

D6.3
Demonstrators Implementation Report – First

Release

Project number: 779391

Project acronym: FutureTPM

Project title:
Future Proofing the Connected World: A Quantum-Resistant

Trusted Platform Module

Start date of the project: 1st January, 2018

Duration: 36 months

Programme: H2020-DS-LEIT-2017

Deliverable type: Report

Deliverable reference number: DS-06-779391 / D6.3/ 1.0

Work package contributing to

the deliverable:
WP 6

Due date: December 2019 – M24

Actual submission date: 6th April, 2020

Responsible organisation: S5

Editor: Sotiris Koussouris

Dissemination level: PU

Revision: 1.0

The project FutureTPM has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779391.

Abstract:

Deliverable D6.3 provides a detailed documentation of the

first round of experiments of the FutureTPM framework, in

the context of the three envisioned use cases. It summarizes

the operation of the FutureTPM demonstrators coupled with

a comprehensive analysis of the integration and evaluation

of the first release of the SW-based QR TPM environment

enriched with lessons learnt and challenges that need to be

taken into consideration during the next development,

integration and evaluation cycle of the project.

Keywords: Demonstrators, Implementation Report, Testing, Evaluation

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page I

Editor

Sotiris Koussouris (S5)

Thanassis Giannetsos (DTU)

Contributors (ordered according to beneficiary numbers)

Sofianna Menesidou, Dimitris Papamartzivanos (UBITECH)

Paulo Sérgio Alves Martins (INESC-ID), Luís Fiolhais (INESC-ID)

Roberto Sassu, Silviu Vlasceanu, Rahul Dulta (HWDU)

Fanis Sklinos, Stratos Moros (INDEV)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page II

Executive Summary

Deliverable D6.3 covers the main activities of the evaluation, validation and refinement phase
related to setting up, executing and evaluating the three envisioned use cases; namely the “Secure
Mobile Wallet and Payments”, “Personal Activity and Health Kit Data Tracking” and “Device
Management” reference scenarios. It reflects the pilot implementation and integration of the
FutureTPM framework in three different use cases (called demonstrators), to test the assumptions
of the project, and the feasibility, the applicability and the overall acceptance of post-quantum
TPM in specific business cases, not only in terms of security, but also in terms of performance,
availability and of other business critical indicators.

Within WP6, three discreet demonstrators have been set up for testing the integration of the core
components of the FutureTPM platform (i.e., the Risk Assessment, the Security Policy Enforcement
and the QR TPM modules.) into real-life business applications, and critically appraise the
effectiveness of the overall platform for security and performance in those business settings. More
information on the scope and specifics of these demonstrators can be found in deliverable D6.1 [1].

As the FutureTPM project adopts a two-cycle development, integration, demonstration and
evaluation approach, the deliverable at hand provides a detailed documentation of the first-cycle
demonstrator results till M24 (, following the guidelines and the metrics set in the evaluation plan
that was part of deliverable D6.1 “Technical Integration Points and Testing Plan”), while the final
release (with their evaluation) will be delivered at M36. As such, the work performed for the “Secure
Mobile Wallet and Payments”, the “Personal Activity and Health Kit Data Tracking” and the “Device
Management” demonstrators till M24 of the project is presented here. It needs to be noted that in
order to facilitate smooth transition to the FutureTPM technology, all these use cases have worked
initially to integrate the TPM2.0 characteristics that will be also test in FutureTPM, as to have a
reference point for comparison of the post-quantum approach to the existing technological de facto
standard.

Towards this direction, a detailed description of each reference scenario is given with the defined
user stories of interest, and their requirements, as well as the conditions and the implementation,
integration status of each demonstrator coupled with a detailed analysis of the extracted results.
Recall that the goal of FutureTPM is to show case the use of TPMs towards providing enhanced
security, privacy and trust while migrating into post-quantum era. Each one of these properties is
demonstrated in separate reference scenarios, in order to avoid overlaps and to be able to progress
with a more detailed evaluation and validation of the TPM operations needed for achieving a subset
of these requirements.

Along this line, this deliverable captures the first experimental (demonstration) period of the project
with many significant results drawn which will be fed back to the other technical WPs so as to
continue research activities on further refining the FutureTPM solution. The goal is to improve the
current implementation, streamline the used algorithms and improve the technical backbone
of the envisioned FutureTPM platform. As such, it is expected that the next deliverable on the
WP6 demonstrators, will provide revised figures for specific metrics that will be impacted by the
ongoing work in the project, and will also provide a more complete and accurate view on the overall
impact experienced in each demonstrator.

In the following chapters, we provide an in-depth analysis of the underpinnings of the performed
experiments with the extracted results, and describe all open issues that need to be solved for further
improving the performance of the overall framework. This ranges from the necessary improvements
of a subset of the implemented QR crypto primitives (especially the Direct Anonymous Attestation
algorithm) to the functional interfaces needed for supporting the required interactions with the other
FutureTPM integral components, and especially the Control-flow Attestation Engine [3].

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page III

Contents

Chapter 1 Introduction and Overview of the First Experimental Period (M13-M24) . 1

1.1 Evaluation, Validation and Refinement Methodology .. 2

1.2 Environmental Setup of Deployed Scenarios .. 3

1.2.1 IBM vs. Intel TSS Integration ... 3

1.3 Testing Methodology ... 4

Chapter 2 Demonstrator #1 – Secure Mobile Wallet and Payments 6

2.1 Demonstrator Overview ... 6

2.1.1 Demonstrator Needs and Challenges .. 6

2.1.2 Demonstrator Architecture ... 7

2.2 Emulated System Description ... 9

2.3 Implementation Path Report ... 9

2.3.1 User Stories Realisation .. 9

2.3.2 Unit Test Results ... 10

2.3.3 KPIs Measured .. 11

2.3.4 Plan for the next Period ... 17

2.4 Conclusions... 17

Chapter 3 Demonstrator #2 – Activity Tracking Demonstrator 18

3.1 Demonstrator Overview .. 18

3.1.1 Demonstrator Needs and Challenges .. 18

3.1.2 Demonstrator Architecture ... 19

3.2 Emulated System Description ... 20

3.3 Implementation Path Report ... 20

3.3.1 User Stories Realisation .. 21

3.3.2 Unit Test Results ... 22

3.3.3 KPIs Measured .. 24

3.3.4 Plan for the next Period ... 29

3.4 Conclusions .. 29

Chapter 4 Demonstrator #3 – Device Management Demonstrator 30

4.1 Demonstrator Overview .. 30

4.1.1 Demonstrator Needs and Challenges .. 30

4.1.2 Demonstrator Architecture ... 31

4.2 Emulated System Description ... 31

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page IV

4.3 Implementation Path Report ... 32

4.3.1 User Stories Realisation .. 34

4.3.2 Unit Test Results ... 41

4.3.3 KPIs Measured .. 43

4.3.4 Plan for the next Period ... 47

4.4 Conclusions ... 47

Chapter 5 Summary and Conclusion ... 48

Chapter 6 List of Abbreviations .. 49

Chapter 7 Bibliography ... 50

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page V

List of Figures

Figure 1: Secure Mobile Wallet and Payments High Level Approach ..6

Figure 2: U2F Registration ..7

Figure 3: U2F Authentication ..8

Figure 4: Demonstrator #2 – Main Actors and Entities .. 19

Figure 5: Demonstrator #2 – Architecture showing the 2 entities concerned for the use cases till
M24 ... 20

Figure 6: Demonstrator #3 – overall architecture and main entities ... 30

Figure 7: Demonstrator #3 – CIV architecture ... 32

Figure 8: Router registration ... 34

Figure 9: Router runtime verification ... 36

Figure 10: Router AK certificate generation... 38

Figure 11: TLS key certificate generation .. 40

List of Tables

Table 1: Reference Scenarios Overview during First Experimentation Cycle1

Table 2: Demonstrator #1 – Comparison of Timings between the TSS and the Application
perspectives using TPM2.0 (HW). .. 13

Table 3: Demonstrator #1 – Comparison of Timings between the TSS and the Application
perspectives using SW-based QR TPM. .. 15

Table 4: Demonstrator #1 – Quantitative Metrics by M24 .. 16

Table 5: Demonstrator #1 – Qualitative Metrics by M24 .. 17

Table 6: Demonstrator #2 –Timings at Application Level using the TPM2.0 (SW) 26

Table 7: Demonstrator #2 –Timings at Application and TSS Level using the FutureTPM QR
Implementation (SW) ... 27

Table 8: Demonstrator #2 – Quantitative Metrics by M24 .. 28

Table 9: Demonstrator #2 – Qualitative Metrics by M24 .. 29

Table 10: Demonstrator #1 – Comparison of Timings between TPM2.0 (SW) and FutureTPM
(SW) .. 45

Table 11: Demonstrator #3 – Quantitative Metrics by M24 .. 46

Table 12: Demonstrator #3 – Qualitative Metrics by M24 .. 47

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 1 of 50

Chapter 1 Introduction and Overview of the First
Experimental Period (M13-M24)

This deliverable covers the main activities of the evaluation, validation and refinement phase
related to setting up, executing and evaluating the three envisioned use cases; namely the
“Secure Mobile Wallet and Payments”, “Personal Activity and Health Kit Data Tracking” and
“Device Management” reference scenarios. As the FutureTPM project adopts a two-cycle
development, integration, demonstration and evaluation approach, D6.3 provides a detailed
documentation of the first-cycle demonstrator results till M24, while the final release (with their
evaluation) will be delivered at M36. Focus, in this first release, is placed on the performance
evaluation of the SW-based QR TPM and the implemented Trusted Software Stack (TSS)
with timings of the sequences of TPM commands, for achieving the security, privacy, and trust
properties of interest per reference scenario [1], being extracted. This also reflects the execution
overhead of the selected and integrated QR crypto algorithms [2].

Towards this direction, a detailed description of each reference scenario is given with the defined
user stories of interest, and their requirements, as well as the conditions and the implementation,
integration status of each demonstrator coupled with a detailed analysis of the extracted results.
Recall that the goal of FutureTPM is to show case the use of TPMs towards providing enhanced
security, privacy and trust while migrating into post-quantum era. Each one of these properties is
demonstrated in separate reference scenarios, in order to avoid overlaps and to be able to
progress with a more detailed evaluation and validation of the TPM operations needed for
achieving a subset of these requirements.

More specifically, the “Secure Mobile Wallet and Payments” reference scenario focuses on the
provision of enhanced security properties in such complex e-Payment scenarios; the “Personal
Activity and Health Kit Data Tracking” focuses on the strict user privacy issues that need to be
met (through the use of the DAA protocol); and the “Device Management” scenario focuses on
monitoring and the establishment of trust between devices that are managed by an NMS server.

Reference Scenario TPM Type
Security
Property

Functionalities

Secure Mobile Wallet and
Payments

Software TPM Security Sealing, Unsealing, Key Generation

Personal Activity and
Health Kit Data Tracking

Software TPM Privacy
DAA Join, DAA Sign, DAA Verify,

DAA Attestation

Device Management Software TPM Trust
Remote Attestation, Device

Management with Secure Key
Identifiers

Table 1: Reference Scenarios Overview during First Experimentation Cycle

As will be described in later sections, it is worth mentioning that the consortium decided to adjust
the evaluation plan that had been put forth in D6.1 [1] by prompting to focus (in the first-cycle of
experimentation) on the evaluation of the QR SW-based TPM environment that has been
integrated in all demonstrators. This deviates from the initial plan considering also the QR HW-
based and VM-based TPMs that are to be tested in the context of the e-Payment and Device
Management reference scenarios, respectively. Thus, the final release of all QR TPM modules,
alongside the other core FutureTPM framework components (providing the Risk Assessment,
Security Policy Enforcement and Control-flow Attestation mechanisms), will be extensively tested

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 2 of 50

and evaluated in the second development cycle (till M36) once the necessary updates have being
performed based on the lessons learnt, as documented in this deliverable.

Table 1 above summarizes the main focus of the three reference scenarios, during this first
experimentation cycle, regarding security, privacy or trust properties of interest and functionalities
that were evaluated.

Overall, summarising this period, this deliverable captures the first experimental (demonstration)
period of the project with many significant results drawn which will be fed back to the other
technical WPs so as to continue research activities on further refining the FutureTPM solution.
The goal is to improve the current implementation, streamline the used algorithms and
improve the technical backbone of the envisioned FutureTPM platform. As such, it is
expected that the next deliverable on the WP6 demonstrators, will provide revised figures for
specific metrics that will be impacted by the ongoing work in the project, and will also provide a
more complete and accurate view on the overall impact experienced in each demonstrator.

1.1 Evaluation, Validation and Refinement Methodology

As was described previously and is also specified in D6.1 [1], in each demonstrator a specific set
of user stories and unit tests has been set up, and specific quantitative and qualitative KPIs have
been designed to measure the impact of the FutureTPM framework. This road map did not only
focused on KPIs related to performance criteria but also taken into consideration the
business value of the core FutureTPM services and functionalities provided.

As decided by the consortium, during the first development cycle and with a view on the release
of the first version of the QR TPM Software Stack, all demonstrators have initially worked to
integrate the TPM2.0 characteristics to their existing infrastructures. This will enable the
better evaluation of the implemented QR TPM modules by using the integration and performance
evaluation of the current TPM architecture, as a starting point, when making the shift to QR trusted
computing technologies. It allowed the engineers that worked on the demonstrators to acquire
more knowledge on the TPM2.0 solutions (currently available) and get familiar with the overall
stack, so as to be in a better position to absorb the knowledge required for plugin into their
applications the QR TPM code that is developed by the project. Furthermore, timings of the
different TPM2.0 commands have been extracted, and used as reference points, for the QR
TPM experiments to follow. This allowed the consortium to measure the performance and
impact of the FutureTPM approach, to the TPM2.0-enabled business applications, and better
define some of the KPIs that were identified in the previous stages of implementation. As such,
this deliverable provides an initial evaluation report of the results gathered from the
execution of the first demonstrator’s phase, following the scenarios and test cases that were
defined for each demonstrator and summarized in Table 1.

