsssk
6: tlsspk = pk(tlsssk)
7: aP ← pD

(kH, tlsspk)

FTPM2_Sign(kH, sH)

8: aP == pD ?

9: use key

Figure 4.5: Create a TLS key in TPM and use it for signing

with handle sH. For the description of the ideal functionality FTPM2_PolicyPCR, we refer to Deliverable
D3.3 [12, Figure 2.8, p. 14].

4.4 Modelling the IBM Attestation Protocol

Our model for the AK certification that is described in Figure 4.1, in SAPiC is presented in Fig-
ure 4.4. In our modelling approach we consider three main processes, the TPM, the Router and
the RA Server. The Router is the entity that interacts with the TPM. This interaction and exchange
of messages between the two entities is modelled using private channels. That is, an adversary
is not able to monitor the communication between the Router and the TPM. The interaction be-
tween the Router and the RA Server is modelled using public channels and hence the adversary
has full access to this communication. The IBM attestation protocol requires the use of the EK,
which is is an asymmetric encryption key, for certifying the AK. In order to keep our model as
simple as possible, we do not model key hierarchies in the TPM, in other words, we consider the
EK as a fixed key that is already created and its public part is loaded in the TPM. Hence we set
the following values in the TPM process:

insert < `authPolicy',∼ekh >, null

insert < `privatePart',∼ekh >, ∼eksk
insert < `publicPart',∼ekh >, ∼ekpk

where ekh is the handle of the EK and its authorization policy is initialized as null. Additionally,
the following variables are also assumed to be fixed throughout the model.

∼fqdnrouter : the FQDN of the router
∼fqdnnms : the FQDN of the NMS
(∼sskra, spkra = pk(∼sskra)) : private/public part of RA Server signing key
(∼ssknms, spknms = pk(∼ssknms)) : private/public part of NMS signing key

We give a more detailed description of the steps and exchanged messages of Figure 4.4.

1. The Router receives the NMS certificate. This is constructed by the following equation:

let patcert−nms = 〈〈spkra, fqdnnms〉, signaturecert−nms〉 in,

FutureTPM D3.4 PU Page 27 of 42

D3.4 - Second Report on the Security of the TPM

where signaturecert−nms is the NMS signature on the message 〈spkra, fqdnnms〉 with its
private signing key ssknms. The Router verifies the certificate of the NMS, using the public
part psknms and extracts the NMS FQDN. This is accomplished by the verify function.

2. The Router uses the TPM to create a new session for the AK. This is done using the ideal
functionality FTPM2_StartAuthSession. The TPM creates a fresh handle aksh for this session and
initializes its policy digest value to the zero digest. It returns the session handle aksh to the
Router.

3. The Router asks the TPM to create the AK, using the ideal functionality FTPM2_Create(aksh).
The TPM will create a fresh handle ∼akh for the AK, and a new signing key pair

(∼akssk, akpsk = pk(∼akssk)).

The AK is not linked to any policy and hence its authPolicy will be set to null, in other
words akaP ← null. Then the TPM will return to the Router the handle of the AK (akh) and
the public part akspk.

4. The Router sends to the RA Server the triple 〈∼fqdnrouter, ekpk, akspk〉 and initiates the en-
rollment process. This is equivalent to the Router asking the RA Server to issue a certificate
for the AK it created.

5. The RA Server when receiving 〈∼fqdnrouter, ekpk, akspk〉 it creates a credential using ex-
actly the same steps as described in the ideal functionality FTPM2_MakeCredential. That is,
it generates a fresh challenge and then it protects this challenge using the public part
of the EK ekpk and binds it with the public part of the AK akspk. This is described by
MakeCredential that outputs credBlob, which is sent to the Router (see Figure 3.2).

6. The Router executes the command FTPM2_ActivateCredential, via the TPM, in order to activate
the credential that is created by the RA Server. The TPM will perform the validation checks
that are described in Figure 3.3 and it will output the initial challenge that was created by
the RA Server.

7. The Router receives the challenge from the TPM and passes it to the RA Server in order
for the later to create the AK certificate.

8. The RA Server creates the AK certificate that consists of the public part of the AK and the
Router’s FQDN, namely 〈akspk, fqdnrouter〉 and the signature on this message using the
secret signing key of the RA Server, sskra. The AK certificate is then transferred to the
Router.

