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Executive Summary 

Deliverable D6.3 covers the main activities of the evaluation, validation and refinement phase 
related to setting up, executing and evaluating the three envisioned use cases; namely the “Secure 
Mobile Wallet and Payments”, “Personal Activity and Health Kit Data Tracking” and “Device 
Management” reference scenarios. It reflects the pilot implementation and integration of the 
FutureTPM framework in three different use cases (called demonstrators), to test the assumptions 
of the project, and the feasibility, the applicability and the overall acceptance of post-quantum 
TPM in specific business cases, not only in terms of security, but also in terms of performance, 
availability and of other business critical indicators. 

Within WP6, three discreet demonstrators have been set up for testing the integration of the core 
components of the FutureTPM platform (i.e., the Risk Assessment, the Security Policy Enforcement 
and the QR TPM modules.) into real-life business applications, and critically appraise the 
effectiveness of the overall platform for security and performance in those business settings. More 
information on the scope and specifics of these demonstrators can be found in deliverable D6.1 [1]. 

As the FutureTPM project adopts a two-cycle development, integration, demonstration and 
evaluation approach, the deliverable at hand provides a detailed documentation of the first-cycle 
demonstrator results till M24 (, following the guidelines and the metrics set in the evaluation plan 
that was part of deliverable D6.1 “Technical Integration Points and Testing Plan”), while the final 
release (with their evaluation) will be delivered at M36. As such, the work performed for the “Secure 
Mobile Wallet and Payments”, the “Personal Activity and Health Kit Data Tracking” and the “Device 
Management” demonstrators till M24 of the project is presented here. It needs to be noted that in 
order to facilitate smooth transition to the FutureTPM technology, all these use cases have worked 
initially to integrate the TPM2.0 characteristics that will be also test in FutureTPM, as to have a 
reference point for comparison of the post-quantum approach to the existing technological de facto 
standard. 

Towards this direction, a detailed description of each reference scenario is given with the defined 
user stories of interest, and their requirements, as well as the conditions and the implementation, 
integration status of each demonstrator coupled with a detailed analysis of the extracted results. 
Recall that the goal of FutureTPM is to show case the use of TPMs towards providing enhanced 
security, privacy and trust while migrating into post-quantum era. Each one of these properties is 
demonstrated in separate reference scenarios, in order to avoid overlaps and to be able to progress 
with a more detailed evaluation and validation of the TPM operations needed for achieving a subset 
of these requirements. 

Along this line, this deliverable captures the first experimental (demonstration) period of the project 
with many significant results drawn which will be fed back to the other technical WPs so as to 
continue research activities on further refining the FutureTPM solution. The goal is to improve the 
current implementation, streamline the used algorithms and improve the technical backbone 
of the envisioned FutureTPM platform. As such, it is expected that the next deliverable on the 
WP6 demonstrators, will provide revised figures for specific metrics that will be impacted by the 
ongoing work in the project, and will also provide a more complete and accurate view on the overall 
impact experienced in each demonstrator.  

In the following chapters, we provide an in-depth analysis of the underpinnings of the performed 
experiments with the extracted results, and describe all open issues that need to be solved for further 
improving the performance of the overall framework. This ranges from the necessary improvements 
of a subset of the implemented QR crypto primitives (especially the Direct Anonymous Attestation 
algorithm) to the functional interfaces needed for supporting the required interactions with the other 
FutureTPM integral components, and especially the Control-flow Attestation Engine [3].
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Chapter 1 Introduction and Overview of the First 
Experimental Period (M13-M24) 

This deliverable covers the main activities of the evaluation, validation and refinement phase 
related to setting up, executing and evaluating the three envisioned use cases; namely the 
“Secure Mobile Wallet and Payments”, “Personal Activity and Health Kit Data Tracking” and 
“Device Management” reference scenarios. As the FutureTPM project adopts a two-cycle 
development, integration, demonstration and evaluation approach, D6.3 provides a detailed 
documentation of the first-cycle demonstrator results till M24, while the final release (with their 
evaluation) will be delivered at M36. Focus, in this first release, is placed on the performance 
evaluation of the SW-based QR TPM and the implemented Trusted Software Stack (TSS) 
with timings of the sequences of TPM commands, for achieving the security, privacy, and trust 
properties of interest per reference scenario [1], being extracted. This also reflects the execution 
overhead of the selected and integrated QR crypto algorithms [2].  

Towards this direction, a detailed description of each reference scenario is given with the defined 
user stories of interest, and their requirements, as well as the conditions and the implementation, 
integration status of each demonstrator coupled with a detailed analysis of the extracted results. 
Recall that the goal of FutureTPM is to show case the use of TPMs towards providing enhanced 
security, privacy and trust while migrating into post-quantum era. Each one of these properties is 
demonstrated in separate reference scenarios, in order to avoid overlaps and to be able to 
progress with a more detailed evaluation and validation of the TPM operations needed for 
achieving a subset of these requirements. 

More specifically, the “Secure Mobile Wallet and Payments” reference scenario focuses on the 
provision of enhanced security properties in such complex e-Payment scenarios; the “Personal 
Activity and Health Kit Data Tracking” focuses on the strict user privacy issues that need to be 
met (through the use of the DAA protocol); and the “Device Management” scenario focuses on 
monitoring and the establishment of trust between devices that are managed by an NMS server. 
 

Reference Scenario TPM Type 
Security 
Property 

Functionalities 

Secure Mobile Wallet and 
Payments 

Software TPM Security Sealing, Unsealing, Key Generation 

Personal Activity and 
Health Kit Data Tracking 

Software TPM Privacy 
DAA Join, DAA Sign, DAA Verify, 

DAA Attestation 

Device Management Software TPM Trust 
Remote Attestation, Device 

Management with Secure Key 
Identifiers 

Table 1: Reference Scenarios Overview during First Experimentation Cycle 

As will be described in later sections, it is worth mentioning that the consortium decided to adjust 
the evaluation plan that had been put forth in D6.1 [1] by prompting to focus (in the first-cycle of 
experimentation) on the evaluation of the QR SW-based TPM environment that has been 
integrated in all demonstrators. This deviates from the initial plan considering also the QR HW-
based and VM-based TPMs that are to be tested in the context of the e-Payment and Device 
Management reference scenarios, respectively. Thus, the final release of all QR TPM modules, 
alongside the other core FutureTPM framework components (providing the Risk Assessment, 
Security Policy Enforcement and Control-flow Attestation mechanisms), will be extensively tested 
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and evaluated in the second development cycle (till M36) once the necessary updates have being 
performed based on the lessons learnt, as documented in this deliverable. 

Table 1 above summarizes the main focus of the three reference scenarios, during this first 
experimentation cycle, regarding security, privacy or trust properties of interest and functionalities 
that were evaluated. 

Overall, summarising this period, this deliverable captures the first experimental (demonstration) 
period of the project with many significant results drawn which will be fed back to the other 
technical WPs so as to continue research activities on further refining the FutureTPM solution. 
The goal is to improve the current implementation, streamline the used algorithms and 
improve the technical backbone of the envisioned FutureTPM platform. As such, it is 
expected that the next deliverable on the WP6 demonstrators, will provide revised figures for 
specific metrics that will be impacted by the ongoing work in the project, and will also provide a 
more complete and accurate view on the overall impact experienced in each demonstrator. 