It needs to be highlighted that during the first development and evaluation cycle, all three
reference scenarios have experimented with the SW-based version of the FutureTPM solution,
while in the next period the evaluation of all the QR TPM modules (SW-, HW-, and VM-based),
alongside the other core framework components, will commence. The motivation behind this
action plan was to enable the consortium to extract a first set of results, which can be then used
as a reference point for the later experiments. Considering that the TSS, of the QR SW-based
TPM, is also used for building the necessary interfaces to interact with the other QR TPM
modules, it was imperative to first perform an extensive testing of the first software stack release
so as to identify any open issues to be solved before progressing to the final evaluation of all TPM
environments of the FutureTPM framework.

In the following chapters, we provide an in-depth analysis of the underpinnings of the performed
experiments with the extracted results, and describe all open issues that need to be solved for
further improving the performance of the overall framework. This ranges from the necessary
improvements of a subset of the implemented QR crypto primitives (especially the Direct
Anonymous Attestation algorithm) to the functional interfaces needed for supporting the required

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 3 of 50

interactions with the other FutureTPM integral components, and especially the Control-flow
Attestation Engine [3]

1.2 Environmental Setup of Deployed Scenarios

One of the main goals of this deliverable is to also provide a baseline setup for all future
demonstrator experimentation activities. In the first evaluation cycle, the QR SW-based TPM was
used as the underlying trusted component. As such, it is of upmost importance to design an
environment which closely resembles a real-world scenario. The reasoning behind this approach
is twofold: First, we envision the usage of the methodologies proposed herein on
architecture and application space exploration, i.e., a developer can benefit from these real
scenarios by gaining greater insight into building their APIs, and “mock test” different frontend
and backend configurations before deploying on a real TPM hardware. Second, we also propose
a baseline testing methodology (Section 2.3) to better guide a developer on possible
bottlenecks found in their application design; this can range from performance to memory footprint
and communication latency, and forewarn them of bad design structures.

There are two recommended infrastructures when testing an application using the FutureTPM
platform. The first one is called FutureTPM stack, and is comprised of two components: the TSS
and the SW-TPM. The FutureTPM stack is a fully fledged out software emulator of a physical
TPM (SW-TPM), based on IBM’s open-source project, and a software library which implements
the TPM’s commands and its software stack. The SW-TPM was built to closely mimic its real-life
counterpart, thus, providing certain memory and communication latency guarantees. The
emulator makes no direct use of the heap, employing its memory in the .bss and .data program
segments. The lack of heap usage ensures that the SW-TPM spends a very small amount of time
inside system calls and the majority of its time is dedicated on executing the command code.
Communication is handled strictly through a TCP layer which emulates the TPM’s physical TCTI
layer [4][5][6], providing some serialization and latency. Furthermore, the TSS library provided
does not have to be used uniquely with the SW-TPM. New commands or functionalities added to
the TSS can be first tested and prototyped using the software emulator, and then, when real
hardware is available, the same code can be leveraged.

The second recommended infrastructure is libtpms. Libtpms is a wrapper of the software TPM
and is meant to be used in conjunction with the swtpm component, which exposes TPM
functionality through different interfaces (e.g. socket, device). swtpm also provides a dedicated
interface that can be used directly by QEMU to provide TPM functionality to software inside a
virtual machine.

1.2.1 IBM vs. Intel TSS Integration

Several commodity TSS implementations exist, namely the Intel and IBM TSS implementation
instances. While they share many similarities, Intel TSS [7] provides some additional
functionalities (especially when it comes to resource management [8]) that have not been full
incorporated yet in the IBM TSS [9]. On the other hand, the current IBM TSS version is at a more
stable state. Based on these observations and in order to be able to perform a more holistic
investigation in the context of FutureTPM, we decided to leverage both instances: the Intel TSS
was used as the baseline for the risk assessment analysis whereas the IBM TSS provided the
cornerstone for the implementation and demonstration of the QR-based TPM (WP5).

While the FutureTPM QR TPM stack is based on the enhancement of the IBM TSS, the Intel TSS
was leveraged specifically for the vulnerability analysis and attestation of the TPM Access
Broker (TAB) and the Resource Manager (RM) – two components that are of particular interest
due to their inherent functionalities that may lead to sensitive data leakage (e.g., information about
stored keys). The TAB controls multi-process synchronization to the TPM. Basically, it allows
multiple processes to access the TPM without stomping on each other, while the RM acts in a
manner similar to the virtual memory manager in an OS due to limited on-board memory [10].
TPMs generally have very limited memory and objects, sessions, and sequences need to be

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 4 of 50

swapped from the TPM to and from memory to allow TPM commands to execute. RM must parse
the command byte stream before the command is sent to the TPM and take any actions required
to ensure that all transient objects used by that command are loaded into the TPM. This includes
all sessions referenced in the authorization area and all objects, sessions, and sequences whose
handles are in the command’s handle area. Very recently, the Linux kernel 4.12 has included in-
kernel RM [11] to provide isolation between objects & sessions created by different connections
which is the core functionality required by applications. Eventually, all of the required features will
end up in the kernel RM and it will become the default [11].

In the context of FutureTPM, the Control-Flow Attestation tookit is used for tracing and
attesting the correctness of the TAB and RM components: to hook eBPF in the in-kernel RM,
trace all the TPM commands and identify possible object, sequence, session leakage and proven
broken TPM commands [12].

Furthermore, we also provide a port of Intel’s open source tss implementation which is mostly
used to interface with higher level applications, e.g., openssl and is able to fully replace the TSS
provided by the FutureTPM stack. In D5.1, Intel’s TSS was used to replace openssl’s
cryptographic engine with the one available in the SW-TPM, thus, providing QR algorithms
directly to a TLS connection.

Summarizing, the FutureTPM infrastructure provides a fast edit-debug-run cycle and direct
deployment in real hardware, while guaranteeing sensible memory usage and communication
latency. As far as emulation goes, the usage of the FutureTPM stack is the closest a developer
gets to the hardware without actually deploying it.

1.3 Testing Methodology

Testing methodologies are the strategies and approaches used to test the FutureTPM platform
to ensure it is fit for purpose. The focus is on testing that the QR TPM modules work in accordance
to their specifications [13] and have no undesirable effects when employed in ways outside of
their design parameters. Since each demonstrator will be executed in different hosts with various
configurations, this section attempts to shine some light on the standardisation process used to
assure comparable results between each demonstrator instance.

Modern processors found in commodity systems employ a plethora of techniques to improve the
performance of all applications types. The TPM, on the other hand, does not offer such
performance optimizations. As such, before describing the testing methodology, we need to
understand what differentiates both architectures. Commodity processors rely on two major
techniques to boost performance: out-of-order execution and caching. Out-of-order execution
is used to exploit parallelism at the instruction level. Caching is achieved by applying multiple
levels of small but fast memories between the slow external memory and the processor, hiding
the large latency of the external memory. Since the TPM is implemented in an ASIC with tightly
integrated domain specific accelerators (DSA) for most cryptographic operations, the usage of
out-of-order execution in a testing platform can be safely ignored. However, caching cannot be
so easily dismissed.

The OS uses time-slicing to share a single processor core between several processes. Therefore,
it is possible that a process, other than the one we are measuring, evicts our process cached
lines from the cache. As such, collecting measurements at different times results in completely
different timings between the same applications. To diminish the effects of conflict-based
evictions from the cache hierarchy, we must execute our measurements hundreds of times in a
row. In doing so, we are avoiding cold accesses to the caches and possible spurious evictions.
Further, this method closely resembles a TPM accessing its scratchpad memory. To offset the
results from spurious evictions and cold accesses, we shall use the linearly weighted moving
average (LWMA) in order to bias the most recent results from the oldest, i.e., the measurements
obtained using the warmed-up caches are preferred.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 5 of 50

Measurements are performed differently depending on the infrastructure used (Section 2.2).
When measuring application timings, using the FutureTPM stack, performance values are
measured using bash’s time command. While the TPM server is running and started up---using
the startup command---, each command is measured with the TPM always in the same state. The
aforementioned procedure measures command creation, communication, destruction, and the
TPM’s processing. The TPM processing can be generally thought of a five-stage operation: TCP
reception, command validation and deserialization, command execution, response creation and
serialization with results, and response dispatch. Note that when using authenticated sessions,
the command validation operation is more involved and may require more time.

Given that demonstrators use the TSS in a different way, we found two alternative levels of the
software stack, common to all demonstrators, from where performance measurements can be
taken. The first alternative level is the TSS library, which has been patched to measure the
time elapsed between the beginning of TSS_Execute() and the end of the same function.
Measurements from the TSS library take into consideration the time necessary to execute a
command, the marshalling and unmarshalling of the buffers, and the time necessary to transmit
the data between the TSS and libtpms. The second alternative level from where performance
measurements can be taken is libtpms. Doing performance measurements at this level is
particularly interesting to compare the performance of non-QR algorithms versus QR algorithms.

Overall, within FutureTPM, we have prompted in identifying a robust testing methodology to be
followed by all reference use cases. As will be depicted in the following chapters, for each
demonstrator a detailed set of test cases were compiled (i.e., unit testing, integration testing and
system testing) in order to measure the behaviour of the QR SW-based TPM in different
conditions and scenarios, thus, evaluating whether the system can operate at the required
response times for supporting the required security, privacy and trust properties.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 6 of 50

Chapter 2 Demonstrator #1 – Secure Mobile Wallet
and Payments

2.1 Demonstrator Overview

The “INDEV Secure Mobile Wallet and Payments” use case, works on the security of mobile
wallet and e-payment applications and more precisely on how the sensitive tokens are handled
by both the mobile payment app and the corresponding backend server. The token correctness
is fundamental to the overall security of the mobile payment transaction itself, making a quantum
resistant TPM necessary to ensure both the integrity of sensitive data and the future proofing of
the mobile payments application to resist quantum attacks. In this reference scenario, we will
demonstrate a) the sealing functionality for the Bearer and Financial Tokens, b) the unsealing
functionality for the tokens and c) the symmetric key generation to encrypt financial transaction
history logs. At the same time all the aforementioned functionalities will be traced by the integrated
risk assessment framework at the kernel level (kernel interceptor) and produce the quantified risk
(second evaluation cycle – D6.5). Figure 1 below presents the high-level approach of this
reference scenario introduced in D6.1 [1].

Figure 1: Secure Mobile Wallet and Payments High Level Approach

2.1.1 Demonstrator Needs and Challenges

Mobile wallet and e-Payment received significant attention because it enables an easy payment
mechanism and becomes an important complement to traditional payment means. However,
using a mobile wallet over open devices and networks poses security challenges of a new
dimension. The security is fundamental to the overall security of the mobile payment transaction
itself. How the sensitive tokens are handled by the mobile payment app and the corresponding
backend server are key security considerations. A quantum resistant TPM can help ensuring both
the integrity of sensitive data and the future proofing of the mobile payments application to resist
quantum attacks. The “INDEV Secure Mobile Wallet and Payments” use case, works on exactly
this issue of making the sensitive data protected and tamper-proof, demonstrating how the use
of FutureTPM project can benefit mobile wallet and payment applications to be secure. Below we
summarize the updated and more detailed scenario user stories.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 7 of 50

In the majority of the current Android devices, there is no TPM module attached, no recognized
API definition available for Android TSS and most of the Java-based implementations such as
jTSS are complex and error prone. In addition, as already introduced, this reference scenario will
be demonstrated (during the second evaluation cycle) based on the use of the hardware TPM.
In the context of FutureTPM, the hardware TPM will be released on an FPGA-based board
exposed by TCP/IP. For that reason, we decided to adopt and architecture where the hardware
TPM is hosted in a dedicated cloud server. The assumptions made in order to demonstrate this
reference scenario are:

 An authenticated channel is established between the Android mobile app and the TPM
server based on FIDO U2F signaling.

 User registers to the dedicated TPM Server (FIDO U2F Registration Phase)

 User authenticates to the TPM Server with FIDO webAuthN every time that needs to
perform a TPM functionality (FIDO U2F Authentication Phase).

 The tokens are sealed based on the handle h created during the FIDO U2F Authentication
Phase.

2.1.2 Demonstrator Architecture

The demonstrator that is being designed and developed during the FutureTPM project is based
on a refactored mobile application of the current INDEV application, bringing into the picture TPM
methods to secure sensitive tokens.

Since, the hardware-based TPM will be released on an FPGA-based board exposed by TCP/IP,
the consortium took appropriate measures and decided to use a TPM in a dedicated cloud server.
This dedicated TPM sever acts as an internal TPM that should be integrated in the Android device.
This approach brings the ability to further extend our solution and apply prominent authentication
mechanisms such as FIDO Universal 2nd Factor (U2F) between the communication of the
Android application and the dedicated TPM server.

Figure 2: U2F Registration

FIDO (Fast ID Online) is a set of technology-agnostic security specifications for strong
authentication. FIDO specifications support multifactor authentication (MFA) and public key
cryptography. FIDO U2F protocol is the state-of-the-art in the domain of authentication. U2F is an
open authentication standard that enables internet users to securely access any number of online

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 8 of 50

services with one single security key instantly and with no drivers or client software needed. U2F
authentication requires a strong second factor such as a Near Field Communication (NFC) tap or
USB security token. The user is prompted to insert and touch their personal U2F device during
login (proof of presence). The user's FIDO-enabled device creates a new key pair, and the public
key is shared with the online service and associated with the user's account. The service can
then authenticate the user by requesting that the registered device signs a challenge with the
private key. With this approach, no secrets are shared between service providers, and an
affordable U2F Security Key can support any number of services. Both U2F Registration and
Authentication Phases will be used with NFC-based Yubico HSM device. Figure 2 andFigure 3
present the aforementioned challenge-response flows for the Registration and Authentication
phases respectively.

Note that, U2F authentication is an extra layer of security introduced in D6.1 and it was outside
the scope the use case at first place. However, we will use it specifically in this reference scenario
as extra security guarantees between the mobile and the dedicated TPM server. This extra layer
does not change the nature of the application, since it will not be necessary when the Android
device contains an attached TPM. Our approach, using this extra layer, is more generic and
covers also the Android devices without the support of the TPM, by providing the ability to
connect and use a dedicated TPM server.