9. Finally, the Router verifies the signature signaturecertak of the certificate, using the verify

function and the public key of the RA Server spkra.

FutureTPM D3.4 PU Page 28 of 42

D3.4 - Second Report on the Security of the TPM

T
P
M

R
o
u
t
e
r

R
A
S
e
r
v
e
r

i
n
(p
a
t
c
e
r
t
-
n
m
s
)

v
e
r
i
f
y
(s
i
g
n
a
t
u
r
e
c
e
r
t
-
n
m
s
,〈
s
p
k
r
a
,f
q
d
n
n
m
s
〉,
s
p
k
n
m
s
)

F
T
P
M
2
_
S
t
a
r
t
A
u
t
h
S
e
s
s
i
o
n
(
)

n
e
w
a
k
s
h

p
D
←

n
u
l
l

a
k
s
h

F
T
P
M
2
_
C
r
e
a
t
e
(a
k
s
h
)

n
e
w
a
k
h

n
e
w
a
k
s
s
k

a
k
s
p
k
=

p
k
(a
k
s
s
k
)

a
k
a
P
←

n
u
l
l

〈a
k
h
,a
k
s
p
k
〉

〈`
R
A
-
e
n
r
o
l
l
r
e
q
u
e
s
t
'
,∼

f
q
d
n
r
o
u
t
e
r
,e
k
p
k
,a
k
s
p
k
〉

n
e
w
∼
c
h
a
l
l
e
n
g
e

c
r
e
d
B
l
o
b
=

M
a
k
e
C
r
e
d
e
n
t
i
a
l
(e
k
p
k
,∼

c
h
a
l
l
e
n
g
e
,a
k
s
p
k
)

〈`
R
A
-
e
n
r
o
l
l
r
e
s
p
o
n
s
e
'
,c
r
e
d
B
l
o
b
〉

F
T
P
M
2
_
A
c
t
i
v
a
t
e
C
r
e
d
e
n
t
i
a
l
(e
k
h
,c
r
e
d
B
l
o
b
,a
k
h
,a
k
s
h
)

v
a
l
i
d
a
t
i
o
n
c
h
e
c
k
s

c
h
a
l
l
e
n
g
e

〈`
R
A
-
e
n
r
o
l
l
c
e
r
t
'
,c
h
a
l
l
e
n
g
e
〉

c
e
r
t
a
k
=
〈〈
a
k
s
p
k
,f
q
d
n
r
o
u
t
e
r
〉,
s
i
g
n
(〈
a
k
s
p
k
,f
q
d
n
r
o
u
t
e
r
〉,

s
s
k
r
a
)〉

〈`
R
A
-
e
n
r
o
l
l
c
e
r
t
-
r
e
s
p
'
,c
e
r
t
a
k
〉

i
n
(c
e
r
t
a
k
=
〈〈
a
k
s
p
k
,
f
q
d
n
r
o
u
t
e
r
〉,
s
i
g
n
a
t
u
r
e
c
e
r
t
a
k
〉)

v
e
r
i
f
y
(s
i
g
n
a
t
u
r
e
c
e
r
t
a
k
,〈
a
k
s
p
k
,∼

f
q
d
n
r
o
u
t
e
r
〉,
s
p
k
r
a
)

*D
as

he
d

ar
ro

w
:

co
m

m
un

ic
at

io
n

vi
a

pr
iv

at
e

ch
an

ne
l

**
R

eg
ul

ar
ar

ro
w

:
co

m
m

un
ic

at
io

n
vi

a
pu

bl
ic

ch
an

ne
l

Fi
gu

re
4.

6:
M

od
el

lin
g

th
e

A
K

cr
ea

tio
n

an
d

ce
rt

ifi
ca

tio
n

pr
oc

es
s

FutureTPM D3.4 PU Page 29 of 42

D3.4 - Second Report on the Security of the TPM

4.5 Security Properties

In this section we present a set of tentative security properties to be tested in the device manage-
ment use case. We remark that this set of properties might be subject to changes, depending on
the progress and needs of the model. The final set of properties will be documented in Deliverable
D3.5.