1.1 Evaluation, Validation and Refinement Methodology 

As was described previously and is also specified in D6.1 [1], in each demonstrator a specific set 
of user stories and unit tests has been set up, and specific quantitative and qualitative KPIs have 
been designed to measure the impact of the FutureTPM framework. This road map did not only 
focused on KPIs related to performance criteria but also taken into consideration the 
business value of the core FutureTPM services and functionalities provided.  

As decided by the consortium, during the first development cycle and with a view on the release 
of the first version of the QR TPM Software Stack, all demonstrators have initially worked to 
integrate the TPM2.0 characteristics to their existing infrastructures. This will enable the 
better evaluation of the implemented QR TPM modules by using the integration and performance 
evaluation of the current TPM architecture, as a starting point, when making the shift to QR trusted 
computing technologies. It allowed the engineers that worked on the demonstrators to acquire 
more knowledge on the TPM2.0 solutions (currently available) and get familiar with the overall 
stack, so as to be in a better position to absorb the knowledge required for plugin into their 
applications the QR TPM code that is developed by the project. Furthermore, timings of the 
different TPM2.0 commands have been extracted, and used as reference points, for the QR 
TPM experiments to follow. This allowed the consortium to measure the performance and 
impact of the FutureTPM approach, to the TPM2.0-enabled business applications, and better 
define some of the KPIs that were identified in the previous stages of implementation. As such, 
this deliverable provides an initial evaluation report of the results gathered from the 
execution of the first demonstrator’s phase, following the scenarios and test cases that were 
defined for each demonstrator and summarized in Table 1. 

It needs to be highlighted that during the first development and evaluation cycle, all three 
reference scenarios have experimented with the SW-based version of the FutureTPM solution, 
while in the next period the evaluation of all the QR TPM modules (SW-, HW-, and VM-based), 
alongside the other core framework components, will commence. The motivation behind this 
action plan was to enable the consortium to extract a first set of results, which can be then used 
as a reference point for the later experiments. Considering that the TSS, of the QR SW-based 
TPM, is also used for building the necessary interfaces to interact with the other QR TPM 
modules, it was imperative to first perform an extensive testing of the first software stack release 
so as to identify any open issues to be solved before progressing to the final evaluation of all TPM 
environments of the FutureTPM framework.  

In the following chapters, we provide an in-depth analysis of the underpinnings of the performed 
experiments with the extracted results, and describe all open issues that need to be solved for 
further improving the performance of the overall framework. This ranges from the necessary 
improvements of a subset of the implemented QR crypto primitives (especially the Direct 
Anonymous Attestation algorithm) to the functional interfaces needed for supporting the required 
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interactions with the other FutureTPM integral components, and especially the Control-flow 
Attestation Engine [3] 

1.2 Environmental Setup of Deployed Scenarios 

One of the main goals of this deliverable is to also provide a baseline setup for all future 
demonstrator experimentation activities. In the first evaluation cycle, the QR SW-based TPM was 
used as the underlying trusted component. As such, it is of upmost importance to design an 
environment which closely resembles a real-world scenario.  The reasoning behind this approach 
is twofold: First, we envision the usage of the methodologies proposed herein on 
architecture and application space exploration, i.e., a developer can benefit from these real 
scenarios by gaining greater insight into building their APIs, and “mock test” different frontend 
and backend configurations before deploying on a real TPM hardware. Second, we also propose 
a baseline testing methodology (Section 2.3) to better guide a developer on possible 
bottlenecks found in their application design; this can range from performance to memory footprint 
and communication latency, and forewarn them of bad design structures. 

There are two recommended infrastructures when testing an application using the FutureTPM 
platform. The first one is called FutureTPM stack, and is comprised of two components: the TSS 
and the SW-TPM. The FutureTPM stack is a fully fledged out software emulator of a physical 
TPM (SW-TPM), based on IBM’s open-source project, and a software library which implements 
the TPM’s commands and its software stack. The SW-TPM was built to closely mimic its real-life 
counterpart, thus, providing certain memory and communication latency guarantees. The 
emulator makes no direct use of the heap, employing its memory in the .bss and .data program 
segments. The lack of heap usage ensures that the SW-TPM spends a very small amount of time 
inside system calls and the majority of its time is dedicated on executing the command code. 
Communication is handled strictly through a TCP layer which emulates the TPM’s physical TCTI 
layer [4][5][6], providing some serialization and latency. Furthermore, the TSS library provided 
does not have to be used uniquely with the SW-TPM. New commands or functionalities added to 
the TSS can be first tested and prototyped using the software emulator, and then, when real 
hardware is available, the same code can be leveraged.  

The second recommended infrastructure is libtpms. Libtpms is a wrapper of the software TPM 
and is meant to be used in conjunction with the swtpm component, which exposes TPM 
functionality through different interfaces (e.g. socket, device). swtpm also provides a dedicated 
interface that can be used directly by QEMU to provide TPM functionality to software inside a 
virtual machine. 

1.2.1 IBM vs. Intel TSS Integration 

Several commodity TSS implementations exist, namely the Intel and IBM TSS implementation 
instances. While they share many similarities, Intel TSS [7] provides some additional 
functionalities (especially when it comes to resource management [8]) that have not been full 
incorporated yet in the IBM TSS [9]. On the other hand, the current IBM TSS version is at a more 
stable state. Based on these observations and in order to be able to perform a more holistic 
investigation in the context of FutureTPM, we decided to leverage both instances: the Intel TSS 
was used as the baseline for the risk assessment analysis whereas the IBM TSS provided the 
cornerstone for the implementation and demonstration of the QR-based TPM (WP5). 

While the FutureTPM QR TPM stack is based on the enhancement of the IBM TSS, the Intel TSS 
was leveraged specifically for the vulnerability analysis and attestation of the TPM Access 
Broker (TAB) and the Resource Manager (RM) – two components that are of particular interest 
due to their inherent functionalities that may lead to sensitive data leakage (e.g., information about 
stored keys). The TAB controls multi-process synchronization to the TPM. Basically, it allows 
multiple processes to access the TPM without stomping on each other, while the RM acts in a 
manner similar to the virtual memory manager in an OS due to limited on-board memory [10]. 
TPMs generally have very limited memory and objects, sessions, and sequences need to be 
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swapped from the TPM to and from memory to allow TPM commands to execute. RM must parse 
the command byte stream before the command is sent to the TPM and take any actions required 
to ensure that all transient objects used by that command are loaded into the TPM. This includes 
all sessions referenced in the authorization area and all objects, sessions, and sequences whose 
handles are in the command’s handle area. Very recently, the Linux kernel 4.12 has included in-
kernel RM [11] to provide isolation between objects & sessions created by different connections 
which is the core functionality required by applications. Eventually, all of the required features will 
end up in the kernel RM and it will become the default [11]. 

In the context of FutureTPM, the Control-Flow Attestation tookit is used for tracing and 
attesting the correctness of the TAB and RM components: to hook eBPF in the in-kernel RM, 
trace all the TPM commands and identify possible object, sequence, session leakage and proven 
broken TPM commands [12]. 

Furthermore, we also provide a port of Intel’s open source tss implementation which is mostly 
used to interface with higher level applications, e.g., openssl and is able to fully replace the TSS 
provided by the FutureTPM stack. In D5.1, Intel’s TSS was used to replace openssl’s 
cryptographic engine with the one available in the SW-TPM, thus, providing QR algorithms 
directly to a TLS connection. 

Summarizing, the FutureTPM infrastructure provides a fast edit-debug-run cycle and direct 
deployment in real hardware, while guaranteeing sensible memory usage and communication 
latency. As far as emulation goes, the usage of the FutureTPM stack is the closest a developer 
gets to the hardware without actually deploying it. 