Figure 3: U2F Authentication

The implementation of the Android application needs to secure two discrete types of tokens.
These two types of tokens are the Bearer Token and the Financial Token.

 Bearer Token: A security token with the property that any party in possession of this token
(a "bearer") can use it in any way that any other party in possession of it can. When a user
authenticates, the authentication server then generates the Bearer Token which is
necessary to get an Access Token. This token is an OAuth token that is used for
authentication between the client and the business logic.

 Financial Token: This token is created by a 3d party service, used to finalize a financial
transaction and represents a user’s credit card in a time frame.

To sum up, in this reference scenario we will demonstrate a) the sealing functionality for the
Bearer and Financial Tokens, b) the unsealing functionality for the Bearer Token and c)
symmetric key generation to encrypt financial transaction history logs. The aforementioned

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 9 of 50

functionalities will be performed using the FutureTPM. In the context of this demonstration, the
timing performance of the FutureTPM is compared to the one on the TPM2.0, in order to critically
appraise the effectiveness of the FutureTPM framework for security and performance in the
context of the Secure Mobile Wallet and Payments scenario. Note that, only after a secure
authentication of the user and establishment of a secure channel, the mobile app will be able to
use the TPM functionalities. Recall that Figure 1 offers a high-level approach of this reference
scenario.

2.2 Emulated System Description

In order to concretely test the proposed architecture, the following scenario was emulated: all
device instances (including the TPM) are executed without using any virtualisation mean, but
instead the developed applications run directly on the hosts. For the TPM server, a machine with
Kubuntu 18.04 OS was used, with CPU Intel Core i7-7700HQ@2.80GHz and 16GB of RAM. This
emulation scenario allows us to measure the performance of the TPM variants without the
interference of intermediate virtualisation layers.

For the client side, an Android App was used, running WenAuthnAndroidLib to register and
authenticate with Public Key Credentials at https://future-tpm.ubitech.eu, running Android M (API
level 23) or newer. The Android device supports NfcManager in order to be able to interact with
the with the U2F Security Key. The specifications of the Android device do not affect the time
measurements, as those are captured to the TPM server side.

Tests were executed for the TSS2.0 stack and the FutureTPM stack. In these instances, the
emulated software QR TPM acts as a server which receives TCP requests from a client, a
command from the TSS library. A dedicated TCP connection is built for each individual command,
regardless of session and context. More details about the particulars of this setup can be found
in D5.1 [14]. Regarding the interaction with the HW TPM2.0, the Intel TSS was used to fire
commands directly to the hardware TPM of the above-mentioned TPM server.

All test results found herein for the demonstrator#1 are the weighted average (LWMA) of 100
consecutive runs, in order to provide an objective performance measurement that spans through
time and possible system conditions.

2.3 Implementation Path Report

During the 1st phase of the run of the demonstrator within the FutureTPM project, the user stories
realised had to do mostly with the implementation of the sealing and unsealing functionality
of the sensitive tokens. This has been achieved by integrating the TPM2.0 stack in a dedicated
TPM server, where all the necessary TPM calls are proxied. The mobile application, only after a
secure authentication of the user and establishment of a secure channel with the TPM and
authentication server, will be able to use the TPM functionalities. Taking a step ahead, the current
implementation considers the FutureTPM stack, which is used for deploying the new algorithms
and libraries provided by the project in the Secure Mobile Wallet and Payments scenario.

The major challenges faced during this implementation had to do with the instrumentation of the
SW FutureTPM stack for creating an approach of measuring the QR TPM performance by having
the lowest possible interference to its operational profile. Towards this direction, minor
modifications applied to the TSS engine in order to acquire the timestamps of TPM commands
execution, so that to calculate the performance timings. Additionally, moving for the legacy
TPM2.0 stack to the FutureTPM stack, minor modifications were needed to the utilised TPM
commands for replicating the use case and demonstrating the sealing, unsealing and symmetric
key generation functionalities.

2.3.1 User Stories Realisation

Out of the User Stories and Test Cases described in D6.1 [1] which were scheduled for this period,
the following has been executed:

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 10 of 50

Description

User Story Title: INDEV.AU.1 - As an Individual User I want to log in to the INDEV Service
and keep safe the bearer token.

Workflow Developed: A preliminary step of the workflow is the generation and storage of a
Control-flow graph (CFG). Then, the workflow proceeds to the registration of the Android user
to the TPM Server leveraging FIDO U2F (only the first time). The user registration process relies
on a challenge/response protocol, as shown in Figure 2. Once the user is registered, she is
authenticated to the TPM Server leveraging FIDO U2F when she wants to perform a TPM
functionality, following the procedure shown in Figure 3. The Android application seals the
Bearer Token in the dedicated TPM, based on the handle and the recorded CFG, by invoking
the TSS stack on the dedicated TPM server.

Issues Encountered: No issues encountered.

Status: Completed

Degree of Realisation: Full

Comments (if any): N/A

Description

User Story Title: INDEV.AU.2 - As an Individual User I want to use an external service to
generate tokens for my credit card that go directly in the TPM and avoid revealing my credit
card to the server.

Workflow Developed: The Android user authenticates to the TPM Server leveraging FIDO
U2F when she wants to perform a TPM functionality (see Figure 3). Then, she provides her
credit card to a 3d party service to generate the necessary Financial Token for a financial
transaction finalization. The user unseals the Bearer Token based on the recorded CFG state
(INDEV.AU.1), and the Token is provided to the INDEV Server. The server forwards the token
to the 3d Party service to generate the Financial Token. The 3d Party service forwards the
generated Financial Token to the server and the server seals the Financial Token.

Issues Encountered: No issues encountered.

Status: Completed

Degree of Realisation: Full

Comments (if any): N/A

2.3.2 Unit Test Results

The following unit test, which correspond to the user stories mentioned above, have been
implemented during this period.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 11 of 50

Test Case MWP1

Reference Code MWP1

Components Mobile App lib

Description

This unit test extends the functionality of the FUTURETPM04 and aims at
verifying the correctness of the sealing and unsealing functionalities of the
Bearer Token, needed for the authorization of the device, based on the
correct FIDO handle token reflected in the PCRs states. (INDEV.AU.1)

Status Performed

Unit Tests
Results

Bearer Token is successfully sealed and unsealed based on the correct
PCR state.

Test Case MWP2

Reference Code MWP2

Components Mobile App lib

Description

This unit test extends the functionality of the FUTURETPM04 and aims at
verifying the correctness of the sealing and unsealing functionality of the
Financial Token, needed for the completion of the financial transaction,
based on the correct FIDO handle token reflected in the PCRs states.
(INDEV.AU.2)

Status Performed

Unit Tests
Results

Financial Token is successfully sealed and unsealed based on the correct
PCR state.

2.3.3 KPIs Measured

During the first phase of the operation of the demonstrator, a set of KPIs that have to do with the
sealing and unsealing functionalities has been tested. For these experiments, performance has
been measured, by employing the “Kyber” algorithm in the 3rd mode (k=3). More details are
presented in the next KPIs, which have been used to measure the core processes of the reference
scenario.

2.3.3.1 Quantitative Metrics

Table 2 and Table 3 below show the time differences of the demonstrator between TPM 2.0 and
QR-TPM. Entries in bold report the total time necessary to execute a demonstrator functionality,
while time entries with regular style report the execution time of TPM commands for the
demonstrator functionality.

Regarding the quantitative evaluation of the project, the acceptance criteria set initially in D6.1 [1]
for the scenarios of the first release of the demonstrator have been met in their majority. It needs
also to be noted that at the current state of the project the deployed application considers the
current parameters as sufficient for the indicated scenario.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 12 of 50

In general, the PCR commands are slower, since the QR-TPM supports more PCR banks with
the SHA3 algorithm and because the kernel extends all allocated banks. In addition, the key
creation commands cannot be compared because RSA key generation is not deterministic, while
Kyber key generation is deterministic. Additionally, “Kyber” algorithm is deployed using the 3rd
mode (k=3).

The next tables summarise the timings of the SW implementation of the QR TPM commands for
this demonstrator, at the current released version, and are compared to the HW TPM2.0
command timings of the equivalent operations. Note that, a different TSS is used for measuring
the performance of the SW QR TPM and the HW TPM2.0. For the former case, the IBM TSS is
used to trigger the commands’ execution to the SW-based TPM, while for the latter case the intel
TSS is used for interacting with the HW-based TPM2.0 of the TPM server of the demonstrator.
The decision for using the Intel TSS was made due to the previous developments of the project
(Section 2.2.1) where the development of the TPM tracer and any interaction with the TPM2.0
was made thought the Resource Manager of the TPM2.0 using the intel TSS. Hence, in order to
be aligned with the previous developments of the project and to adapt to the future ones, we
proceeded to a demonstration which provides an overview of the previous setup and the latest
one, which is based on the IBM TSS.

The timings focus on a) the sealing functionality for the Bearer and Financial Tokens, b) the
unsealing functionality for the Bearer Token and c) symmetric key generation to encrypt
financial transaction history logs. In addition, timings for the U2F Registration and Authentication
processes are provided.

HW TPM Command
Intel TSS

Timings (sec)
TPM2-tools
Command

Application
Timings (sec)

FIDO U2F Registration 0.032 + 0.031 [=0.063]

FIDO U2F Authentication 0.016 + 0.017 [=0.033]

Scenario Initialisation 0.000811237 4.43236927

CC_CreatePrimary 0.000132

tpm2_createprimary 4.36693603

CC_ContextSave 0.000137747

CC_PCR_Extend 0.0000935 tpm2_pcrextend 0.01396532

CC_StartAuthSession 0.0000977

tpm2_createpolicy 0.05146792

CC_PCR_Read 0.00010853

CC_PolicyPCR 0.0001201

CC_PolicyGetDigest 0.00012166

Seal Bearer Token 0.000861264 0.30136801

CC_ContextLoad 0.00011864

tpm2_create 0.06000505

CC_Create 0.000113

CC_ContextLoad 0.000125107

tpm2_load 0.12000210 CC_Load 0.00012154

CC_ContextSave 0.0001346

CC_ContextLoad 0.000120847 tpm2_evictcontrol 0.12136086

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 13 of 50

HW TPM Command
Intel TSS

Timings (sec)
TPM2-tools
Command

Application
Timings (sec)

CC_Evictcontrol 0.00012753

FIDO U2F Authentication 0.018 + 0.020 [=0.038]

Unseal Bearer Token 0.00072306 0.1307273

CC_StartAuthSession 0.00011721

tpm2_unseal 0.06087464

CC_PCR_Read 0.00010834

CC_PolicyPCR 0.00012113

CC_Unseal 0.00012099

CC_FlushContext 0.00011853

CC_Evictcontrol 0.00013686 tpm2_evictcontrol 0.06985266

FIDO U2F Authentication 0.015 + 0.016 [=0.031]

Seal Financial Token 0.000883173 0.30647682

CC_ContextLoad 0.000127333

tpm2_create 0.05986540

CC_Create 0.00011825

CC_ContextLoad 0.000132587

tpm2_load 0.11995824 CC_Load 0.00011963

CC_ContextSave 0.000138973

CC_ContextLoad 0.00011724

tpm2_evictcontrol 0.12665318

CC_Evictcontrol 0.00012916

Table 2: Demonstrator #1 – Comparison of Timings between the TSS and the Application perspectives
using TPM2.0 (HW).

Table 2 provides a side-by-side comparison of the timings for the HW TPM2.0, as those captured
from two perspectives, namely at the TSS and the Application levels. As can be seen, a TPM
command invocation at the Application layer may imply multiple command executions on behalf
of the TSS. For example, the tpm2_createprimary command triggers the CC_CreatePrimary and
CC_ContextSave commands of the Intel TSS.

As it can also be observed, the timings measured by the Intel TSS reflect the time needed to
perform a command execution directly on the HW TPM2.0 of the TPM server. That is, the
command execution occurs quite fast in contrast to the time measurements from the Application
point of view. In fact, this behaviour is reflected in all the core functionalities. The “Seal Bearer
Token” functionality takes 0.000861264 secs to complete by the Intel TSS, while 0.30136801
secs are needed for the Application to perform this operation. This is justified by the fact that, any
application designed to interact with the HW TPM2.0 needs to actually trigger TPM commands
through the TSS which acts as an intermediate entity between the application and the TPM.
Hence, this additional execution overhead is justified as we need to consider the time needed for
the application to interact with the TSS stack.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 14 of 50

Regarding the TPM2_CreatePrimary execution time for the TPM2.0, this command lasted longer
than expected. This is because in the context of the use case scenario the command aims to
generate a secure RSA key-pair. However, this process is not deterministic and hence, the
random generation of a secure key-pair may require a reasonable amount of time.

The timings for the FIDO U2F Registration and Authentication process are independent from the
TPM operation. That is why, these performance timings are replicated in Table 3. In the context
of this use case scenario, the Android user needs to register to the service. Every time a request
is sent to the TPM dedicated server, it is authenticated in the background. Table 2 contains the
timing for the aforementioned operations. Note that, the timings do not include the latency of the
communication channel between the two entities, neither the time required for the user to interact
with the U2F Security Key, as those measurements depend on the network specifications and
the users’ reflection respectively. That is, the captured timings refer to the server-side processes
of handling the registration of a user and the authentication of each received request. Both the
registration and the authentication timings consist of two measurements, which can be seen in
Table 2. The one refers to the challenge handling process, and the other to the actual operations
of the registration/authorisation operations, such as the creation of a new user in the database,
lookup queries for registered users, signature checking etc. Overall, the Registration process lasts
for twice the time of the Authentication process, which is reasonable.

Table 3 provides a comparison over the timings taken from the TSS and the Application
perspectives for the SW-based QR TPM. As expected, the behaviour revealed by the timings of
Table 2 for TPM2.0, is also reflected for the timings of the SW-based QR TPM. More specifically,
the time measurements taken from the side of the TSS denote the command execution for SW-
based QR TPM performs fast. The “Seal Bearer Token” functionality needs 0.0732692 secs to
complete, while for the Application the same operation takes 1.027213278 secs. This time
deference is reasonable as the TSS acts as an intermediate between the App and the TPM. It
must be stated, that for QR TPM performance measurement the IBM TSS was utilised.