1. Sanity-check lemmas. We consider a number of a sanity-check lemmas that ensure the
correctness of the model. These kind of queries are formulated as reachability queries to
ensure that the model executes all possible branches. In Tamarin, this correspondds to an
“exists-trace” lemma

∃t1, . . . , tk. Reaches(`label1')@t1 ∧ · · · ∧ Reaches(`labelk')@tk,

where event Reaches(`labeli') must be located at the end of the ith branch of the model. If
this lemma does not verify, then other correspondence properties might be trivially satisfied.
Alternatively, we can also specify reachability of each branch in separate lemmas.

2. Availability of keys at honest processes. This property states that all honest parties
have initial access to the trusted key material required, so that they can build the chain of
trust. E.g., RA server signature public key. In order to verify this property, we define the
“all-traces” lemma

∀keyid, id1, id2,k1, k2, t1, t2. HasKey(keyid, id1, k1)@t1∧
HasKey(keyid, id2, k2)@t2 ⇒ (k1 = k2).

It states that if two HasKey events are launched with the same key id, then it must be the
case that the associated key is the same when the events are invoked. For example, the
events

// RA server declares that it has its signature public key

event HasKey(`spk_ra', idra, spkra);

// Router declares that it has RA server signature public key

event HasKey(`spk_ra', idrouter, spkra);

must be launched at RA server and router processes respectively, so that the lemma en-
sures that the key identified by both processes as `spk_ra' matches. We require that this
property hold for RA server public key, NMS server public key, and EK endorsement key.

3. Key freshness and secrecy. This property ensures that the created keys during the proto-
col execution are fresh and not available to the adversary. We recall that the SAPiC calculus
uses the special action fact K(m) to denote knowledge of m by the adversary. We require
two lemmas to assert this property

∀keyid, tid1, tid1, k, t1,t2. GeneratesKey(keyid, tid1, k)@t1∧
GeneratesKey(keyid, tid2, k)@t2 ⇒ (tid1 = tid2),

∀keyid, id, k, t1. UsesKey(keyid, id, k)@t1 ⇒ ¬(∃t2. K(ptk)@t2).

The first lemma states that once key k with key identifier keyid is generated at two different
thread executions, tid1 and tid2, then this is the case that tid1 = tid2. In other words,

FutureTPM D3.4 PU Page 30 of 42

D3.4 - Second Report on the Security of the TPM

there is no other thread execution where the same key value is generated. The second
lemma asserts that once the key k is consumed by a process, then the adversary has no
knowledge of it at any time point. We remark that authentication below can only be asserted
when key secrecy is guaranteed.

4. Authentication. We consider the strongest authentication property from Lowe’s hierar-
chy [17], namely, mutual, injective agreement:

∀X,Y, pars, t1. Commit(X, Y, pars)@t1 ⇒
((∃t2. Running(Y,X, pars)@t2 ∧ (t2 < t1))

∧ ¬(∃X ′, Y ′, t2. Commit(X ′, Y ′, pars)@t2 ∧ ¬(t2 = t1))).

Using the standardized events Running and Commit, we verify that: “for each Commit event
executed by a supplicant (resp. authenticator) X, associated to authenticator (resp. suppli-
cant) Y , then Y executed the corresponding Running event earlier, and for each run of the
protocol there is a unique Commit.” In order to capture full agreement on the parameters of
the protocol all generated key material must be included in the parameter vector pars, e.g.,
keys and certificates. Commit events are placed as late as possible on the X side, ideally,
at the end of the protocol. Running events have to be executed as earlier as possible, when
all the parameters to agree are available to Y .

5. Transfer of information as generated. This property ensures that cryptographic material,
such as the AK certificate or the TPM quotes, are received at the destination process as
generated by the process of origin. We verify the property through the lemma

∀msgid, id1,m, t1. Receives(msgid, id1,m)@t1 ⇒
(∃id2, t2. Generates(msgid, id2,m,)@t2 ∧ (t2 < t1)).

That is, the generated material m, identified by tag msgid, and received by process id1 was
earlier created by process id1 at an earlier time.