1.3 Testing Methodology 

Testing methodologies are the strategies and approaches used to test the FutureTPM platform 
to ensure it is fit for purpose. The focus is on testing that the QR TPM modules work in accordance 
to their specifications [13] and have no undesirable effects when employed in ways outside of 
their design parameters. Since each demonstrator will be executed in different hosts with various 
configurations, this section attempts to shine some light on the standardisation process used to 
assure comparable results between each demonstrator instance. 

Modern processors found in commodity systems employ a plethora of techniques to improve the 
performance of all applications types. The TPM, on the other hand, does not offer such 
performance optimizations. As such, before describing the testing methodology, we need to 
understand what differentiates both architectures. Commodity processors rely on two major 
techniques to boost performance: out-of-order execution and caching. Out-of-order execution 
is used to exploit parallelism at the instruction level. Caching is achieved by applying multiple 
levels of small but fast memories between the slow external memory and the processor, hiding 
the large latency of the external memory. Since the TPM is implemented in an ASIC with tightly 
integrated domain specific accelerators (DSA) for most cryptographic operations, the usage of 
out-of-order execution in a testing platform can be safely ignored. However, caching cannot be 
so easily dismissed. 

The OS uses time-slicing to share a single processor core between several processes. Therefore, 
it is possible that a process, other than the one we are measuring, evicts our process cached 
lines from the cache. As such, collecting measurements at different times results in completely 
different timings between the same applications. To diminish the effects of conflict-based 
evictions from the cache hierarchy, we must execute our measurements hundreds of times in a 
row. In doing so, we are avoiding cold accesses to the caches and possible spurious evictions. 
Further, this method closely resembles a TPM accessing its scratchpad memory. To offset the 
results from spurious evictions and cold accesses, we shall use the linearly weighted moving 
average (LWMA) in order to bias the most recent results from the oldest, i.e., the measurements 
obtained using the warmed-up caches are preferred. 
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Measurements are performed differently depending on the infrastructure used (Section 2.2). 
When measuring application timings, using the FutureTPM stack, performance values are 
measured using bash’s time command. While the TPM server is running and started up---using 
the startup command---, each command is measured with the TPM always in the same state. The 
aforementioned procedure measures command creation, communication, destruction, and the 
TPM’s processing. The TPM processing can be generally thought of a five-stage operation: TCP 
reception, command validation and deserialization, command execution, response creation and 
serialization with results, and response dispatch. Note that when using authenticated sessions, 
the command validation operation is more involved and may require more time. 

Given that demonstrators use the TSS in a different way, we found two alternative levels of the 
software stack, common to all demonstrators, from where performance measurements can be 
taken. The first alternative level is the TSS library, which has been patched to measure the 
time elapsed between the beginning of TSS_Execute() and the end of the same function. 
Measurements from the TSS library take into consideration the time necessary to execute a 
command, the marshalling and unmarshalling of the buffers, and the time necessary to transmit 
the data between the TSS and libtpms. The second alternative level from where performance 
measurements can be taken is libtpms. Doing performance measurements at this level is 
particularly interesting to compare the performance of non-QR algorithms versus QR algorithms. 

Overall, within FutureTPM, we have prompted in identifying a robust testing methodology to be 
followed by all reference use cases. As will be depicted in the following chapters, for each 
demonstrator a detailed set of test cases were compiled (i.e., unit testing, integration testing and 
system testing) in order to measure the behaviour of the QR SW-based TPM in different 
conditions and scenarios, thus, evaluating whether the system can operate at the required 
response times for supporting the required security, privacy and trust properties. 
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Chapter 2 Demonstrator #1 – Secure Mobile Wallet 
and Payments 

2.1 Demonstrator Overview 

The “INDEV Secure Mobile Wallet and Payments” use case, works on the security of mobile 
wallet and e-payment applications and more precisely on how the sensitive tokens are handled 
by both the mobile payment app and the corresponding backend server. The token correctness 
is fundamental to the overall security of the mobile payment transaction itself, making a quantum 
resistant TPM necessary to ensure both the integrity of sensitive data and the future proofing of 
the mobile payments application to resist quantum attacks. In this reference scenario, we will 
demonstrate a) the sealing functionality for the Bearer and Financial Tokens, b) the unsealing 
functionality for the tokens and c) the symmetric key generation to encrypt financial transaction 
history logs. At the same time all the aforementioned functionalities will be traced by the integrated 
risk assessment framework at the kernel level (kernel interceptor) and produce the quantified risk 
(second evaluation cycle – D6.5). Figure 1 below presents the high-level approach of this 
reference scenario introduced in D6.1 [1]. 

 

Figure 1: Secure Mobile Wallet and Payments High Level Approach 

2.1.1 Demonstrator Needs and Challenges 

Mobile wallet and e-Payment received significant attention because it enables an easy payment 
mechanism and becomes an important complement to traditional payment means. However, 
using a mobile wallet over open devices and networks poses security challenges of a new 
dimension. The security is fundamental to the overall security of the mobile payment transaction 
itself. How the sensitive tokens are handled by the mobile payment app and the corresponding 
backend server are key security considerations. A quantum resistant TPM can help ensuring both 
the integrity of sensitive data and the future proofing of the mobile payments application to resist 
quantum attacks. The “INDEV Secure Mobile Wallet and Payments” use case, works on exactly 
this issue of making the sensitive data protected and tamper-proof, demonstrating how the use 
of FutureTPM project can benefit mobile wallet and payment applications to be secure. Below we 
summarize the updated and more detailed scenario user stories.  
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In the majority of the current Android devices, there is no TPM module attached, no recognized 
API definition available for Android TSS and most of the Java-based implementations such as 
jTSS are complex and error prone. In addition, as already introduced, this reference scenario will 
be demonstrated (during the second evaluation cycle) based on the use of the hardware TPM. 
In the context of FutureTPM, the hardware TPM will be released on an FPGA-based board 
exposed by TCP/IP. For that reason, we decided to adopt and architecture where the hardware 
TPM is hosted in a dedicated cloud server. The assumptions made in order to demonstrate this 
reference scenario are: 

 An authenticated channel is established between the Android mobile app and the TPM 
server based on FIDO U2F signaling.  

 User registers to the dedicated TPM Server (FIDO U2F Registration Phase) 

 User authenticates to the TPM Server with FIDO webAuthN every time that needs to 
perform a TPM functionality (FIDO U2F Authentication Phase). 

 The tokens are sealed based on the handle h created during the FIDO U2F Authentication 
Phase. 

2.1.2 Demonstrator Architecture 

The demonstrator that is being designed and developed during the FutureTPM project is based 
on a refactored mobile application of the current INDEV application, bringing into the picture TPM 
methods to secure sensitive tokens.  

Since, the hardware-based TPM will be released on an FPGA-based board exposed by TCP/IP, 
the consortium took appropriate measures and decided to use a TPM in a dedicated cloud server. 
This dedicated TPM sever acts as an internal TPM that should be integrated in the Android device. 
This approach brings the ability to further extend our solution and apply prominent authentication 
mechanisms such as FIDO Universal 2nd Factor (U2F) between the communication of the 
Android application and the dedicated TPM server.  