QR TPM Command
TSS

Timings (sec)
QR TPM

Command
Application

Timings (sec)

FIDO U2F Registration 0.032 + 0.031 [=0.063]

FIDO U2F Authentication 0.016 + 0.017 [=0.033]

Scenario Initialisation 0.0715622 0.986897155

CC_CreatePrimary 0.0102342 createprimary 0.120857779

CC_ContextSave 0.0105845 contextsave 0.263207519

CC_PCR_Extend 0.0101156 pcrextend 0.120562730

CC_StartAuthSession 0.0101682 startauthsession 0.120433829

CC_PCR_Read 0.010166 pcrread 0.120319939

CC_PolicyPCR 0.0101389 policypcr 0.120689600

CC_PolicyGetDigest 0.0101548 policygetdigest 0.120825759

Seal Bearer Token 0.0732692 1.027213278

CC_ContextLoad 0.010632 contextload 0.131573730

CC_Create 0.0103062 create 0.120626840

CC_ContextLoad 0.010628 contextload 0.131922750

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 15 of 50

QR TPM Command
TSS

Timings (sec)
QR TPM

Command
Application

Timings (sec)

CC_Load 0.0102251 load 0.120615570

CC_ContextSave 0.0105145 contextsave 0.263207519

CC_ContextLoad 0.0106861 contextload 0.131504579

CC_Evictcontrol 0.0102773 evictcontrol 0.127762290

FIDO U2F Authentication 0.018 + 0.020 [=0.038]

Unseal Bearer Token 0.0610737 0.733673946

CC_StartAuthSession 0.0102885 startauthsession 0.125108659

CC_PCR_Read 0.0101359 pcrread 0.120378019

CC_PolicyPCR 0.0102411 policypcr 0.120288340

CC_Unseal 0.0101065 unseal 0.120404149

CC_FlushContext 0.0101262 flushcontext 0.120281479

CC_Evictcontrol 0.0101755 evictcontrol 0.127213300

FIDO U2F Authentication 0.015 + 0.016 [=0.031]

Seal Financial Token 0.0727406 1,147778298

CC_ContextLoad 0.0105624 contextload 0.132756830

CC_Create 0.0101690 create 0.120763869

CC_ContextLoad 0.0105212 contextload 0.131351670

CC_Load 0.0101926 load 0.120285510

CC_ContextSave 0.0105149 contextsave 0.384044250

CC_ContextLoad 0.0105534 contextload 0.131452940

CC_Evictcontrol 0.0102271 evictcontrol 0.127123229

Table 3: Demonstrator #1 – Comparison of Timings between the TSS and the Application perspectives
using SW-based QR TPM.

For performing a cross-comparison between the HW TPM2.0 and SW QR TPM, one needs to
take a look over the results of both tables. As can be observed based on the TSS timings, the
HW TPM2.0 performs faster in contrast to the SW QR TPM. In fact, this can be justified since HW
TPM is a dedicated chip destined to perform cryptographic operations and, on the other hand,
the SW QR TPM operates on generic hardware by utilising the CPU of the server. This difference
is reflected in the timing difference of the “Seal Bearer Token” functionality, where HW TPM
needed 0.000861264 secs, while SW QR TPM completed the task in 1.027213278 secs. It must
be stated, that the comparison between the HW TPM and SW QR TPM for this use case is not
straight forward, as the timings are taken using different TSS variants (Intel/IBM TSS). However,
the notable performance difference cannot be attributed to this fact, but it is the intrinsic difference
of the HW and SW which affects the performance. Regarding the performance from the
Application perspective, the discrepancy of the timings between the HW TPM and SW QR TPM

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 16 of 50

is not as evident as is from the TSS perspective, but still, the HW-based TPM application performs
faster, apart from the initialization phase, where the non-deterministic RSA key generation
process adds a performance overhead.

Concluding, the timings of Table 2 and Table 3 offer a performance overview from multiple
perspectives. The timings are acceptable from the business point of view for the current
demonstrator.

The next table showcases the KPIs corresponding to the implemented use cases, as identified in
D6.1 and measured in this deliverable. Note that the lower performance timings, i.e., the timings
taken from the application perspective, were used in the next table.

Id Metric
Target
Value

Acceptance
criteria

(M)andatory /
(G)ood to Have

/ (O)ptional

Measured
by M24

Comments

1
Amount of sealed

objects
>=2 =2 M

With TPM2.0:
100%

With
FutureTPM:

100%

Target
Achieved.

Successfully
sealed both
Bearer and
Financial
Tokens.

2

Performance of
sealing functionality
within the domain of

ms

<=1000 ms <=2000 ms M

With TPM2.0:
306.48 ms

With
FutureTPM:
1027.21 ms

Target
Achieved.

The sealing
performance is
below the
acceptance
threshold.

4
Performance of the
FIDO Registration

<=2 sec <=3 sec M

With TPM2.0:
0.063 ms

With
FutureTPM:
0.063 ms

We consider
only the server-
side processes
for user
registration,
excluding
network latency
and user’s
interaction with
the U2F Security
Key. Target
achieved.

5
Performance of the

FIDO
Authentication

<=1.5 sec <=2 sec M

With TPM2.0:
0.0038 ms

With
FutureTPM:
0.0038 ms

We consider
only the server-
side processes
for
authentication,
excluding
network latency
and user’s
interaction with
the U2F
Security Key.
Target
achieved.

Table 4: Demonstrator #1 – Quantitative Metrics by M24

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 17 of 50

2.3.3.2 Qualitative Metrics

The protection of sensitive tokens has been achieved with the current version of the software-
based implementation of FutureTPM, which has been released by the project in order to kick start
the demonstrators, and it covered the main scenarios that have been defined for the first version
of the demonstrators. Note that, the 4th qualitative metrics regarding the “User authentication
through the use of TPM”, is shifted to the 2nd release of the demonstrators. This is because this
metric is related to the INDEV.AU.5 user story, which is destined to be deliver in the 2nd release.

Id Metric
Target
Value

(M)andatory /
(G)ood to

Have /
(O)ptional

Measured by
M24

Comments

1 Protection of sensitive tokens Supported M

With TPM2.0:
Yes

With
FutureTPM:

Yes

Successfully
sealed both
Bearer and
Financial
Tokens.

4
User authentication through the

use of TPM
Supported M

With TPM2.0:
Not tested yet

With
FutureTPM:

Not tested yet

Testing for this
KPI has been
shifted to the
2nd phase of the
demonstrator.

Table 5: Demonstrator #1 – Qualitative Metrics by M24

2.3.4 Plan for the next Period

During the next period, the rest of the user stories as defined in deliverable D6.1 [1] will be
executed, by leveraging the HW-based TPM, including the integrity verification history log and
operational correctness of the Android device and the FIDO U2F.

2.4 Conclusions

Sealing and unsealing have been successfully implemented in this demonstrator using the
software implementation of the FutureTPM. We contacted a thorough comparison on the
performance of both HW TPM2.0 and SW-based FutureTPM, in order to provide deep insights
on their operational behaviour in the context of the demonstrator. The results of Table 2 and Table
3 advocate that the performance of the software implementation of the FutureTPM meets the
performance KPIs. The time discrepancies among the contacted measurements are justified by
the nature of the TPMs (Software/Hardware) and the interception placement (TSS/Application)
for capturing the timings. Further experiments will be conducted for the 2nd release of the
demonstrator, in order to evaluate the performance for the rest of the user stories under the
distributed nature of the overall architecture of the dedicated TPM server and the resources
needed to work with QR algorithms and schemes. Overall, the performance of FutureTPM meets
the goals of the demonstrator.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 18 of 50

Chapter 3 Demonstrator #2 – Activity Tracking
Demonstrator

3.1 Demonstrator Overview

The S5Tracker demonstrator is based around the infrastructure build by S5 that is called
S5Tracker. The S5Tracker is a cloud-based analytics engine developed by S5 acting as a data
handling information environment of personalised and interlinked data streams related to activities
performed mostly by individuals. The S5Tracker can be used for creating information-rich user
profiles, based on activities recorded in diverse ICT communication channels and devices, pulled
automatically, or inserted into the system in a semi-automatic manner by users themselves. The
current information entry sources supported include APIs of specific IoT devices (e.g. Apple
Health, Fitbit, Nike+, Garmin, Smart devices, etc.), Web2.0 social platforms that record users
activity (such as Facebook, Twitter, etc.), as well as other smart devices that could be connected
to the platform such as Smart Home kits, etc.

As in any cloud-based data analytics engine, the development, expansion and the deployment of
the service suffers from a set of systemic challenges that require continuous integration and
testing efforts, as well as big time investments to undertake strategic decisions guaranteeing the
service’s performance and availability. In more detail, the main challenges faced at the moment,
as the service resides in a public cloud provider operating as a centralised application, have to
do with:

 Data sharing, privacy, confidentiality and security considerations, both at the cloud-based
infrastructure as well as in the upcoming S5Tracker mobile application service;

 Data volume handling and scalability issues;

 Data processing power and system performance optimisation over the cloud-based
offering.

As such, a strong, but also pain point of the S5Tracker is the Data Anonymization and Privacy
preservation service that can be used to either secure the data and the details of each user to not
be accessible from other parties accessing the platform, and also the generation of aggregated
“User Personas” which are fictional representative users, that can be globally accessible by
analysts, in order to create reference cases.

3.1.1 Demonstrator Needs and Challenges

By utilizing the infrastructure to be made available by FutureTPM, the Activity Tracking
demonstrator will be in a position to include into the overall ecosystem of its operation trusted
devices. They are used at the edge of the infrastructure (e.g. at the data generation and collection
points, as well as the data analysis points), which in turn will provide guarantees regarding privacy
and security. These are considered highly important for the data that is being exchanged over the
suggested infrastructure in order to avoid data forging incidents and data leaks, and at the same
time care for privacy preservation and anonymized data delivery, while such features will be able
to provide an extra layer of trust with regards to the mandates of GDPR, allowing data owners
and data collectors to trust even more the entities that take part in the overall information
exchange.

As such, the use of FutureTPM allows the trusted communication and information sharing
between entities of the overall ActivityTracker and will provide an extra layer of privacy and trust
for the users of the platform, as well as the security primitives necessary to safeguard that data
uploaded to the platform is genuine and comes from the authenticated endpoints.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 19 of 50

3.1.2 Demonstrator Architecture

The demonstrator that is being designed and developed during the FutureTPM project is based
on a refactored architecture of the current S5Tracker infrastructure of the company, bringing into
the picture TPM methods that allow for highly privacy-preserving information exchange. In this
frame, the demonstrator has three main actors and three different components where each one
of these actors operates one component.

The actors identified, which play significant roles in the data value chain of the use case, and
have security and privacy considerations, are the following:

 An Individual User, who is a user that collects his own data from specific sensors and
social media accounts;

 A Data Analyst, who gets access to the data (anonymised data or access to personal
data) to perform certain analyses;

 The S5Tracker Analytics Engine which is not an actual user but a system role that is
responsible for the operation of the S5Tracker Analytics Engine.

The different components are the following:

 S5PersonalTracker - A device on the side of the “individual user” which is used primary
for data collection and data push to the S5Tracker Analytics Engine;

 S5Tracker Analytics Engine – A central cloud-based service, which gets data from the
S5PersonalTracker and performs some analyses online, managing individuals’ data;

 S5DataEdgeAnalysis – A computer interface used by the Data Analyst, that connects to
the S5Tracker to fetch data and run online queries

As shown in the next figure, both the S5PersonalTracker and the S5DataAnalysis interfaces
connect and exchange data with the S5Tracker Analytics Engine. The core focus of the use case
will be to utilise software TPM methods, both at the S5PersonalTracker and at the
S5DataAnalysis sides, to realise a holistic environment of privacy preservation and trust
generation.

Figure 4: Demonstrator #2 – Main Actors and Entities

In this context, privacy regarding the data owner could be achieved by enabling interconnection
between the S5PersonalTracker and the S5Tracker Analytics Engine through Direct Anonymous
Attestation, while at the same time, data sharing modalities towards the S5DataAnalysis side
would be safeguarded, by providing access only to trusted devices for data fetching and analysis,
which would be configured according to the data sharing principles of the overall platform (so that
for example data cannot be exported to a storage medium.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 20 of 50

During this period, implementation focused on the DAA part between the S5PersonalTracker and
the Analytics Engine infrastructure, with the focus of allowing the former to sign and send payload
to the latter, which verifies the payload and stores it in the appropriate database, depending
whether the payload sent is anonymous (thus contributing to building anonymised “personas”),
or eponymous, by using specific basenames, which then is stored to the personal bucket of a
user in the database. The exact architecture of the overall infrastructure, as revised to fit the TPM
modules is shown in the next figure.

Figure 5: Demonstrator #2 – Architecture showing the 2 entities concerned for the use cases till M24

3.2 Emulated System Description

In order to concretely test the proposed architecture, both the S5PersonalTracker and the
S5Personal tracker Engine have been executed within docker containers.

For both machines (including the TPM host), a machine running macOS 10.15.3, using an Intel(R)
Core(TM) i7-8850H CPU operating at a clock frequency of 2.60GHz, having also 16GB of DDR4
RAM running at 2400 MHz.

The Docker running Fedora 31, and the docker engine version is 19.03.5; utilising all 6 physical
cores (with 2 threads each) and occupying 6GB of memory with 1.5GB swap.

As in the other use cases, tests were executed for the TSS2.0 stack and the FutureTPM stack.
In these instances, the emulated software QR TPM acts as a client which uses the LDAA method
to contact a server for being identified as an attested machine that can push some data.

All test results found herein for the Demonstrator#2 are the average of 100 consecutive runs, in
order to provide an objective performance measurement that spans through time and possible
system conditions.