We note that the tentative properties that we have listed above do not consider the situation
where we have compromised components that leak secrets. In that case, the lemmas have to be
updated with a disjunction indicating that either the property verified, or a secret was leaked at
some point. For example, for the case of the agreement lemma stated above,

∀X,Y, pars, t1. Commit(X, Y, pars)@t1 ⇒
((∃t2. Running(Y,X, pars)@t2 ∧ (t2 < t1))

∧ ¬(∃X ′, Y ′, t2. Commit(X ′, Y ′, pars)@t2 ∧ ¬(t2 = t1)))

∨ (∃C, t3.Reveal(C)@t3 ∧ Honest(C)@t1).

the disjunction on the right of the implication indicates that either there was a unique Running

event for each Commit, or some party C believed to be honest revealed some of its secrets at a
certain timepoint.
Again, the properties presented in this section are tentative security propertis for the use case,
and they will be revised and documented in their final form in Deliverable D3.5.

FutureTPM D3.4 PU Page 31 of 42

D3.4 - Second Report on the Security of the TPM

Chapter 5

Conclusion

In this deliverable, we define new TPM commands and the corresponding ideal functionalities
which are needed in the modelling for use case 3. We consider the operations related to cre-
dential management, encryption/decryption and sign/verifysign. These operations are the core
functionalities of TPM and they are the cryptographic related functions. We notice that use case 3
fully captures those functionalities and the successful modelling of use case 3 will help us seam-
lessly and easily model other use cases. Via the definition, we guarantee that the security of
these operations can be reduced to the secure implementation of the ideal functionalities. This
matches the philosophy of D3.3 and the whole work package - analyzing the security for each
use case when the designed TPM is interacting with outside surroundings. Finally, we present
the security modelling for use case 3 for AK and TLS key creation and AK key certification. We
will put the TLS key certification in D3.5.

FutureTPM D3.4 PU Page 32 of 42

D3.4 - Second Report on the Security of the TPM

Chapter 6

List of Abbreviations

Abbreviation Translation
AE Authenticated Encryption

AK Attestation Key

CA Certification Authority

CSR Certificate Signing Request

EA Enhanced Authorization

EK Endorsement Key

NMS Network Management System

PCA Privacy Certification Authority

PCR Platform Configuration Register

RA Remote Attestation

SAPiC Stateful Applied Pi Calculus

TLS Transport Layer Security

TPM Trusted Platform Module

WP Work Package

ZTP Zero Touch Provisioning

FutureTPM D3.4 PU Page 33 of 42

D3.4 - Second Report on the Security of the TPM

References

[1] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calculus: Mobile values,
new names, and secure communication. J. ACM, 65(1):1:1–1:41, 2018.

[2] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication.
In ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL),
pages 104–115, London (UK), January 2001. ACM.

[3] Myrto Arapinis, Joshua Phillips, Eike Ritter, and Mark D Ryan. Statverif: Verification of
stateful processes. Journal of Computer Security, 22(5):743–821, 2014.

[4] David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, and Benedikt Schmidt.
Tamarin prover (v. 1.4.1), January 2019. https://tamarin-prover.github.io/.

[5] Bruno BLANchet, V Cheval, X Allamigeon, and B Smyth. Proverif: Cryptographic
protocol verifier in the formal model. URL http://prosecco. gforge. inria. fr/personal/b-
bLANche/proverif, 2010.

[6] Vincent Cheval, Véronique Cortier, and Mathieu Turuani. A little more conversation, a little
less action, a lot more satisfaction: Global states in ProVerif. In 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pages 344–358. IEEE, 2018.

[7] The FutureTPM Consortium. First report on security models for the TPM. Deliverable D3.1,
FutureTPM, September 2018.

[8] The FutureTPM Consortium. FutureTPM use case and system requirements. Deliverable
D1.1, FutureTPM, June 2018.

[9] The FutureTPM Consortium. Technical integration points and testing plan. Deliverable D6.1,
FutureTPM, July 2019.

[10] The FutureTPM Consortium. Threat modelling & risk assessment methodology. Deliverable
D4.1, FutureTPM, February 2019.

[11] The FutureTPM Consortium. Demonstrators implementation report – first release. Deliver-
able D6.3, FutureTPM, April 2020.

[12] The FutureTPM Consortium. Second report on security models for the TPM. Deliverable
D3.3, FutureTPM, February 2020.

[13] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Transactions
on information theory, 29(2):198–208, 1983.