 

Figure 2: U2F Registration 

FIDO (Fast ID Online) is a set of technology-agnostic security specifications for strong 
authentication. FIDO specifications support multifactor authentication (MFA) and public key 
cryptography. FIDO U2F protocol is the state-of-the-art in the domain of authentication. U2F is an 
open authentication standard that enables internet users to securely access any number of online 
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services with one single security key instantly and with no drivers or client software needed. U2F 
authentication requires a strong second factor such as a Near Field Communication (NFC) tap or 
USB security token. The user is prompted to insert and touch their personal U2F device during 
login (proof of presence). The user's FIDO-enabled device creates a new key pair, and the public 
key is shared with the online service and associated with the user's account. The service can 
then authenticate the user by requesting that the registered device signs a challenge with the 
private key. With this approach, no secrets are shared between service providers, and an 
affordable U2F Security Key can support any number of services. Both U2F Registration and 
Authentication Phases will be used with NFC-based Yubico HSM device. Figure 2 andFigure 3 
present the aforementioned challenge-response flows for the Registration and Authentication 
phases respectively.  

Note that, U2F authentication is an extra layer of security introduced in D6.1 and it was outside 
the scope the use case at first place. However, we will use it specifically in this reference scenario 
as extra security guarantees between the mobile and the dedicated TPM server. This extra layer 
does not change the nature of the application, since it will not be necessary when the Android 
device contains an attached TPM. Our approach, using this extra layer, is more generic and 
covers also the Android devices without the support of the TPM, by providing the ability to 
connect and use a dedicated TPM server.  

 

Figure 3: U2F Authentication 

The implementation of the Android application needs to secure two discrete types of tokens. 
These two types of tokens are the Bearer Token and the Financial Token.  

 Bearer Token: A security token with the property that any party in possession of this token 
(a "bearer") can use it in any way that any other party in possession of it can. When a user 
authenticates, the authentication server then generates the Bearer Token which is 
necessary to get an Access Token. This token is an OAuth token that is used for 
authentication between the client and the business logic. 

 Financial Token: This token is created by a 3d party service, used to finalize a financial 
transaction and represents a user’s credit card in a time frame. 
 

To sum up, in this reference scenario we will demonstrate a) the sealing functionality for the 
Bearer and Financial Tokens, b) the unsealing functionality for the Bearer Token and c) 
symmetric key generation to encrypt financial transaction history logs. The aforementioned 
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functionalities will be performed using the FutureTPM. In the context of this demonstration, the 
timing performance of the FutureTPM is compared to the one on the TPM2.0, in order to critically 
appraise the effectiveness of the FutureTPM framework for security and performance in the 
context of the Secure Mobile Wallet and Payments scenario. Note that, only after a secure 
authentication of the user and establishment of a secure channel, the mobile app will be able to 
use the TPM functionalities. Recall that Figure 1 offers a high-level approach of this reference 
scenario. 

2.2 Emulated System Description 

In order to concretely test the proposed architecture, the following scenario was emulated: all 
device instances (including the TPM) are executed without using any virtualisation mean, but 
instead the developed applications run directly on the hosts. For the TPM server, a machine with 
Kubuntu 18.04 OS was used, with CPU Intel Core i7-7700HQ@2.80GHz and 16GB of RAM. This 
emulation scenario allows us to measure the performance of the TPM variants without the 
interference of intermediate virtualisation layers.  

For the client side, an Android App was used, running WenAuthnAndroidLib to register and 
authenticate with Public Key Credentials at https://future-tpm.ubitech.eu, running Android M (API 
level 23) or newer. The Android device supports NfcManager in order to be able to interact with 
the with the U2F Security Key. The specifications of the Android device do not affect the time 
measurements, as those are captured to the TPM server side.  

Tests were executed for the TSS2.0 stack and the FutureTPM stack. In these instances, the 
emulated software QR TPM acts as a server which receives TCP requests from a client, a 
command from the TSS library. A dedicated TCP connection is built for each individual command, 
regardless of session and context. More details about the particulars of this setup can be found 
in  D5.1 [14]. Regarding the interaction with the HW TPM2.0, the Intel TSS was used to fire 
commands directly to the hardware TPM of the above-mentioned TPM server.  

All test results found herein for the demonstrator#1 are the weighted average (LWMA) of 100 
consecutive runs, in order to provide an objective performance measurement that spans through 
time and possible system conditions.  

2.3 Implementation Path Report 

During the 1st phase of the run of the demonstrator within the FutureTPM project, the user stories 
realised had to do mostly with the implementation of the sealing and unsealing functionality 
of the sensitive tokens. This has been achieved by integrating the TPM2.0 stack in a dedicated 
TPM server, where all the necessary TPM calls are proxied. The mobile application, only after a 
secure authentication of the user and establishment of a secure channel with the TPM and 
authentication server, will be able to use the TPM functionalities. Taking a step ahead, the current 
implementation considers the FutureTPM stack, which is used for deploying the new algorithms 
and libraries provided by the project in the Secure Mobile Wallet and Payments scenario.  

The major challenges faced during this implementation had to do with the instrumentation of the 
SW FutureTPM stack for creating an approach of measuring the QR TPM performance by having 
the lowest possible interference to its operational profile. Towards this direction, minor 
modifications applied to the TSS engine in order to acquire the timestamps of TPM commands 
execution, so that to calculate the performance timings. Additionally, moving for the legacy 
TPM2.0 stack to the FutureTPM stack, minor modifications were needed to the utilised TPM 
commands for replicating the use case and demonstrating the sealing, unsealing and symmetric 
key generation functionalities.  

2.3.1 User Stories Realisation 

Out of the User Stories and Test Cases described in D6.1 [1] which were scheduled for this period, 
the following has been executed: 
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Description 

User Story Title: INDEV.AU.1 - As an Individual User I want to log in to the INDEV Service 
and keep safe the bearer token. 

Workflow Developed:  A preliminary step of the workflow is the generation and storage of a 
Control-flow graph (CFG). Then, the workflow proceeds to the registration of the Android user 
to the TPM Server leveraging FIDO U2F (only the first time). The user registration process relies 
on a challenge/response protocol, as shown in Figure 2. Once the user is registered, she is 
authenticated to the TPM Server leveraging FIDO U2F when she wants to perform a TPM 
functionality, following the procedure shown in Figure 3. The Android application seals the 
Bearer Token in the dedicated TPM, based on the handle and the recorded CFG, by invoking 
the TSS stack on the dedicated TPM server. 

Issues Encountered: No issues encountered.  

Status: Completed 

Degree of Realisation: Full 

Comments (if any): N/A 

 

Description 

User Story Title: INDEV.AU.2 - As an Individual User I want to use an external service to 
generate tokens for my credit card that go directly in the TPM and avoid revealing my credit 
card to the server. 

Workflow Developed:  The Android user authenticates to the TPM Server leveraging FIDO 
U2F when she wants to perform a TPM functionality (see Figure 3). Then, she provides her 
credit card to a 3d party service to generate the necessary Financial Token for a financial 
transaction finalization. The user unseals the Bearer Token based on the recorded CFG state 
(INDEV.AU.1), and the Token is provided to the INDEV Server. The server forwards the token 
to the 3d Party service to generate the Financial Token. The 3d Party service forwards the 
generated Financial Token to the server and the server seals the Financial Token. 

Issues Encountered: No issues encountered.  

Status: Completed 

Degree of Realisation: Full 

Comments (if any): N/A 

2.3.2 Unit Test Results 

The following unit test, which correspond to the user stories mentioned above, have been 
implemented during this period. 
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Test Case MWP1 

Reference Code MWP1 

Components Mobile App lib 

Description 

This unit test extends the functionality of the FUTURETPM04 and aims at 
verifying the correctness of the sealing and unsealing functionalities of the 
Bearer Token, needed for the authorization of the device, based on the 
correct FIDO handle token reflected in the PCRs states. (INDEV.AU.1) 

Status Performed 

Unit Tests 
Results 

Bearer Token is successfully sealed and unsealed based on the correct 
PCR state.  