3.3 Implementation Path Report

During the 1st phase of the run of the demonstrator within the FutureTPM project, the user stories
realised had to do mostly with implementing the LDAA protocol that concerns the joining of the
S5PersonalTracker to the network, the signature of payload packages and the verification of
those by the S5Tracker Analytics Engine, for storing them in the appropriate buckets (or dropping
them in case these were not verifiable). As such, the whole process that deals with LDAA has
been implemented between those entities, and the according user stories have been successfully
implemented. Initially, this has been achieved by integrating the TPM2.0 stack in the existing

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 21 of 50

infrastructure, which was then replaced with the FutureTPM stack, by using the new algorithms
and libraries provided by the project.

The major challenges faced during this implementation had to do with certain delays that caused
runtime errors and sync errors between the two different entities, with the main reason for those
being the size of the payload and the delays imposed by the TPM in the signing and verifying the
data. Therefore, it was necessary to implement a mechanism that truncated the payload into
smaller packages, that were faster to sign and verify, and overcome this obstacle. Moreover,
when shifting to the FutureTPM stack, severe delays were experienced in the execution of the
TPM commands, which was a logical consequence of the number of computations necessary for
the QR algorithms to get configured and executed. To overcome this challenge, a specific
parameter in the QR FutureTPM stack has been used, which selects the weakest security
parameters to use in the LDAA, in an effort to boost performance.

3.3.1 User Stories Realisation

Out of the User Stories and Test Cases described in D6.1 [1] which were scheduled for this period,
the following has been executed:

Description

User Story Title: S5.IU.1 - As an Individual User I want to provide authenticated data to the
S5Tracker Analytics Engine, so that I can be served with user-specific services such as
notifications send by the analysts.

Workflow Developed: For this use case, the S5PersonalTracker had to acquire the TPM
credentials by using the Join() command, and then select the payload to Sign(). The signed
packets were sent to the S5Tracker Analytics Engine, which performed the Verify() command
to check the signature and either store the payload in the bucket of the designated user, or drop
it.

Issues Encountered: The issues encountered had to do with timeouts that resulted in
messages not able to be signed. The workaround was to reduce the payload to smaller
packages and use the -weak parameter in the sign() protocol.

Status: Completed

Degree of Realisation: Full

Comments (if any): N/A

Description

User Story Title: S5.IU.2 - As an Individual User I want to provide anonymous and privacy-
preserving data to the S5 Analytics Engine, so that data analysts can have a rich repository of
activity data for exploration.

Workflow Developed: For this use case, the S5PersonalTracker had to acquire the TPM
credentials by using the Join() command, and then select the payload to Sign() by using a
basename that has been common amongst all other clients. The signed packets were sent to
the S5Tracker Analytics Engine, which performed the Verify() command to check the signature
and either store the payload in the bucket of the “persona” user (thus anonymous), or drop it.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 22 of 50

Issues Encountered: The issues encountered in this user story were similar to S5.IU.1 as the
only difference was the “base name” used. These had to do with timeouts that resulted in
messages not able to be signed. The workaround was to reduce the payload to smaller packaes
and use the -weak parameter in the sign() protocol.

Status: Completed

Degree of Realisation: Full

Comments (if any): N/A

Description

User Story Title: S5.DA.1 - As a Data Analyst, I want to verify the integrity of the S5Tracker
Analytics Engine Database, so that I can get data which is not tampered with.

Workflow Developed: LDAA has been set up also in the S5Tracker Analytics Engine, and
signing the snapshot of the database is pending.

Issues Encountered: LDAA has been set up also in the S5Tracker Analytics Engine, and
signing the snapshot of the database is pending.

Status: OnGoing

Degree of Realisation: Zero

Comments (if any): This finalisation of this User Story has been shifted to the next period

3.3.2 Unit Test Results

The following unit test, which correspond to the user stories mentioned above, have been
implemented during this period.

Test Case ATRACK01

Reference Code ATRACK01

Components S5 PersonalTracker, Issuer

Description

This unit test aims at verifying that the S5 Personal Tracker correctly
executed the Join() phase of the DAA protocol. The unit test checks the
validity of the TPM of the host S5 PersonalTracker and the created DAA
key.

Status Performed

Unit Tests
Results

The S5 PersonalTracker successfully acquires and can activate its TPM
credentials for LDAA after communication with the Issuer

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 23 of 50

Test Case ATRACK02

Reference Code ATRACK02

Components S5 PersonalTracker

Description

This unit test aims at verifying the signature (SIGN phase) of user’s bunch
of data using the DAA key. This unit receives the data from the users and
then checks how the TPM forwards back the signed data, either
anonymously or non-anonymously based on the use of a unique base-
name.

Status Performed / On-Going / Not Executed Yet / Skipped

Unit Tests
Results

Payload signed by the S5 PersonalTecker is successfully signed, either
on the anonymous or not modes

Test Case ATRACK03

Reference Code ATRACK03

Components S5 Personal Tracker, S5 Analytics Engine

Description
This unit test aims at verifying the received signed data by the S5 Analytics
Engine. It will validate the DAA VERIFY() phase, based on the use of the
DAA key.

Status Performed

Unit Tests
Results

Payload received by the S5 Analytics Engine, that is generated and signed
by the S5 PersonalTracker is verified.

Test Case ATRACK06

Reference Code ATRACK06

Components S5 PersonalTracker, S5 Analytics Engine

Description
This unit test aims at verifying that the S5 Analytics Engine is able to
unwrap and store (in a trusted manner) data that is sent by the S5 Personal
Tracker to the database.

Test Case ATRACK06

Reference Code ATRACK06

Components S5 PersonalTracker, S5 Analytics Engine

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 24 of 50

Test Case ATRACK06

Description
This unit test aims at verifying that the S5 Analytics Engine is able to
unwrap and store (in a trusted manner) data that is sent by the S5 Personal
Tracker to the database.

Status Performed

Unit Tests
Results

Once the payload is verified, it is unwrapped and is stored as necessary
in the database of the Analytics Engine

3.3.3 KPIs Measured

During the first phase of the operation of the demonstrator, a set of KPIs that have to do with the
establishment of a DAA scheme between the PersonalTracker interface and the Analytics Engine
has been tested, using a simulated environment where data has been fabricated and send from
the one end to the other to check the performance of the protocol.

For these experiments, performance has been measured, while in the case of the FutureTPM
DAA implementation, the experiment has been conducted by employing its “weak” state, as this
has allowed to retrieve the fastest possible responses from the TPM.

More detail is presented in the next KPIs, which have been used to measure the DAA
performance.

3.3.3.1 Quantitative Metrics

In terms of the quantitative evaluation of the project, the acceptance criteria set initially in D6.1
for the scenarios of the first phase of the demonstrator (M24) have been met in their majority
using the -LDAA1 flag, aka “weak” parameter of the current software QR-TPM implementation.
The -LDAA1 flag selects the weakest security parameters to use in the LDAA. The parameters
are: q = 3329 (12 bits); cyclotomic polynomial of 256; k = 3; etc. This is faster because it foregoes
security in favour of performance due to the inefficiency of the implemented LDAA algorithm. In
case stronger security parameters are set, then performance is significantly reduced, as at the
typing the FutureTPM implementation is under prototyping. It needs also to be noted that ate the
current time, the concerned current business application considers the current parameters as
enough for the indicated scenarios.

Unlike the applications that can replace RSA and ECC functionality with similar QR counterparts,
the presented LDAA results and commands should not be interpreted in a similar way. Due to its
memory requirements the current LDAA implementation is not deeply integrated in the TPM. The
commands provided were implemented as a possible interface for a quantum-resistant
accelerator. As such, there is not a one to one mapping to the non-quantum-resistant TPM. The
integration of LDAA into the standard TPM commands was foregone because of backwards-
compatibility concerns. Its addition would be disruptive to the standard commands, given the
magnitude of the data that LDAA has to operate over, and break previous TSS compatible
programs. In order to reduce the impact of the current LDAA implementation, we have decided to
separate the commands such that we can test the current interface without interfering with other
applications.

The next tables summarise the timings of the SW implementation of TPM commands for this
demonstrator at the current version released in M21 of the project. The following table presents
the timings of the complete sequence of commands for applying the DAA method with the use of
the Software implementation of TPM2.0, measured at the application level of the Activity Tracker
demonstrator.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 25 of 50

TPM Command TPM2.0 Timings

Application Timing

Initialise and Join () 1.190250sec

TPM2_ReadPublic 0.10071649sec

TPM2_GetCapability (TPM_PT_REVISION) 0.099378898sec

TPM2_Create 0.0024465sec

TPM2_Load 0.094564203sec

T1 Host prepares 0.097215602sec

T2 Issuer challenges 0.0002133sec

TPM2_Activate_Credential 0.099243sec

TPM2_Commit 0.1003126sec

TPM2_Hash 0.099998492sec

TPM2_Sign (ECDAA) 0.1090904sec

T3 Host responds 0.07920188sec

T4 Issuer verifies response 0.0011676sec

T5 Issuer creates credential 0.0024837sec

TPM2_Activate_Credential 0.097036602sec

T6 Host verifies credential 0.1101832sec

T7 Host checks pairings 0.096997998sec

Sign () 1.116446383sec

TPM2_GetCapability (TPM_PT_PERSISTENT) 0.1094627

TPM2_GetCapability (TPM_HT_PERSISTENT) 0.12004409

TPM2_ReadPublic 0.1005071

TPM2_GetCapability (TPM_PT_REVISION) 0.099512797

TPM2_Load 0.073159998

TPM2_Commit P1 (s2,y2) 0.095290492

T8B Host commits 0.099133

TPM2_Hash 0.1102931

TPM2_Sign (ECDAA) 0.099247906

T9 Host signs 0.2097952

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 26 of 50

TPM Command TPM2.0 Timings

Verify() 0.0382752sec

 T12B verify signature 0.0079627sec

 T13 Verifier checks pairings (S,C,Q)
0.0111749sec

 T12B verify signature
0.0079627sec

 T13 Verifier checks pairings (S,C,Q)
0.0111749sec

Table 6: Demonstrator #2 –Timings at Application Level using the TPM2.0 (SW)

Having as a reference point the timings with the current TPM2.0 implementation, the same
amount of payload has been selected to perform the equivalent DAA operations (signing and
verifying) with the QR software implementation of FutureTPM. In essence, LDAA has been used,
utilising the same computational resources, and the timings at application and TSS level are the
ones presented in the next table.

QR FutureTPM Timings

Application Timing TSS Timing

Initialise and Join () 1.23763sec Initialise and Join () 0,097600915sec

New issuer ldaa 0.008677sec

New host 0.000012sec

Startup 0.157466sec CC_Startup 0,012818105 sec

Createprimary 0.162345sec CC_CreatePrimary 0,012704095 sec

Create 0.201239sec CC_Create 0,017840957 sec

Load 0.282727sec CC_Load 0,027992065 sec

Ldaa join 0.158229sec CC_LDAA_Join 0,013578031 sec

Ldaa sign proceed 0.156717sec CC_LDAA_SignProceed 0,012667655 sec

Join 0.110551sec

Sign () 38.909526 Sign () 7,52866176 sec

Ldaa commit token link 0.167817sec CC_LDAA_CommitTokenLink

 Ldaa SignCommit (multiples) 34.926421 sec CC_LDAA_SignCommit (multiples) 6,89314087 sec

Host sign proceed 0.603191sec

Host generate challenge 0.189532sec

Ldaa sign proof (multiple) 3.0220348 sec CC_LDAA_Sign-Proof 0,63552089 sec

Sign merge 0.004312sec

Verify () 1.205691sec

Start verify 1.205691sec

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 27 of 50

Table 7:Demonstrator #2 –Timings at Application and TSS Level using the FutureTPM QR
Implementation (SW)

Even with the -weak parameter activated, there was a noticeable delay in specific TPM operations
at the level of the Application, with the most severe being in the Sign() protocol that takes 38 times
more than the current implementation. The other noticeable delays concerns the Verify() protocol
that takes 33 times more than in the TPM2.0, however as the time required for this operation is
lower than 1.5 seconds, they are acceptable from the business point of view for the current
demonstrator.

The main justification for these delays has to do with the fact that LDAA signature (Sign()) is a
multi-step process and there are certain steps which take longer than others. The first one is the
required shared matrix between the host and the TPM. Since this matrix is very large, hundreds
of MB, it would take longer to transfer it to the TPM than to regenerate it, so it was decided to
regenerate the matrix using a pre-determined seed. This slows down the processing immensely
because every time a call to a sign command is made, this matrix will have to be regenerated.
The reason behind not using a cache is because the TPM doesn't possess any cache and in the
Software implementation we wanted to be as true to the physical device as possible.

Another important point is the fact that the commitment scheme doesn't suit the TPM, i.e., the
commitment scheme requires a vector matrix multiplication where the matrix is very large. Finally
we have to be conscientious that we are emulating the TPM and thus every time we issue a
command our OS needs to spawn the process, setup the TCP connection, run the required code
by the TPM, transfer the data, wait until the SW-TPM responds, and finally kill the process and
destroy all objects.

The next table showcases the KPIs corresponding to the implemented use cases, as identified in
D6.1 and measured in this deliverable.

Id Metric
Target
Value

Acceptance
criteria

(M)andatory /
(G)ood to

Have /
(O)ptional

Measured
by M24

Comments

1

Allowing only for
trusted S5

PersonalTracker
interfaces to interact
with the S5Tracker
Analytics Engine

100% 100% M

With
TPM2.0:

100%

With
FutureTPM:

100%

Target
Achieved.

Packets that
have not be
signed, are
automatically
dropped

2

Performance
evaluation of

process of sending
and analysing an

average set of daily
collected personal

data

-35% -45% M

With
TPM2.0: 1,5

seconds

With
FutureTPM:

40,1
seconds

Target not
achieved
Amount
corresponds
to 10Mb of
data
analysed,
measuring in
principle the
sign and
verify and
unbundling

3 Performance
evaluation of the

800 ms 2.000 ms G With
TPM2.0:

Target not
achieved but
within the

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 28 of 50

Id Metric
Target
Value

Acceptance
criteria

(M)andatory /
(G)ood to

Have /
(O)ptional

Measured
by M24

Comments

infrastructure during
the Join() phase

1,190250
seconds

With
FutureTPM:

1.23763
seconds

acceptable
space

4

Improved perception
of Individual Users’

trust to
S5PersonalTracker

as a data hub1

100% 60% G

With
TPM2.0:

100%

With
FutureTPM:

90%

Target not
achieved but
still
acceptable

Users
commented
on the small
delay
experienced,
which
impacted
negatively
their
perception of
trust.