[14] Ken Goldman. Attestation Protocols. Technical report, IBM, December 2017. https://www.
ibm.com/developerworks/library/l-trusted-boot-openPOWER-trs/index.html.

FutureTPM D3.4 PU Page 34 of 42

https://tamarin-prover.github.io/
https://www.ibm.com/developerworks/library/l-trusted-boot-openPOWER-trs/index.html
https://www.ibm.com/developerworks/library/l-trusted-boot-openPOWER-trs/index.html

D3.4 - Second Report on the Security of the TPM

[15] Steve Kremer and Robert Kunnemann. Sapic - a stateful applied pi calculus. http://

sapic.gforge.inria.fr/.

[16] Steve Kremer and Robert Künnemann. Automated analysis of security protocols with global
state. Journal of Computer Security, 24(5):583–616, 2016.

[17] Gavin Lowe. A hierarchy of authentication specifications. In Proceedings 10th Computer
Security Foundations Workshop, pages 31–43. IEEE, 1997.

[18] Simon Meier. Advancing automated security protocol verification. PhD thesis, ETH Zurich,
2013.

[19] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin prover for the
symbolic analysis of security protocols. In International Conference on CAV, pages 696–
701. Springer, 2013.

[20] Jianxiong Shao, Yu Qin, and Dengguo Feng. Formal analysis of HMAC authorisation in the
TPM2.0 specification. IET Information Security, 12(2):133–140, March 2018.

[21] Jianxiong Shao, Yu Qin, Dengguo Feng, and Weijin Wang. Formal analysis of enhanced
authorization in the TPM 2.0. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, pages 273–284. ACM, 2015.

[22] Trusted Computing Group (TCG). TPM 2.0 library specification - part 1: Architec-
ture. Available at: https://trustedcomputinggroup.org/wp-content/uploads/TCG_

TPM2_r1p59_Part1_Architecture_pub.pdf.

[23] Trusted Computing Group (TCG). TPM 2.0 library specification - part 2: Structures.
Available at: https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_

r1p59_Part2_Structures_pub.pdf.

[24] Trusted Computing Group (TCG). TPM 2.0 library specification - part 3: Commands -
code. Available at: https://trustedcomputinggroup.org/wp-content/uploads/TCG_

TPM2_r1p59_Part3_Commands_code_pub.pdf.

FutureTPM D3.4 PU Page 35 of 42

http://sapic.gforge.inria.fr/
http://sapic.gforge.inria.fr/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_Structures_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_Structures_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_code_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_code_pub.pdf

D3.4 - Second Report on the Security of the TPM

Appendix A

SAPiC Code for AK Certification

/**

FutureTPM - WP3

This file comprises the model for the device management use case. All

processess are under the DY model, and the interaction with the TPM process

is done as ideal functionalities.

Use case: Device management

User stories: HWDU.NO.1

**/

theory DeviceManagementScenario

begin

builtins:

asymmetric-encryption,

signing,

revealing-signing,

hashing,

multiset

functions:

myenc/2,

nil/0,

kdf/2,

mac/2,

verifyMac/3,

makeCredential/3,

activateCredential/3,

verifyCredential/3,

pcrH/0

equations:

verifyMac(mac(m,k), m, k) = true,

activateCredential(n, k, makeCredential(pk(k), m, n)) = m,

verifyCredential(n, k, makeCredential(pk(k), m, n)) = true

/**

TPM Process.

It integrates the ideal functionalities of the TPM.

FutureTPM D3.4 PU Page 36 of 42

D3.4 - Second Report on the Security of the TPM

**/

let TPM =

insert 〈'authPolicy', ∼ek_h〉, nil;

insert 〈'privatePart', ∼ek_h〉, ∼ek_sk;
insert 〈'publicPart', ∼ek_h〉, ek_pk;

insert 〈'PCRList', pcrH〉, nil;