 

Test Case MWP2 

Reference Code MWP2 

Components Mobile App lib 

Description 

This unit test extends the functionality of the FUTURETPM04 and aims at 
verifying the correctness of the sealing and unsealing functionality of the 
Financial Token, needed for the completion of the financial transaction, 
based on the correct FIDO handle token reflected in the PCRs states. 
(INDEV.AU.2) 

Status Performed 

Unit Tests 
Results 

Financial Token is successfully sealed and unsealed based on the correct 
PCR state. 

2.3.3 KPIs Measured 

During the first phase of the operation of the demonstrator, a set of KPIs that have to do with the 
sealing and unsealing functionalities has been tested. For these experiments, performance has 
been measured, by employing the “Kyber” algorithm in the 3rd mode (k=3).  More details are 
presented in the next KPIs, which have been used to measure the core processes of the reference 
scenario. 

2.3.3.1 Quantitative Metrics 

Table 2 and Table 3 below show the time differences of the demonstrator between TPM 2.0 and 
QR-TPM. Entries in bold report the total time necessary to execute a demonstrator functionality, 
while time entries with regular style report the execution time of TPM commands for the 
demonstrator functionality. 

Regarding the quantitative evaluation of the project, the acceptance criteria set initially in D6.1 [1] 
for the scenarios of the first release of the demonstrator have been met in their majority. It needs 
also to be noted that at the current state of the project the deployed application considers the 
current parameters as sufficient for the indicated scenario. 
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In general, the PCR commands are slower, since the QR-TPM supports more PCR banks with 
the SHA3 algorithm and because the kernel extends all allocated banks. In addition, the key 
creation commands cannot be compared because RSA key generation is not deterministic, while 
Kyber key generation is deterministic. Additionally, “Kyber” algorithm is deployed using the 3rd 
mode (k=3). 

The next tables summarise the timings of the SW implementation of the QR TPM commands for 
this demonstrator, at the current released version, and are compared to the HW TPM2.0 
command timings of the equivalent operations. Note that, a different TSS is used for measuring 
the performance of the SW QR TPM and the HW TPM2.0. For the former case, the IBM TSS is 
used to trigger the commands’ execution to the SW-based TPM, while for the latter case the intel 
TSS is used for interacting with the HW-based TPM2.0 of the TPM server of the demonstrator. 
The decision for using the Intel TSS was made due to the previous developments of the project 
(Section 2.2.1) where the development of the TPM tracer and any interaction with the TPM2.0 
was made thought the Resource Manager of the TPM2.0 using the intel TSS. Hence, in order to 
be aligned with the previous developments of the project and to adapt to the future ones, we 
proceeded to a demonstration which provides an overview of the previous setup and the latest 
one, which is based on the IBM TSS.  

The timings focus on a) the sealing functionality for the Bearer and Financial Tokens, b) the 
unsealing functionality for the Bearer Token and c) symmetric key generation to encrypt 
financial transaction history logs. In addition, timings for the U2F Registration and Authentication 
processes are provided. 

HW TPM Command 
Intel TSS  

Timings (sec) 
TPM2-tools 
Command 

Application 
Timings (sec) 

FIDO U2F Registration 0.032 + 0.031 [=0.063] 

FIDO U2F Authentication 0.016 + 0.017 [=0.033] 

Scenario Initialisation 0.000811237  4.43236927 

CC_CreatePrimary 0.000132 

tpm2_createprimary 4.36693603 

CC_ContextSave 0.000137747 

CC_PCR_Extend 0.0000935 tpm2_pcrextend 0.01396532 

CC_StartAuthSession 0.0000977 

tpm2_createpolicy 0.05146792 

CC_PCR_Read 0.00010853 

CC_PolicyPCR 0.0001201 

CC_PolicyGetDigest 0.00012166 

Seal Bearer Token 0.000861264  0.30136801 

CC_ContextLoad 0.00011864 

tpm2_create 0.06000505 

CC_Create 0.000113 

CC_ContextLoad 0.000125107 

tpm2_load 0.12000210 CC_Load 0.00012154 

CC_ContextSave 0.0001346 

CC_ContextLoad 0.000120847 tpm2_evictcontrol 0.12136086 
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HW TPM Command 
Intel TSS  

Timings (sec) 
TPM2-tools 
Command 

Application 
Timings (sec) 

CC_Evictcontrol 0.00012753 

FIDO U2F Authentication 0.018 + 0.020 [=0.038] 

Unseal Bearer Token 0.00072306  0.1307273 

CC_StartAuthSession 0.00011721 

tpm2_unseal 0.06087464 

CC_PCR_Read 0.00010834 

CC_PolicyPCR 0.00012113 

CC_Unseal 0.00012099 

CC_FlushContext 0.00011853 

CC_Evictcontrol 0.00013686 tpm2_evictcontrol 0.06985266 

FIDO U2F Authentication 0.015 + 0.016 [=0.031] 

Seal Financial Token 0.000883173  0.30647682 

CC_ContextLoad 0.000127333 

tpm2_create 0.05986540 

CC_Create 0.00011825 

CC_ContextLoad 0.000132587 

tpm2_load 0.11995824 CC_Load 0.00011963 

CC_ContextSave 0.000138973 

CC_ContextLoad 0.00011724 

tpm2_evictcontrol 0.12665318 

CC_Evictcontrol 0.00012916 

Table 2: Demonstrator #1 – Comparison of Timings between the TSS and the Application perspectives 
using TPM2.0 (HW). 

 

Table 2 provides a side-by-side comparison of the timings for the HW TPM2.0, as those captured 
from two perspectives, namely at the TSS and the Application levels. As can be seen, a TPM 
command invocation at the Application layer may imply multiple command executions on behalf 
of the TSS. For example, the tpm2_createprimary command triggers the CC_CreatePrimary and 
CC_ContextSave commands of the Intel TSS.  

As it can also be observed, the timings measured by the Intel TSS reflect the time needed to 
perform a command execution directly on the HW TPM2.0 of the TPM server. That is, the 
command execution occurs quite fast in contrast to the time measurements from the Application 
point of view.  In fact, this behaviour is reflected in all the core functionalities. The “Seal Bearer 
Token” functionality takes 0.000861264 secs to complete by the Intel TSS, while 0.30136801 
secs are needed for the Application to perform this operation. This is justified by the fact that, any 
application designed to interact with the HW TPM2.0 needs to actually trigger TPM commands 
through the TSS which acts as an intermediate entity between the application and the TPM. 
Hence, this additional execution overhead is justified as we need to consider the time needed for 
the application to interact with the TSS stack.  
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Regarding the TPM2_CreatePrimary execution time for the TPM2.0, this command lasted longer 
than expected. This is because in the context of the use case scenario the command aims to 
generate a secure RSA key-pair. However, this process is not deterministic and hence, the 
random generation of a secure key-pair may require a reasonable amount of time.  

The timings for the FIDO U2F Registration and Authentication process are independent from the 
TPM operation. That is why, these performance timings are replicated in Table 3. In the context 
of this use case scenario, the Android user needs to register to the service. Every time a request 
is sent to the TPM dedicated server, it is authenticated in the background. Table 2 contains the 
timing for the aforementioned operations. Note that, the timings do not include the latency of the 
communication channel between the two entities, neither the time required for the user to interact 
with the U2F Security Key, as those measurements depend on the network specifications and 
the users’ reflection respectively. That is, the captured timings refer to the server-side processes 
of handling the registration of a user and the authentication of each received request. Both the 
registration and the authentication timings consist of two measurements, which can be seen in 
Table 2. The one refers to the challenge handling process, and the other to the actual operations 
of the registration/authorisation operations, such as the creation of a new user in the database, 
lookup queries for registered users, signature checking etc. Overall, the Registration process lasts 
for twice the time of the Authentication process, which is reasonable.  