5

Performance
evaluation of
checking the
integrity of S5

Tracking Engine and
Data Analyst to
avoid potential

exploitation attempts

- 10% - 25% O

With
TPM2.0: Not
Tested yet

With
FutureTPM:
Not Tested

yet

Testing for
this KPI has
been shifted
to the 2nd
phase of the
demonstrator

Table 8: Demonstrator #2 – Quantitative Metrics by M24

3.3.3.2 Qualitative Metrics

Support for DAA has been achieved with the current version of the software-based
implementation of FutureTPM, which has been released by the project in order to kick start the
demonstrators, and it covered the main scenarios that have been defined for the first version of
the demonstrators.

Id Metric
Target
Value

(M)andatory /
(G)ood to

Have /
(O)ptional

Measured
by M24

Comments

1
Support DAA for enhanced privacy

S5PersonalTracker
Supported M

With
TPM2.0: Yes

DAA support
has been

1 To be measured with the use of structured Saaty scale questionnaires, addressed to a set of 25 selected users of the S5 Activty
tracker users that will be introduced to the advantages brought by the TPM technology

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 29 of 50

With
FutureTPM:

Yes

successfully
implemented

Table 9: Demonstrator #2 – Qualitative Metrics by M24

3.3.4 Plan for the next Period

During the next period, the rest of the user stories as defined in deliverable D6.1 will be executed,
while the existing user stories might be re-run in case an improved implementation of the LDAA
is implemented in the course of the project.

3.4 Conclusions

As indicated above, LDAA has been successfully implemented in this demonstrator using the
software implementation of the FutureTPM, however there have been some performance issues
which are inherited by the nature and the overall architecture of the TPM, the resources needed
to work with QR algorithms and schemes and also the business logic of the current demonstrator
which worked with packaging, sending and unbundling data close to real-time.

In general, however, the results (except the signature process) are acceptable, even if not very
close to the set targets. To mitigate the delay witnessed during the signature process there is an
idea to alter a bit the business logic of the demonstrator, scheduling the signature and the sending
of the payload to happen at off-peak times, using pre-programmed daemons that will run in the
background on the S5 PersonalTracker instance. This however will result in users losing the
ability to see their data in real-time on the cloud-based infrastructure (S5 Analytics Engine).

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 30 of 50

Chapter 4 Demonstrator #3 – Device Management
Demonstrator

4.1 Demonstrator Overview

The network device management demonstrator intends to show how system integrity challenges
can be solved, at scale, in the scenario of a distributed telecommunications infrastructure
composed of many network devices that are centrally managed, as described in Figure 6. In the
demonstrator, network routers equipped with a QR-TPM are required to prove their hardware
identity and software integrity to a Network Management System (NMS). The process is
integrated with the usual management operations that the NMS is performing across the entire
lifecycle of the router, from deployment stage through regular operation until their
decommissioning, by leveraging the concept of Remote Attestation. Based on the outcome of this
process, the NMS can decide whether any given router can be trusted for routing user traffic or,
if it cannot be trusted, whether it should be avoided, e.g. by adjusting the routing policy on its
neighbouring routers. The demonstrator pushes the industry state of the art by introducing new
technologies and methods to address several of the challenges identified in the following section.

3: routing policy =
f(network, trust)

Router

Router

NMS

Router

Router

1: <- query status
2: -> statistics
4: <- modify routing table

1: <- query status
2: -> statistics

1: <- query status
2: -> statistics

1: <- query status
2: -> statistics
4: <- modify routing table

Trusted control channels

Fallback data path

Preferred data path

attacker

Figure 6: Demonstrator #3 – overall architecture and main entities

4.1.1 Demonstrator Needs and Challenges

System integrity is a fundamental security aspect. It cannot be simply assumed that a certain
security policy is enforced on a given system without having evidence that the part of the system
responsible to enforce the policy, called the Trusted Computing Base (TCB), is trustworthy. The
trusted computing paradigm promoted by the TCG addresses the need of verifiable evidence
about a system and the integrity of its TCB and, to this end, the TPM and related TCG
specifications provide both the foundational concepts, such as Measured Boot and Remote
Attestation, as well as the necessary building blocks, such as the TPM and the TSS, to provide
trusted computing capabilities to a wide range of ICT systems.

Still, there remain several challenges for the wide scale adoption of trusted computing and the
telecommunication industry is a particular case. Often the adoption is not reaching its true
potential due several aspects such as incomplete support infrastructures, lack of standard
protocols, flexibility in the platform specifications, scalability, performance and availability
concerns, and adoption in virtual infrastructures, to name a few. There is also a perceived aspect

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 31 of 50

of incompleteness of integrity measurements or guarantees, due to the traditional focus of trusted
computing on the system boot time or, at most, the load-time of applications, without covering
system integrity beyond these stages, during system execution, which is especially important for
high-availability systems that have months or years between reboots.

A different type of challenge is related to the long expected lifecycle of telecom routers, ranging
from 10 to 15 or even 20 years. This means that the underlying cryptographic primitives of roots
of trust such as the TPM need to remain trustworthy also beyond the horizon for practical quantum
computer cryptanalysis. Using a QR TPM will provide insights into transitioning from classical
cryptography to QR cryptography, with respect to performance and integration impact.

4.1.2 Demonstrator Architecture

The entities in the demonstrator are:

- the routers, that route user traffic;
- the NMS, which manages the routers over TLS channels;
- the RA Server, which is responsible for attesting the routers.

The NMS augments the decision on the routing policy that is to be sent to the routers in the
network, by factoring in the trust state of each router, in addition to the usual network-related
parameters. The trust state is the result of Remote Attestation (RA), in which the measurements
of the software loaded on a router is verified by an RA Server against reference values that
characterize known (and thus trusted) software versions and configurations. If all routers are in
respective trusted states, meaning that all the software running on the router is known to be good,
the routing policies calculated by the NMS for the network will only depend on the network
parameters. If a given router does not attest successfully, meaning that not all the software
running on it is known, the NMS will push to the neighboring routers policies that divert traffic
away from the untrusted router. This is done to the extent allowed by the network service level
agreement, as some routers might be a single point of failure for a certain part of the network and
avoiding them completely might break the network availability.

Each of the entities above interface with each other through standard REST APIs, as depicted in
the user story diagrams in section 4.3.1. Each router is modeled as a virtual machine (VM) which
uses a dedicated QR software TPM instance running on the hypervisor and exposed by qemu.

Compared to the architecture described in D6.1, the demonstrator introduces a new capability
called Secure Zero Touch Provisioning (S-ZTP), which allows the automatic and secure
establishment of trust, called enrolment, between a new router connected to the network and the
NMS, without human intervention (other than plugging-in the router). S-ZTP eliminates the need
of trust on first use or out-of-band trust establishment schemes, which, in practice, can be very
unreliable from the perspectives of trust model, organization and cost. The result of successful
enrolment of a router is materialized by the issuance of a TLS certificate that can be used to
securely communicate with the NMS or with other routers.

4.2 Emulated System Description

The tests have been performed in a virtualized environment. The hardware used is an Intel i7-
6700 CPU and 16 GB of RAM. The operating systems used are Ubuntu 18.04 in the host and
Fedora 30 in the virtual machine. The hypervisor used is KVM.

To expose a virtual TPM in the virtual machine, libtpms and swtpm (both the non-QR and the QR
version) have been installed in the host. Initial provisioning of the virtual TPM has been manually
done with swtpm_setup.sh (for TPM 2.0) and with TSS utilities (for QR TPM).

Router software for remote attestation has been installed in the virtual machine, while the RA
Server and the server endpoint of the TLS connection have been installed in the host.

The tests results have been obtained by running 100 times the binaries that implement the four
main functionality of the demonstrator (AK creation, TLS key creation, TLS connection, and TPM

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 32 of 50

quote), by collecting the results and by calculating both the non-weighted and the weighted
(LWMA) average.

4.3 Implementation Path Report

In terms of design, the Device Management Demonstrator attempts to address the challenge of
doing remote attestation in a complex software stack like that of a router, as described in section
4.1.1. Once the OS kernel is loaded, processes and files are loaded in parallel, driving an
explosion of loading order paths that are almost impossible to match to a reference. Also, many
processes often create their own files on the system (e.g. state, configuration files, logs etc.), files
for which there can be no initial reference as for the executables. In addition, various processes
can directly or indirectly interact with each other, such as through IPC or through successive file
writes-reads, making it hard to evaluate the impact of an unknown process on the others. To this
end, we have introduced the Comprehensive Integrity Verification (CIV), an architecture that
allows to assess and/or preserve the integrity of the operating system TCB, at load time and
during system execution, while ensuring predictability of the PCR values regardless of the order
of loading of applications and reducing performance impact by dramatically reducing the number
of TPM PCR extend.

CIV is building on the IMA and EVM features of the Linux kernel and introduces a new Linux
Security Module (LSM) called Infoflow, which implements the Clark-Wilson integrity model [1]. It
monitors the information flows between TCB processes and those outside the TCB and can
prevent violations or record them in the TPM-protected IMA measurement list. CIV introduces a
concept of digest lists to limit the reporting of measured software only to the case when that
software is unknown (not added to the digest list). This approach ensures predictable PCR values
and reduced usage of the TPM and, consequently, reduced performance impact. It also
introduces Simple Remote Attestation (Simple RA), to minimize the effort of integrating Remote
Attestation in existing distributed architectures, by using implicit attestation over existing secure
protocols (e.g. TLS), while addressing the lack of dedicated standard attestation protocols and
thus mitigating interoperability concerns. The CIV overview is depicted in Figure 7.

Figure 7: Demonstrator #3 – CIV architecture

The workflow is the following: CIV verifies immutable files by searching for a file digest in the
digest lists provided by the software vendor. Alternatively, CIV detects/prevents offline attacks on
mutable files by verifying the HMAC and detects/prevents online attacks by restricting through

Mandatory Access Control (kernel space)

IMA Digest Lists Infoflow LSM EVM

load time
integrity

offline
integrity

run time
integrity

Simple RA protocol (user space)

Hardware (TPM)

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 33 of 50

the Infoflow LSM the processes that are able to modify those files. Measurements produced by
CIV (only if the verification failed) are used by the Simple Remote Attestation Protocol for reporting
the integrity status of the router to the NMS.

The following changes have been made to the system architecture compared to D6.1 and are
reflected in the revised user stories in section 4.3.1:

- introduce the ZTP client on the router, to support secure zero touch provisioning;
- the RA Server pushes the trust state of a router to the NMS, during S-ZTP (previously the

NMS was pulling it from the RA server);
- the TLS CA has been moved from the RA server to the NMS.

Initially, the demonstrator used the regular TPM 2.0 and switched later to the QR software TPM
2.0 once it became available. This has required modifications across to all software stacks that
use the TPM, in order to accommodate for larger key, buffer or command sizes due to the QR
algorithms: TPM driver, TSS, SeaBIOS, qemu.

A major implementation challenge was how to modify existing software to perform implicit remote
attestation. We wanted to use one of the most widely adopted library for implementing secure
protocols, OpenSSL, without modifying it. Integrating our code in OpenSSL would have required
a lot of effort, without the guarantee that upstream developers accepted it.

We opted for a more efficient approach, by implementing the implicit (and explicit) remote
attestation functionality in a separate software called attest-tools. attest-tools consists of several
components: RA lib (verifiers) to verify the integrity of the system attested from attestation data,
RA lib (enrolment), to perform initial steps necessary for the subsequent remote attestation
process, RA lib (skae), to parse attestation data from a X.509 extension. The API exposed by RA
lib (skae) is suitable to use together with OpenSSL. In particular, it exposes a function that can
be used as an additional method during the verification of the peer’s certificate.

The additional verification method checks the Subject Key Attestation Evidence (SKAE) certificate
extension, standardized by TCG. Implicit RA consists in verifying additional guarantees for the
key used in the secure communication (e.g. TLS): the key is securely stored in the TPM and is
associated with a good software configuration.

OpenSSL however, although it allows developers to specify a callback function called during the
peer’s certificate verification, it does not give the possibility to specify additional parameters for
that callback. This is a significant limitation because RA lib (skae) needs as input the requirements
from the remote attestation verifier for the software configuration associated to the TLS key and
additional information necessary to verify the SKAE (e.g. the certificate of the Attestation Key
used to sign the TLS key).

We solved this issue by implementing a mechanism to load the data necessary for the SKAE
verification at a different time than the time of the verification itself. Developers using attest-tools
create a new data context and add to that context attestation data received from the peer, before
the TLS connection is established. The data context is stored in a global variable, so that it is
accessible by the callback function invoked by OpenSSL when the SKAE of the peer’s certificate
is being verified. The result of the SKAE verification is stored in another structure called verifier
context, which can be accessed by the application, to check if the SKAE verification was
successful or which errors have been encountered by attest-tools.

Another implementation challenge was to modify the software which exposes the software TPM
to the virtual machine. In particular, this software uses a fixed length buffer that was deemed by
developers sufficient to store any TPM command and response. However, with the introduction
of quantum resistant algorithms such as Kyber and Dilithium, the buffer length became insufficient
due to the larger key size. Usage of the newly introduced algorithms became possible only after
doubling the length of the buffer in many of these software components (i.e. Linux kernel,
SeaBIOS, qemu).

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 34 of 50

4.3.1 User Stories Realisation

Description

User Story Title: HWDU.NA.1 – As a Network Administrator, I want to enrol the router with the
NMS so that it is accepted in the network infrastructure.

User Story Confirmations:

 The router appears in the list of devices managed by the NMS based on its TPM-

based identity

TPM Functionalities:

 NVRAM access

User Story Implementation:

Figure 8: Router registration

Components:

 ZTP Agent: Agent running on each router, responsible to initiate the enrolment

process and to respond to implicit RA requests from the NMS.