!(
//TPM2_Create

(
let pat_tpm_command = 〈'TPM2_Create', authPolicy〉 in

in(pat_tpm_command);
event TPM_ReceiveCommand(pat_tpm_command);
ν ∼k_h;
lock ∼k_h;
ν ∼k_sk;
let k_pk = pk(∼k_sk) in

insert 〈'authPolicy', ∼k_h〉, authPolicy;

insert 〈'privatePart', ∼k_h〉, ∼k_sk;
insert 〈'publicPart', ∼k_h〉, k_pk;

out(〈∼k_h, k_pk〉);
unlock ∼k_h

) +

//TPM2_StartAuthSession

(
let pat_tpm_command = 〈'TPM2_StartAuthSession'〉 in

in(pat_tpm_command);
event TPM_ReceiveCommand(pat_tpm_command);
ν ∼s_h;
lock ∼s_h;
insert 〈'policyDigest', ∼s_h〉, nil;

event CreateHandle(∼s_h);
out(∼s_h);
unlock ∼s_h

) +

//TPM2_ActivateCredential

(
let pat_tpm_command

= 〈'TPM2_ActivateCredential', a_h, a_sh, k_h, credentialBlob〉 in

in(pat_tpm_command);
event TPM_ReceiveCommand(pat_tpm_command);
lock a_h; lock a_sh; lock k_h;

lookup 〈'policyDigest', a_sh〉 as a_sh_pd in

lookup 〈'authPolicy', a_h〉 as a_ap in

if a_ap = a_sh_pd then

lookup 〈'publicPart', a_h〉 as a_pk in

lookup 〈'privatePart', k_h〉 as k_sk in

if verifyCredential(a_pk, k_sk, credentialBlob) = true then

let challenge

= activateCredential(a_pk, k_sk, credentialBlob) in

event Receive(challenge);
event Debug3();
out(challenge);
unlock k_h; unlock a_sh; unlock a_h

else

unlock k_h; unlock a_sh; unlock a_h

else

FutureTPM D3.4 PU Page 37 of 42

D3.4 - Second Report on the Security of the TPM

unlock k_h; unlock a_sh; unlock a_h

) +

)
/**

Router process.

It integrates functionality of ZTP Agent and RA Client.

**/

let Router =

ν ∼swHash;
ν ∼fqdn_router;

!(
//Workflow (AK certificate)
(

//1. Obtain RA Server cert

let pat_cert_nms = 〈〈spk_ra, fqdn_nms〉, signature_cert_nms〉 in

in(pat_cert_nms);

//2. Extract RA Server FQDN from cert and begin the enrolment

if verify(signature_cert_nms, 〈spk_ra, fqdn_nms〉, spk_nms) = true then

//3. Generate AK

let pat_tpm_command1 = 〈'TPM2_Create', nil〉 in

event TPM_SendCommand(pat_tpm_command1);
out(pat_tpm_command1);
in(〈ak_h, ak_spk〉);

//4.1 Get AK cert

out(〈'RA_enrollrequest', ∼fqdn_router, ek_pk, ak_spk〉);

//6.2 Generate credential blob (RA) and verify challenge response

//by router

in(〈'RA_enrollrequest_resp', credentialBlob〉);

let pat_tpm_command2 = 〈'TPM2_StartAuthSession'〉 in

event TPM_SendCommand(pat_tpm_command2);
out(pat_tpm_command2);
in(ak_sh);

let pat_tpm_command3

= 〈'TPM2_ActivateCredential', ak_h, ak_sh, ∼ek_h, credentialBlob〉 in

event TPM_SendCommand(pat_tpm_command3);
out(pat_tpm_command3);
in(challenge);

out(〈'RA_enrollcert', challenge〉);

//8.1 Sign AK cert. Privacy CA signs the AK certificate;

//RA Server sends it to the router.

let cert_ak = 〈〈ak_spk, ∼fqdn_router〉, signature_cert_ak〉 in

in(〈'RA_enrollcert_resp', cert_ak〉);
if verify(signature_cert_ak, 〈ak_spk, ∼fqdn_router〉, spk_ra)
= true then

event Debug1();

0

)

FutureTPM D3.4 PU Page 38 of 42

D3.4 - Second Report on the Security of the TPM

)

/**

RA server process.

It integrates functionality of Privacy CA and RA Lib.