Table 3 provides a comparison over the timings taken from the TSS and the Application 
perspectives for the SW-based QR TPM. As expected, the behaviour revealed by the timings of 
Table 2 for TPM2.0, is also reflected for the timings of the SW-based QR TPM. More specifically, 
the time measurements taken from the side of the TSS denote the command execution for SW-
based QR TPM performs fast. The “Seal Bearer Token” functionality needs 0.0732692 secs to 
complete, while for the Application the same operation takes 1.027213278 secs. This time 
deference is reasonable as the TSS acts as an intermediate between the App and the TPM. It 
must be stated, that for QR TPM performance measurement the IBM TSS was utilised.  

QR TPM Command 
TSS  

Timings (sec) 
QR TPM 

Command 
Application 

Timings (sec) 

FIDO U2F Registration 0.032 + 0.031 [=0.063] 

FIDO U2F Authentication 0.016 + 0.017 [=0.033] 

Scenario Initialisation 0.0715622  0.986897155 

CC_CreatePrimary 0.0102342 createprimary 0.120857779 

CC_ContextSave 0.0105845 contextsave 0.263207519 

CC_PCR_Extend 0.0101156 pcrextend 0.120562730 

CC_StartAuthSession 0.0101682 startauthsession 0.120433829 

CC_PCR_Read 0.010166 pcrread 0.120319939 

CC_PolicyPCR 0.0101389 policypcr 0.120689600 

CC_PolicyGetDigest 0.0101548 policygetdigest 0.120825759 

Seal Bearer Token 0.0732692  1.027213278 

CC_ContextLoad 0.010632 contextload 0.131573730 

CC_Create 0.0103062 create 0.120626840 

CC_ContextLoad 0.010628 contextload 0.131922750 
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QR TPM Command 
TSS  

Timings (sec) 
QR TPM 

Command 
Application 

Timings (sec) 

CC_Load 0.0102251 load 0.120615570 

CC_ContextSave 0.0105145 contextsave 0.263207519 

CC_ContextLoad 0.0106861 contextload 0.131504579 

CC_Evictcontrol 0.0102773 evictcontrol 0.127762290 

FIDO U2F Authentication 0.018 + 0.020 [=0.038] 

Unseal Bearer Token 0.0610737  0.733673946 

CC_StartAuthSession 0.0102885 startauthsession 0.125108659 

CC_PCR_Read 0.0101359 pcrread 0.120378019 

CC_PolicyPCR 0.0102411 policypcr 0.120288340 

CC_Unseal 0.0101065 unseal 0.120404149 

CC_FlushContext 0.0101262 flushcontext 0.120281479 

CC_Evictcontrol 0.0101755 evictcontrol 0.127213300 

FIDO U2F Authentication 0.015 + 0.016 [=0.031] 

Seal Financial Token 0.0727406  1,147778298 

CC_ContextLoad 0.0105624 contextload 0.132756830 

CC_Create 0.0101690 create 0.120763869 

CC_ContextLoad 0.0105212 contextload 0.131351670 

CC_Load 0.0101926 load 0.120285510 

CC_ContextSave 0.0105149 contextsave 0.384044250 

CC_ContextLoad 0.0105534 contextload 0.131452940 

CC_Evictcontrol 0.0102271 evictcontrol 0.127123229 

Table 3: Demonstrator #1 – Comparison of Timings between the TSS and the Application perspectives 
using SW-based QR TPM. 

 

For performing a cross-comparison between the HW TPM2.0 and SW QR TPM, one needs to 
take a look over the results of both tables. As can be observed based on the TSS timings, the 
HW TPM2.0 performs faster in contrast to the SW QR TPM. In fact, this can be justified since HW 
TPM is a dedicated chip destined to perform cryptographic operations and, on the other hand, 
the SW QR TPM operates on generic hardware by utilising the CPU of the server. This difference 
is reflected in the timing difference of the “Seal Bearer Token” functionality, where HW TPM 
needed 0.000861264 secs, while SW QR TPM completed the task in 1.027213278 secs. It must 
be stated, that the comparison between the HW TPM and SW QR TPM for this use case is not 
straight forward, as the timings are taken using different TSS variants (Intel/IBM TSS). However, 
the notable performance difference cannot be attributed to this fact, but it is the intrinsic difference 
of the HW and SW which affects the performance. Regarding the performance from the 
Application perspective, the discrepancy of the timings between the HW TPM and SW QR TPM 
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is not as evident as is from the TSS perspective, but still, the HW-based TPM application performs 
faster, apart from the initialization phase, where the non-deterministic RSA key generation 
process adds a performance overhead.  

Concluding, the timings of Table 2 and Table 3 offer a performance overview from multiple 
perspectives. The timings are acceptable from the business point of view for the current 
demonstrator. 

The next table showcases the KPIs corresponding to the implemented use cases, as identified in 
D6.1 and measured in this deliverable. Note that the lower performance timings, i.e., the timings 
taken from the application perspective, were used in the next table. 

Id Metric 
Target 
Value 

Acceptance 
criteria 

(M)andatory / 
(G)ood to Have 

/ (O)ptional 

Measured 
by M24 

Comments 

1 
Amount of sealed 

objects 
>=2 =2 M 

With TPM2.0: 
100% 

With 
FutureTPM: 

100% 

Target 
Achieved. 

Successfully 
sealed both 
Bearer and 
Financial 
Tokens. 

2 

Performance of 
sealing functionality 
within the domain of 

ms 

<=1000 ms <=2000 ms M 

With TPM2.0: 
306.48 ms 

With 
FutureTPM: 
1027.21 ms 

Target 
Achieved. 

The sealing 
performance is 
below the 
acceptance 
threshold. 

4 
Performance of the 
FIDO Registration 

<=2 sec <=3 sec M 

With TPM2.0: 
0.063 ms 

With 
FutureTPM: 
0.063 ms 

We consider 
only the server-
side processes 
for user 
registration, 
excluding 
network latency 
and user’s 
interaction with 
the U2F Security 
Key. Target 
achieved. 

5 
Performance of the 

FIDO 
Authentication  

<=1.5 sec <=2 sec M 

With TPM2.0: 
0.0038 ms 

With 
FutureTPM: 
0.0038 ms 

We consider 
only the server-
side processes 
for 
authentication, 
excluding 
network latency 
and user’s 
interaction with 
the U2F 
Security Key. 
Target 
achieved.  

Table 4: Demonstrator #1 – Quantitative Metrics by M24 
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2.3.3.2 Qualitative Metrics 

The protection of sensitive tokens has been achieved with the current version of the software-
based implementation of FutureTPM, which has been released by the project in order to kick start 
the demonstrators, and it covered the main scenarios that have been defined for the first version 
of the demonstrators. Note that, the 4th qualitative metrics regarding the “User authentication 
through the use of TPM”, is shifted to the 2nd release of the demonstrators. This is because this 
metric is related to the INDEV.AU.5 user story, which is destined to be deliver in the 2nd release. 