 RA Server: Remote Attestation Server that exposes a REST API to routers for

device enrolment and explicit RA.

 RA Client: Remote Attestation Client running on each router to generate TPM keys,

quotes and CSRs and to send certificate requests to RA Server.

 RA Lib (enrolment): Library running on RA Server to perform enrolment of each

router.

 RA Lib (verifier): Library running on RA Server to verify CSRs (for implicit RA) and

quotes (for explicit RA).

 NMS: Network Management System.

Workflow:

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 35 of 50

1. Extract EK cred from routers to be enrolled

 The Network Administrator accesses the router and extracts the EK credential

from the TPM

2. Send EK cred and router FQDN to NMS

 The Network Administrator sends the extracted EK credential and the desired

router FQDN to the NMS

3. Store EK cred and router FQDN in DB

 The NMS stores the EK credential and router FQDN in the NMS DB

Issues encountered: see Section 5.2 for the generic implementation challenges

Status: Completed

Degree of realisation: Full

Description

User Story Title: HWDU.NA.2 – As a Network Administrator I want to define a trusted routing
policy on the NMS so that the traffic is processed according to the trust states of routers.

User Story Confirmations:

 A routing policy depending, among others, on the trust state of routers is defined in

the NMS.

Issues encountered: -

Status: OnGoing

Comments: Planned for the second round of experimentation

Description

User Story Title: HWDU.NA.3 – As a Network Administrator I want to enforce the trusted
routing policy in the network to reduce the risk of traffic leaking by untrusted routers.

User Story Confirmations:

 Routing tables on adjacent routers are modified when the trust state of a given

neighbouring router changes

Issues encountered: -

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 36 of 50

Status: OnGoing

Comments: Planned for the second round of experimentation

Description

User Story Title: HWDU.NA.4 – As a Network Administrator I want to monitor the overall trust
state of the network infrastructure.

User Story Confirmations:

 The NMS displays the trust state and routing table for each router in the network

TPM Functionalities:

 Key storage, signing, decryption, platform configuration

User Story Implementation:

Figure 9: Router runtime verification

Components:

 ZTP Agent: Agent running on each router, responsible to initiate the enrolment

process and to respond to implicit RA requests from the NMS.

 RA Server: Remote Attestation Server that exposes a REST API to routers for

device enrolment and explicit RA.

 RA Client: Remote Attestation Client running on each router to generate TPM keys,

quotes and CSRs and to send certificate requests to RA Server.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 37 of 50

 RA Lib (enrolment): Library running on RA Server to perform enrolment of each

router.

 RA Lib (verifier): Library running on RA Server to verify CSRs (for implicit RA) and

quotes (for explicit RA).

 NMS: Network Management System.

Workflow:

1. Establish TLS connection

 The NMS establishes a TLS connection with managed routers.

 The router replies to the NMS and sends the certificate associated to the

generated TLS key.

2. Verify router TLS key cert

 The NMS queries the DB to verify the router TLS key certificate.

3. TLS key unusable, perform explicit RA

 If implicit RA fails (TPM key unusable in the router due to configuration

change), ZTP Agent asks RA Client to perform explicit RA

4. Collect measurements and generate TPM quote.

 RA Client collects measurements from the system and asks the TPM to

perform the quote operation.

5. Send measurements and TPM quote

 RA Client sends measurements and TPM quote to RA Server.

6. Check if AK cert is in DB

 RA Lib (verifier) checks whether the TPM quote has been signed by a TPM AK

for which a certificate was released by RA Server.

7. Verify measurements and TPM quote

 RA Lib (verifier) verifies the measurements and TPM quote sent by RA Client

in the router.

8. Send verification result

 RA Server sends the result of router integrity verification to the NMS so that it

can be seen by the Network Administrator.

9. Store verification result

 The result of the router integrity verification is stored in the NMS DB.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 38 of 50

Issues encountered: it was not known in the concept phase where the CA used to sign router

certificates should be placed. During the software architecture phase, we chose to have

different CAs depending on the purpose: the likely existing NMS CA for TLS certificates (since

the NMS contacts the routers), and a new Privacy CA (included in the RA Server) for Trusted

Computing specific functionality.

Status: OnGoing

Degree of realisation: Partial

Comments: The routing policy functionality and the UI will be delivered with the 2nd release.

Description

User Story Title: HWDU.NO.1 – The Network Operator connects the router to the network and
is able to verify the device integrity based on a whitelist.

User Story Confirmations:

 A TPM key is generated on the router for use to establish trusted channels.

 The TPM key is validated by the NMS (i.e. it can be used only with software and

integrity policy approved by the Network Administrator).

 A trusted management channel is established between the NMS and the router (on

the router the TPM enforces the validated TPM key policy).

 An LED light on the router case indicates that the router has connected to the NMS.

TPM Functionalities:

 Key storage and certification, identity verification, signing, decryption.

User Story Implementation:

Figure 10: Router AK certificate generation

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 39 of 50

Workflow (AK certificate):

1. Obtain RA Server cert

 ZTP Agent obtains RA Server certificate from the NMS.

2. Extract RA Server FQDN from cert and begin the enrolment

 ZTP Agent extracts RA Server FQDN from the certificate and passes it to RA

Client.

3. Generate AK

 RA Client generates an AK that will be used to certify the TLS key and sign TPM

quotes.

4. Get AK cert

 RA Client asks RA Server to issue a certificate for the AK it generated.

5. Check if router EK cred is in NMS DB

 RA Server asks the NMS if the EK credential of the router requesting an AK

certificate has been added to the NMS DB by the Network Administrator; this

prevents any router from getting an AK certificate.

6. Generate credential blob and verify challenge response by router

 RA Lib (enrolment) generates a credential blob and asks RA Agent in the router

to prove that the router possesses the EK.

7. Generate AK cert and send it to Privacy CA

 RA Lib (enrolment) generates a certificate for the router AK and asks Privacy CA

in RA Server to sign the certificate

8. Sign AK cert

 Privacy CA signs the AK certificate; RA Server sends it to the router.

9. Store AK cert

 RA Server stores the signed AK certificate in the DB

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 40 of 50

Figure 11: TLS key certificate generation

Workflow (TLS key certificate):

1. Generate TLS key and CSR with SKAE

 RA Client generates a TPM key for TLS (the key policy is specified as a

parameter of TPM2_Create(); the policy should specify the correct software

configuration for which the TPM will allow the key to be used).

 A malicious router can specify a bad policy (e.g. for an incorrect/insecure

software configuration) but cannot convince the RA Lib (verifier) that the

policy was good (the generated key and the specified key policy are

signed internally by the TPM, so the router has no control over this

process).

 The TPM signature is made with an Attestation Key (AK), which can be reliably

associated by the RA Lib (verifier) to a router with the EK credential of that router.

 RA Client also creates a CSR for the generated key and includes the TPM

signature in a certificate extension called Subject Key Attestation Evidence

(SKAE) defined by TCG.

2. Get TLS key cert and begin the enrolment

 RA Client asks RA Server to issue a certificate for the router TLS key

3. Check if AK cert is in DB

 RA Lib (verifier) first checks if there is a certificate for the AK the router used for

signing the TLS key

4. Verify SKAE from CSR

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 41 of 50

 RA Lib (verifier) verifies that the CSR is signed with a TPM key, that the TPM

key is signed with an AK belonging to the given router and that the signed policy

is correct (i.e. the router has a good software configuration).

5. Get signed TLS key cert from CSR

 RA Server sends the CSR with the verified SKAE to the NMS, so that the NMS

CA can sign it.

6. Verify CSR has correct FQDN from EK cred

 The NMS verifies that the FQDN the router included in the CSR is the same that

was sent by the Network Administrator during the router registration phase.

7. Sign TLS key cert

 The NMS CA signs the TLS key certificate

8. Store TLS key cert in DB

 The NMS stores the TLS key certificate of the router in the NMS DB; the TLS

key certificate is delivered to RA Client.

9. Enrolment complete, received AK and TLS key cert

 RA Client informs ZTP Agent that it successfully received the AK and TLS key

certificates.

After the enrolment is complete, ZTP Agent tries to establish a connection with the NMS to
verify whether the enrolment was successful.

Issues encountered: implementing the enrolment logic was particularly complex due to lack

of existing TCG guidance on using the TSS for this purpose. We used the IBM Attestation Client

Server from Ken Goldman as reference for implementing this feature in attest-tools.

Status: Complete

Degree of realisation: Full

4.3.2 Unit Test Results

Test Case DEVMAN1

Reference Code DEVMAN1

Components RA lib (enrolment)

Description
This unit test aims at verifying the correctness of the router identification.
The unit test checks that the library is able to generate and validate
challenges required to identify a router.

Status Performed

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 42 of 50

Unit Tests
Results

The library correctly generates and encrypts the challenges on RA Server,
which, in turn, can be successfully decrypted by the RA Client.

Test Case DEVMAN2

Reference Code DEVMAN2

Components RA lib (verifier)

Description
This unit test aims at verifying the correctness of the integrity verification
done by RA lib (verifier). The unit test receives attestation data, performs
integrity verification and checks the result from reference data.

Status Performed

Unit Tests
Results

The library is able to recognize missing or tampered information and fully
verify the integrity of the router from the provided data.

Test Case DEVMAN3

Reference Code DEVMAN3

Components RA Client (prev. called RA Agent)

Description

This unit test extends the functionality of the FUTURETPM02. This unit
test aims at verifying the correctness of the TPM key and certificate
generation. This unit tests verifies that a TPM key is created with the given
policy and that the generated certificate is associated to that TPM key.

Status Performed

Unit Tests
Results

The library successfully extracts the attestation policy from the certificate
signing request and verifies the correctness of the software configuration
associated to the TLS key.

Test Case DEVMAN4

Reference Code DEVMAN4

Components RA Client, RA Server

Description
This unit test aims at verifying the communication between the RA Client
and the RA Server. The unit tests verify that both components are able to
correctly generate requests and parse responses.

Status Performed

Unit Tests
Results

The library successfully performs the expected functionality.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 43 of 50

4.3.3 KPIs Measured

4.3.3.1 Quantitative Metrics

The table below shows the differences in performance when the demonstrator uses TPM 2.0 and
QR-TPM. Entries in bold report the total time necessary to execute a demonstrator functionality.
The time was take from the virtual machine. Entries with regular style report the list of TPM
commands executed for the demonstrator functionality in the previous row (not exhaustive, for
brevity reasons). Only for the router boot phase detailed measurements are not shown, as the
TPM commands are sent by the kernel and not by the TSS.

The first and the third column of the table report the TPM command executed by the demonstrator.
The third column contains information only if the algorithm used is different. The second and
fourth column report the time necessary to execute a TPM command and it has been taken
between the beginning and the end of TSS_Execute() function in the TSS.

From the detailed performance measurement we can conclude that the QR-TPM is slower than
the unmodified SW-TPM (TPM 2.0). Higher execution times can be explained by the increased
size of the data being transmitted between the TSS and the TPM (500 bytes for TPM 2.0 and
about 4000 bytes for QR-TPM). Another reason that applies for the PCR commands is that the
number of allocated PCR banks in the QR-TPM (7) is higher than the number of PCR banks in
TPM 2.0 (4). Also, NVRAM operations are slower due to the different amount of data to fetch (the
public key in the EK credential is bigger). Key creation commands cannot be compared because
RSA key generation is not deterministic, while Kyber and Dilithium key generation is deterministic.
TPM operations that require asymmetric cryptography (e.g. TPM2_Load(),
TPM2_ActivateCredential(), TPM2_Certify(), TPM2_Sign()) are seven to ten times slower in the
QR-TPM.

From the application perspective, the performance degradation is not as high. The AK creation
for example is only about three times slower in the QR TPM. The difference is more significant
for the other functionalities of the demonstrator.

TPM 2.0 Command

TPM 2.0

Timings

(TSS)

FutureTPM Command

FutureTPM

Timings

(TSS)

Router Boot 6.159 6.466

TPM2_ReadClock
N/A

(kernel)

N/A

(kernel)

TPM2_SelfTest N/A N/A

TPM2_GetCapability N/A N/A

TPM2_PCR_Extend
(SHA1,SHA256,SHA384,SHA512

)
N/A

TPM2_PCR_Extend
(SHA1,SHA256,SHA384,SHA512,SHA3-256,SHA3-

384,SHA3-512)
N/A

TPM2_StirRandom N/A N/A

TPM2_GetRandom N/A N/A

TPM2_HierarchyChangeAuth N/A N/A

TPM2_PCR_Read (SHA1) N/A TPM2_PCR_Read (SHA1) N/A

TPM2_Load (sealed blob under
rsa 2048)

N/A TPM2_Load (sealed blob under kyber security=3) N/A

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 44 of 50

TPM 2.0 Command

TPM 2.0

Timings

(TSS)

FutureTPM Command

FutureTPM

Timings

(TSS)

TPM2_StartAuthSession N/A N/A

TPM2_PolicyPCR (SHA1) N/A TPM2_PolicyPCR (SHA256) N/A

TPM2_Unseal N/A N/A

TPM2_FlushContext N/A N/A

AK Creation 0.300 0.834

TPM2_NV_ReadPublic (EK
credential length)

0.000921 0.01377

TPM2_GetCapability 0.000590 0.013580

TPM2_NV_Read (EK credential) 0.004778 0.01802

TPM2_Create (AK, rsa 2048) 0.004779 TPM2_Create (AK, dilithium mode=2) 0.031657

TPM2_CreatePrimary (EK, rsa
2048)

0.011244 TPM2_CreatePrimary (EK, kyber security=3) 0.020212

TPM2_Load (AK, rsa 2048) 0.002805 TPM2_Load (AK, dilithium mode=2) 0.030117

TPM2_StartAuthSession 0.000799 0.013721

TPM2_PolicySecret 0.000592 0.013733

TPM2_ActivateCredential 0.002394 0.018827

TPM2_FlushContext 0.000471 0.013273

TLS Key Creation 0.194 0.655

TPM2_PCR_Read (SHA1) 0.000789 TPM2_PCR_Read (SHA256) 0.013633

TPM2_Create (TLS, rsa 2048) 0.004865 TPM2_Create (TLS, dilithium mode=2) 0.032031