**/

let RAServer =

!(
//Workflow (AK certificate)
(

//4.2 Get AK cert

in(〈'RA_enrollrequest', fqdn_router, ek_pk, ak_spk〉);

//6.1 Generate credential blob and verify challenge response

//by router

ν ∼challenge;
event Source(∼challenge);
let credentialBlob = makeCredential(ek_pk, ∼challenge, ak_spk) in

out(〈'RA_enrollrequest_resp', credentialBlob〉);

//7. Generate AK cert and send it to Privacy CA

//and

//8.1 Sign AK cert. Privacy CA signs the AK certificate;

//RA Server sends it to the router.

in(〈'RA_enrollcert', ∼challenge〉);

let cert_ak

= 〈〈ak_spk, fqdn_router〉, sign(〈ak_spk, fqdn_router〉, ∼ssk_ra)〉 in

out(〈'RA_enrollcert_resp', cert_ak〉);

//9. Store AK cert

//insert 〈'ra_database', ak_spk〉, cert_ak;

event Debug2();
0

)
)

/**

NMS process.

This process integrates the NMS CA.

**/

let NMS =

ν ∼fqdn_nms;
out(∼fqdn_nms);
let cert_ra = 〈〈spk_ra, ∼fqdn_nms〉, sign(〈spk_ra, ∼fqdn_nms〉, ∼ssk_nms)〉 in

out(cert_ra);
0

/**

Main process

**/

//TPM objects

ν ∼lpcBus;

ν ∼ek_sk;

FutureTPM D3.4 PU Page 39 of 42

D3.4 - Second Report on the Security of the TPM

let ek_pk = pk(∼ek_sk) in

out(ek_pk);

ν ∼ek_h;
out(∼ek_h);

//RA objects

ν ∼ssk_ra;
let spk_ra = pk(∼ssk_ra) in

out(spk_ra);

//NMS objects

ν ∼ssk_nms;
let spk_nms = pk(∼ssk_nms) in

out(spk_nms);

(
Router

| RAServer
| NMS
| TPM
)

/**

Lemmas

**/

lemma SourcesLemma [sources]:

"All m #i. Receive(m)@i ==〉
((Ex #j. KU(m)@j & (j〈i))
| (Ex #j. Source(m)@j)
)"

restriction RestrictionTpmCommand:

"All c #i. TPM_ReceiveCommand(c)@i ==〉
(

(Ex #j. TPM_SendCommand(c)@j & (j 〈 i))
& not(Ex #k. TPM_ReceiveCommand(c)@k & not(#k=#i))

)
"

FutureTPM D3.4 PU Page 40 of 42

D3.4 - Second Report on the Security of the TPM

Figure A.1: Example of a reachability trace of AK certification (Router side)
The high-resolution image can be found at: https://futuretpm.technikon.com/03-WPs/WP3/D3.4/

working-directory/figures/trace_ak_router_HI-RES.png

FutureTPM D3.4 PU Page 41 of 42

https://futuretpm.technikon.com/03-WPs/WP3/D3.4/working-directory/figures/trace_ak_router_HI-RES.png
https://futuretpm.technikon.com/03-WPs/WP3/D3.4/working-directory/figures/trace_ak_router_HI-RES.png

D3.4 - Second Report on the Security of the TPM

Figure A.2: Example of a reachability trace of AK certification (RA Server side)
The high-resolution image can be found at: https://futuretpm.technikon.com/03-WPs/WP3/D3.4/

working-directory/figures/trace_ak_ra_HI-RES.png

FutureTPM D3.4 PU Page 42 of 42

https://futuretpm.technikon.com/03-WPs/WP3/D3.4/working-directory/figures/trace_ak_ra_HI-RES.png
https://futuretpm.technikon.com/03-WPs/WP3/D3.4/working-directory/figures/trace_ak_ra_HI-RES.png

	List of Figures
	Introduction
	Methodology
	Structure of the Report

	TPM Commands and Related Protocols
	Abstract Description of TPM Commands
	The IBM Remote Attestation Protocol

	Modelling TPM Commands
	Additional Ideal TPM Functionalities
	Updates of Ideal TPM Functionalities in D3.3

	Security Modelling of Use Case #3: Create and Certify the AK and TLS keys
	Overview of the Modelling Tools Used
	Modelling Approach & Challenges
	Modelling Challenges

	Mapping Create/Load Model to Use Case #3
	Modelling the IBM Attestation Protocol
	Security Properties

	Conclusion
	List of Abbreviations
	References
	SAPiC Code for AK Certification