 

Id Metric 
Target 
Value 

(M)andatory / 
(G)ood to 

Have / 
(O)ptional 

Measured by 
M24 

Comments 

1 Protection of sensitive tokens Supported M 

With TPM2.0:  
Yes 

With 
FutureTPM: 

Yes 

Successfully 
sealed both 
Bearer and 
Financial 
Tokens. 

4 
User authentication through the 

use of TPM 
Supported M 

With TPM2.0:  
Not tested yet 

With 
FutureTPM:  

Not tested yet 

Testing for this 
KPI has been 
shifted to the 
2nd phase of the 
demonstrator. 

Table 5: Demonstrator #1 – Qualitative Metrics by M24 

 

2.3.4 Plan for the next Period 

During the next period, the rest of the user stories as defined in deliverable D6.1 [1] will be 
executed, by leveraging the HW-based TPM, including the integrity verification history log and 
operational correctness of the Android device and the FIDO U2F. 

2.4 Conclusions 

Sealing and unsealing have been successfully implemented in this demonstrator using the 
software implementation of the FutureTPM. We contacted a thorough comparison on the 
performance of both HW TPM2.0 and SW-based FutureTPM, in order to provide deep insights 
on their operational behaviour in the context of the demonstrator. The results of Table 2 and Table 
3 advocate that the performance of the software implementation of the FutureTPM meets the 
performance KPIs. The time discrepancies among the contacted measurements are justified by 
the nature of the TPMs (Software/Hardware) and the interception placement (TSS/Application) 
for capturing the timings. Further experiments will be conducted for the 2nd release of the 
demonstrator, in order to evaluate the performance for the rest of the user stories under the 
distributed nature of the overall architecture of the dedicated TPM server and the resources 
needed to work with QR algorithms and schemes. Overall, the performance of FutureTPM meets 
the goals of the demonstrator. 
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Chapter 3 Demonstrator #2 – Activity Tracking 
Demonstrator 

3.1 Demonstrator Overview 

The S5Tracker demonstrator is based around the infrastructure build by S5 that is called 
S5Tracker. The S5Tracker is a cloud-based analytics engine developed by S5 acting as a data 
handling information environment of personalised and interlinked data streams related to activities 
performed mostly by individuals. The S5Tracker can be used for creating information-rich user 
profiles, based on activities recorded in diverse ICT communication channels and devices, pulled 
automatically, or inserted into the system in a semi-automatic manner by users themselves. The 
current information entry sources supported include APIs of specific IoT devices (e.g. Apple 
Health, Fitbit, Nike+, Garmin, Smart devices, etc.), Web2.0 social platforms that record users 
activity (such as Facebook, Twitter, etc.), as well as other smart devices that could be connected 
to the platform such as Smart Home kits, etc. 

As in any cloud-based data analytics engine, the development, expansion and the deployment of 
the service suffers from a set of systemic challenges that require continuous integration and 
testing efforts, as well as big time investments to undertake strategic decisions guaranteeing the 
service’s performance and availability. In more detail, the main challenges faced at the moment, 
as the service resides in a public cloud provider operating as a centralised application, have to 
do with:  

 Data sharing, privacy, confidentiality and security considerations, both at the cloud-based 
infrastructure as well as in the upcoming S5Tracker mobile application service;  

 Data volume handling and scalability issues; 

 Data processing power and system performance optimisation over the cloud-based 
offering.  

As such, a strong, but also pain point of the S5Tracker is the Data Anonymization and Privacy 
preservation service that can be used to either secure the data and the details of each user to not 
be accessible from other parties accessing the platform, and also the generation of aggregated 
“User Personas” which are fictional representative users, that can be globally accessible by 
analysts, in order to create reference cases. 

3.1.1 Demonstrator Needs and Challenges 

By utilizing the infrastructure to be made available by FutureTPM, the Activity Tracking 
demonstrator will be in a position to include into the overall ecosystem of its operation trusted 
devices. They are used at the edge of the infrastructure (e.g. at the data generation and collection 
points, as well as the data analysis points), which in turn will provide guarantees regarding privacy 
and security. These are considered highly important for the data that is being exchanged over the 
suggested infrastructure in order to avoid data forging incidents and data leaks, and at the same 
time care for privacy preservation and anonymized data delivery, while such features will be able 
to provide an extra layer of trust with regards to the mandates of GDPR, allowing data owners 
and data collectors to trust even more the entities that take part in the overall information 
exchange.  

As such, the use of FutureTPM allows the trusted communication and information sharing 
between entities of the overall ActivityTracker and will provide an extra layer of privacy and trust 
for the users of the platform, as well as the security primitives necessary to safeguard that data 
uploaded to the platform is genuine and comes from the authenticated endpoints. 

 

 



D6.3 – Demonstrators Implementation Report – First Release 

FutureTPM D6.3  Public  Page 19 of 50 

3.1.2 Demonstrator Architecture 

The demonstrator that is being designed and developed during the FutureTPM project is based 
on a refactored architecture of the current S5Tracker infrastructure of the company, bringing into 
the picture TPM methods that allow for highly privacy-preserving information exchange. In this 
frame, the demonstrator has three main actors and three different components where each one 
of these actors operates one component. 

The actors identified, which play significant roles in the data value chain of the use case, and 
have security and privacy considerations, are the following: 

 An Individual User, who is a user that collects his own data from specific sensors and 
social media accounts; 

 A Data Analyst, who gets access to the data (anonymised data or access to personal 
data) to perform certain analyses; 

 The S5Tracker Analytics Engine which is not an actual user but a system role that is 
responsible for the operation of the S5Tracker Analytics Engine. 

The different components are the following: 

 S5PersonalTracker - A device on the side of the “individual user” which is used primary 
for data collection and data push to the S5Tracker Analytics Engine; 

 S5Tracker Analytics Engine – A central cloud-based service, which gets data from the 
S5PersonalTracker and performs some analyses online, managing individuals’ data; 

 S5DataEdgeAnalysis – A computer interface used by the Data Analyst, that connects to 
the S5Tracker to fetch data and run online queries 

As shown in the next figure, both the S5PersonalTracker and the S5DataAnalysis interfaces 
connect and exchange data with the S5Tracker Analytics Engine. The core focus of the use case 
will be to utilise software TPM methods, both at the S5PersonalTracker and at the 
S5DataAnalysis sides, to realise a holistic environment of privacy preservation and trust 
generation.   

 

Figure 4: Demonstrator #2 – Main Actors and Entities 

In this context, privacy regarding the data owner could be achieved by enabling interconnection 
between the S5PersonalTracker and the S5Tracker Analytics Engine through Direct Anonymous 
Attestation, while at the same time, data sharing modalities towards the S5DataAnalysis side 
would be safeguarded, by providing access only to trusted devices for data fetching and analysis, 
which would be configured according to the data sharing principles of the overall platform (so that 
for example data cannot be exported to a storage medium. 
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During this period, implementation focused on the DAA part between the S5PersonalTracker and 
the Analytics Engine infrastructure, with the focus of allowing the former to sign and send payload 
to the latter, which verifies the payload and stores it in the appropriate database, depending 
whether the payload sent is anonymous (thus contributing to building anonymised “personas”), 
or eponymous, by using specific basenames, which then is stored to the personal bucket of a 
user in the database. The exact architecture of the overall infrastructure, as revised to fit the TPM 
modules is shown in the next figure.  

 

Figure 5: Demonstrator #2 – Architecture showing the 2 entities concerned for the use cases till M24 

3.2 Emulated System Description 

In order to concretely test the proposed architecture, both the S5PersonalTracker and the 
S5Personal tracker Engine have been executed within docker containers. 