TPM2_Load (TLS, rsa 2048) 0.002942 TPM2_Load (TLS, dilithium mode=2) 0.030333

TPM2_Load (AK, rsa 2048) 0.002779 TPM2_Load (AK, dilithium mode=2) 0.030129

TPM2_Certify 0.002279 0.023121

TPM2_FlushContext 0.000492 0.013544

TPM2_ReadPublic (SRK, rsa
2048)

0.002016 TPM2_ReadPublic (SRK, kyber security=3) 0.018828

TPM2_StartAuthSession (SRK
used as salt key)

0.001963
 0.018708

TPM2_PolicyPCR (SHA1) 0.000601 TPM2_PolicyPCR (SHA256) 0.013880

TPM2_RSA_Decrypt 0.003242 TPM2_Sign 0.022728

TLS Connection 0.073 0.331

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 45 of 50

TPM 2.0 Command

TPM 2.0

Timings

(TSS)

FutureTPM Command

FutureTPM

Timings

(TSS)

TPM2_ReadPublic (SRK, rsa
2048)

0.002401 TPM2_ReadPublic (SRK, kyber security=3) 0.018779

TPM2_StartAuthSession(SRK
used as salt key)

0.002068 0.018585

TPM2_Load (TLS, rsa 2048) 0.003677 TPM2_Load (TLS, dilithium mode=2) 0.030866

TPM2_PolicyPCR (SHA1) 0.000623 TPM2_PolicyPCR (SHA256) 0.013606

TPM2_RSA_Decrypt 0.003241 TPM2_Sign 0.022806

TPM2_FlushContext 0.000492 0.013335

Quote 0.066 0.381

TPM2_Load (AK, rsa 2048) 0.003126 TPM2_Load (AK, dilithium mode=2) 0.029669

TPM2_Quote 0.002785 0.022542

TPM2_FlushContext 0.000531 0.013034

Table 10: Demonstrator #1 – Comparison of Timings between TPM2.0 (SW) and FutureTPM (SW)

Regarding KPIs 1 and 2, to the best of our knowledge, the Simple RA introduced in the
demonstrator is applicable to all types of routers and/or compute devices running Linux. In the
case of highly customized Linux versions, it might be possible to require minor adaptations, while
keeping the concept unchanged.

For KPIs 3 and 5 there was no known industry solution at the time of starting the project to achieve
the target values. Therefore, we developed the new CIV architecture that allowed us to fill the
gap.

Id Metric
Target
Value

Acceptance
criteria

(M)andatory
/ (G)ood to

Have /
(O)ptional

Measured
by M24

Comments

1

Amount of
routers whose

integrity is
monitored by

NMS

100% 100% M

With
TPM2.0:

100%

With
FutureTPM:

100%

2

Amount of
routers hiding
their integrity

status

0% 0% M

With
TPM2.0:

0%

With
FutureTPM:

0%

No enrolled router can
hide its status.
However, due to
limitations of dynamic
routing protocols, a
router whose identity is
not known to the NMS
might still operate in
the network.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 46 of 50

Id Metric
Target
Value

Acceptance
criteria

(M)andatory
/ (G)ood to

Have /
(O)ptional

Measured
by M24

Comments

3

Amount of
detected

integrity attacks
on routers

80% (with
integrity
models)

60%
(standard

IMA)
M

With
TPM2.0:

80%

With
FutureTPM:

80%

Besides attacks
detected by standard
IMA, we additionally
cover attacks on:

- mutable files;
- non-regular files (e.g.

IPC, socket etc.).

Not covered:

- control flow attacks;
- file path protection.

4

Amount of traffic
diverted to
alternative

paths when a
router is

compromised

75% 55% G

With
TPM2.0:

N/A

With
FutureTPM:

N/A

Planned for 2nd
release.

5
Amount of files
whose integrity
can be verified

100%
(with

integrity
models)

99%
(standard

IMA)

G

M

With
TPM2.0:

100%

With
FutureTPM:

100%

All files can be verified.

Table 11: Demonstrator #3 – Quantitative Metrics by M24

4.3.3.2 Qualitative Metrics

TPM-based secure channels can be implemented by following existing specifications and several
examples exist in the industry. However, it has not practical so far to bind the TPM keys to the
complete software configuration, due to the traditional Measured Boot concept which is not
suitable for complex operating system scenarios, where several processes are executed in
parallel. Introducing CIV enables to overcome this limitation and achieve the below qualitative
KPIs.

Id Metric
Target
Value

(M)andatory / (G)ood
to Have / (O)ptional

Measured by M24 Comments

1
Traffic routing

based on router
trust state

Supported M
With TPM2.0: N/A

With FutureTPM: N/A

Planned for
2nd release.

2

Trusted channels
between NMS

and each router
in the network

Supported M

With TPM2.0:
Supported

With FutureTPM:
Supported

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 47 of 50

Id Metric
Target
Value

(M)andatory / (G)ood
to Have / (O)ptional

Measured by M24 Comments

3

Device
authentication
key for trusted

channel
protected by

TPM

Supported M

With TPM2.0:
Supported

With FutureTPM:
Supported

4

Integrity
protection of

router
configuration
data using a

TPM key

Supported M

With TPM2.0:
Supported

With FutureTPM:
Supported

Table 12: Demonstrator #3 – Qualitative Metrics by M24

4.3.4 Plan for the next Period

During the next period, the rest of the user stories as defined in deliverable D6.1 will be executed.
Once the virtual QR TPM becomes available, the demonstrator will switch to it and re-run the
performance measurements for its respective set of QR algorithms.

4.4 Conclusions

The Device Management demonstrator implementation is proceeding according to plan. There
have been a number of design and implementation issues that have been overcome, new
features have been added (S-ZTP) and new technologies have been introduced (CIV
architecture) to solve existing industry challenges.

The performance measurements are reasonable and do not dramatically impact the router
system, enabling to achieve the set KPIs.

In the first period, the demonstrator has focused on the enrolment and remote attestation parts.
In the subsequent period, the demonstrator will add support for the regular device management
logic according to the remaining user stories.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 48 of 50

Chapter 5 Summary and Conclusion

The current deliverable aims to cover main activities of the evaluation, validation and refinement
phase related to setting up, executing and evaluating the three envisioned use cases; namely the
“Secure Mobile Wallet and Payments”, “Personal Activity and Health Kit Data Tracking” and “Device
Management” reference scenarios. It reflected on the pilot implementation and integration of the
FutureTPM framework in three different use cases (called demonstrators), to test the assumptions
of the project, and the feasibility, the applicability and the overall acceptance of post-quantum
TPM in specific business cases, not only in terms of security, but also in terms of performance,
availability and of other business critical indicators.

The key outputs have been the: (i) definition of a set of tests for the list of core, integral components
plus the technologies to be leveraged towards carrying on with such tests, paying special attention
to the integration plan, and (ii) analysis of the first set of results related to the performance
evaluation of the SW-based QR TPM and the implemented Trusted Software Stack (TSS) with
timings of the sequences of TPM commands, for achieving the security, privacy, and trust
properties of interest per reference scenario

Towards this direction, the work performed for each one of the aforementioned demonstrators till
M24 of the project was presented here.

 In the context of the Secure Mobile Wallet and Payment use case, sealing and unsealing
operations have been successfully implemented using the software implementation of the
FutureTPM. We contacted a thorough comparison on the performance of both HW TPM2.0
and SW-based FutureTPM, in order to provide deep insights on their operational behaviour
in the context of the demonstrator. The results advocate that the performance of the software
implementation of the FutureTPM meets the performance KPIs. The time discrepancies
among the contacted measurements are justified by the nature of the TPMs
(Software/Hardware) and the interception placement (TSS/Application) for capturing the
timings. Further experiments will be conducted for the 2nd release of the demonstrator, in
order to evaluate the performance for the rest of the user stories under the distributed nature
of the overall architecture of the dedicated TPM server and the resources needed to work
with QR algorithms and schemes. Overall, the performance of FutureTPM meets the goals
of the demonstrator.

 In the context of the Personal Activity and Health Kit Data Tracking use case, the LDAA has
been successfully implemented using the software implementation of the FutureTPM,
however, there have been some performance issues which are inherited by the nature and
the overall architecture of the TPM, the resources needed to work with QR algorithms and
schemes and also the business logic of the current demonstrator which worked with
packaging, sending and unbundling data close to real-time. In general, however, the results
(except the signature process) are acceptable, even if not very close to the set targets. To
mitigate the delay witnessed during the signature process there is an idea to alter a bit the
business logic of the demonstrator, scheduling the signature and the sending of the payload
to happen at off-peak times, using pre-programmed daemons that will run in the background
on the S5 PersonalTracker instance.

 In the context of the Device Management use case, the performance measurements are
reasonable and do not dramatically impact the router system, enabling to achieve the set
KPIs

The final version of the overall documentation and the validation of the demonstrators will be part of
deliverable D6.5 and D6.6 of the project, to be delivered in M33 and M36 respectively, as this is the
point that will mark the successful implementation of all demonstrator activities and the full evaluation
of the FutureTPM platform as a whole.

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 49 of 50

Chapter 6 List of Abbreviations

Abbreviation Translation

AK Attestation Key

CFA Control Flow Attestation

CFG Control Flow Graph

CFP Control Flow Path

CISQ Consortium for IT Software Quality

DH Diffie-Hellman

eBPF enhanced Berkeley Packet Filter

FIDO Fast ID Online

KPI Key Performance Indicators

KVM Kernel-based Virtual Machine

MFA Multifactor Authentication

NFC Near Field Communication

PCR Platform Configuration Register

PDP Policy Decision Point

PE Policy Enforcement

PEP Policy Enforcement Point

QEMU Quick Emulator

RA Risk Assessment

SKAE Subject Key Attestation Evidence

WP Work Package

D6.3 – Demonstrators Implementation Report – First Release

FutureTPM D6.3 Public Page 50 of 50

Chapter 7 Bibliography

[1] T. F. Consortium, “D6.1 – Technical Integration Points and Testing Plan,” 2019.

[2] T. F. Consortium, “D2.1 – Second Report on New QR Cryptographic Primitives,” 2019.

[3] T. F. Consortium, “D4.2 – FutureTPM Risk Assessment Framework – First Release,” 2019.

[4] Trusted Computing Group (TCG), TCG Glossary (Version 1.1, Revision 1.00), 2017.

[5] Trusted Computing Group (TCG), Trusted Platform Module Library - Part 1: Architecture
(Family 2.0, Revision 01.38), 2016.

[6] Trusted Computing Group (TCG), TCG TSS 2.0 TPM Command Transmission Interface
(TCTI) API Specification, 2018.

[7] C. Yue, B. Boehm and L. Sheppard, “Value driven security threat modeling based on attack
path analysis.,” in 40th Annual Hawaii International Conference on System Sciences
(HICSS 2007), 2007.

[8] V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling using attack trees,” Journal of
Computing in Small Colleges, vol. 23, no. 4, pp. 124-131, 2018.

[9] ETSI TS 102 165-1, “Methods and protocols; Part 1: Method and proforma for Threat, Risk,
Vulnerability Analysis,” in Telecommunications and Internet converged Services and
Protocols for Advanced Networking (TISPAN), 2014.

[10] Trusted Computing Group (TCG), “TCG TSS 2.0 TAB and Resource Manager
Specification,” 2018.

[11] TPM2-abrmd authors, “TPM2 Access Broker & Resource Manager,” [Online]. Available:
https://github.com/tpm2-software/tpm2-abrmd.

[12] T. F. Consortium, “D4.1 – Threat Modelling & Risk Assessment Methodology,” 2019.

[13] T. F. Consortium, “D1.1 - FutureTPM Use Cases and System Requirements,” 2018.

[14] T. F. Consortium, “D5.1 – First Version of Implementation,” 2019.

https://github.com/tpm2-software/tpm2-abrmd

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction and Overview of the First Experimental Period (M13-M24)
	1.1 Evaluation, Validation and Refinement Methodology
	1.2 Environmental Setup of Deployed Scenarios
	1.2.1 IBM vs. Intel TSS Integration

	1.3 Testing Methodology

	Chapter 2 Demonstrator #1 – Secure Mobile Wallet and Payments
	2.1 Demonstrator Overview
	2.1.1 Demonstrator Needs and Challenges
	2.1.2 Demonstrator Architecture

	2.2 Emulated System Description
	2.3 Implementation Path Report
	2.3.1 User Stories Realisation
	2.3.2 Unit Test Results
	2.3.3 KPIs Measured
	2.3.3.1 Quantitative Metrics
	2.3.3.2 Qualitative Metrics

	2.3.4 Plan for the next Period

	2.4 Conclusions

	Chapter 3 Demonstrator #2 – Activity Tracking Demonstrator
	3.1 Demonstrator Overview
	3.1.1 Demonstrator Needs and Challenges
	3.1.2 Demonstrator Architecture

	3.2 Emulated System Description
	3.3 Implementation Path Report
	3.3.1 User Stories Realisation
	3.3.2 Unit Test Results
	3.3.3 KPIs Measured
	3.3.3.1 Quantitative Metrics
	3.3.3.2 Qualitative Metrics

	3.3.4 Plan for the next Period

	3.4 Conclusions

	Chapter 4 Demonstrator #3 – Device Management Demonstrator
	4.1 Demonstrator Overview
	4.1.1 Demonstrator Needs and Challenges
	4.1.2 Demonstrator Architecture

	4.2 Emulated System Description
	4.3 Implementation Path Report
	4.3.1 User Stories Realisation
	4.3.2 Unit Test Results
	4.3.3 KPIs Measured
	4.3.3.1 Quantitative Metrics
	4.3.3.2 Qualitative Metrics

	4.3.4 Plan for the next Period

	4.4 Conclusions

	Chapter 5 Summary and Conclusion
	Chapter 6 List of Abbreviations
	Chapter 7 Bibliography