For both machines (including the TPM host), a machine running macOS 10.15.3, using an Intel(R) 
Core(TM) i7-8850H CPU operating at a clock frequency of 2.60GHz, having also 16GB of DDR4 
RAM running at 2400 MHz. 

The Docker running Fedora 31, and the docker engine version is 19.03.5; utilising all 6 physical 
cores (with 2 threads each) and occupying 6GB of memory with 1.5GB swap. 

As in the other use cases, tests were executed for the TSS2.0 stack and the FutureTPM stack. 
In these instances, the emulated software QR TPM acts as a client which uses the LDAA method 
to contact a server for being identified as an attested machine that can push some data. 

All test results found herein for the Demonstrator#2 are the average of 100 consecutive runs, in 
order to provide an objective performance measurement that spans through time and possible 
system conditions. 

3.3 Implementation Path Report 

During the 1st phase of the run of the demonstrator within the FutureTPM project, the user stories 
realised had to do mostly with implementing the LDAA protocol that concerns the joining of the 
S5PersonalTracker to the network, the signature of payload packages and the verification of 
those by the S5Tracker Analytics Engine, for storing them in the appropriate buckets (or dropping 
them in case these were not verifiable). As such, the whole process that deals with LDAA has 
been implemented between those entities, and the according user stories have been successfully 
implemented. Initially, this has been achieved by integrating the TPM2.0 stack in the existing 
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infrastructure, which was then replaced with the FutureTPM stack, by using the new algorithms 
and libraries provided by the project. 

The major challenges faced during this implementation had to do with certain delays that caused 
runtime errors and sync errors between the two different entities, with the main reason for those 
being the size of the payload and the delays imposed by the TPM in the signing and verifying the 
data. Therefore, it was necessary to implement a mechanism that truncated the payload into 
smaller packages, that were faster to sign and verify, and overcome this obstacle. Moreover, 
when shifting to the FutureTPM stack, severe delays were experienced in the execution of the 
TPM commands, which was a logical consequence of the number of computations necessary for 
the QR algorithms to get configured and executed. To overcome this challenge, a specific 
parameter in the QR FutureTPM stack has been used, which selects the weakest security 
parameters to use in the LDAA, in an effort to boost performance. 

3.3.1 User Stories Realisation 

Out of the User Stories and Test Cases described in D6.1 [1] which were scheduled for this period, 
the following has been executed: 

Description 

User Story Title: S5.IU.1 - As an Individual User I want to provide authenticated data to the 
S5Tracker Analytics Engine, so that I can be served with user-specific services such as 
notifications send by the analysts. 

Workflow Developed: For this use case, the S5PersonalTracker had to acquire the TPM 
credentials by using the Join() command, and then select the payload to Sign(). The signed 
packets were sent to the S5Tracker Analytics Engine, which performed the Verify() command 
to check the signature and either store the payload in the bucket of the designated user, or drop 
it.  

Issues Encountered: The issues encountered had to do with timeouts that resulted in 
messages not able to be signed. The workaround was to reduce the payload to smaller 
packages and use the -weak parameter in the sign() protocol. 

Status: Completed 

Degree of Realisation: Full 

Comments (if any): N/A 

 

Description 

User Story Title: S5.IU.2 - As an Individual User I want to provide anonymous and privacy-
preserving data to the S5 Analytics Engine, so that data analysts can have a rich repository of 
activity data for exploration. 

Workflow Developed: For this use case, the S5PersonalTracker had to acquire the TPM 
credentials by using the Join() command, and then select the payload to Sign() by using a 
basename that has been common amongst all other clients. The signed packets were sent to 
the S5Tracker Analytics Engine, which performed the Verify() command to check the signature 
and either store the payload in the bucket of the “persona” user (thus anonymous), or drop it.  
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Issues Encountered: The issues encountered in this user story were similar to S5.IU.1 as the 
only difference was the “base name” used. These had to do with timeouts that resulted in 
messages not able to be signed. The workaround was to reduce the payload to smaller packaes 
and use the -weak parameter in the sign() protocol. 

Status: Completed 

Degree of Realisation: Full 

Comments (if any): N/A 

 

Description 

User Story Title: S5.DA.1 - As a Data Analyst, I want to verify the integrity of the S5Tracker 
Analytics Engine Database, so that I can get data which is not tampered with. 

Workflow Developed: LDAA has been set up also in the S5Tracker Analytics Engine, and 
signing the snapshot of the database is pending. 

Issues Encountered: LDAA has been set up also in the S5Tracker Analytics Engine, and 
signing the snapshot of the database is pending. 

Status: OnGoing 

Degree of Realisation: Zero 

Comments (if any): This finalisation of this User Story has been shifted to the next period 

3.3.2 Unit Test Results 

The following unit test, which correspond to the user stories mentioned above, have been 
implemented during this period. 

 

Test Case ATRACK01 

Reference Code ATRACK01 

Components S5 PersonalTracker, Issuer 

Description 

This unit test aims at verifying that the S5 Personal Tracker correctly 
executed the Join() phase of the DAA protocol. The unit test checks the 
validity of the TPM of the host S5 PersonalTracker and the created DAA 
key. 

Status Performed 

Unit Tests 
Results 

The S5 PersonalTracker successfully acquires and can activate its TPM 
credentials for LDAA after communication with the Issuer 
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Test Case ATRACK02 

Reference Code ATRACK02 

Components S5 PersonalTracker 

Description 

This unit test aims at verifying the signature (SIGN phase) of user’s bunch 
of data using the DAA key. This unit receives the data from the users and 
then checks how the TPM forwards back the signed data, either 
anonymously or non-anonymously based on the use of a unique base-
name. 

Status Performed / On-Going / Not Executed Yet / Skipped 

Unit Tests 
Results 

Payload signed by the S5 PersonalTecker is successfully signed, either 
on the anonymous or not modes 

 

Test Case ATRACK03 

Reference Code ATRACK03 

Components S5 Personal Tracker, S5 Analytics Engine 

Description 
This unit test aims at verifying the received signed data by the S5 Analytics 
Engine. It will validate the DAA VERIFY() phase, based on the use of the 
DAA key. 

Status Performed 

Unit Tests 
Results 

Payload received by the S5 Analytics Engine, that is generated and signed 
by the S5 PersonalTracker is verified. 

 

Test Case ATRACK06 

Reference Code ATRACK06 

Components S5 PersonalTracker, S5 Analytics Engine 

Description 
This unit test aims at verifying that the S5 Analytics Engine is able to 
unwrap and store (in a trusted manner) data that is sent by the S5 Personal 
Tracker to the database. 

 

Test Case ATRACK06 

Reference Code ATRACK06 

Components S5 PersonalTracker, S5 Analytics Engine 
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Test Case ATRACK06 

Description 
This unit test aims at verifying that the S5 Analytics Engine is able to 
unwrap and store (in a trusted manner) data that is sent by the S5 Personal 
Tracker to the database. 

Status Performed 

Unit Tests 
Results 

Once the payload is verified, it is unwrapped and is stored as necessary 
in the database of the Analytics Engine 

 

3.3.3 KPIs Measured 

During the first phase of the operation of the demonstrator, a set of KPIs that have to do with the 
establishment of a DAA scheme between the PersonalTracker interface and the Analytics Engine 
has been tested, using a simulated environment where data has been fabricated and send from 
the one end to the other to check the performance of the protocol. 

For these experiments, performance has been measured, while in the case of the FutureTPM 
DAA implementation, the experiment has been conducted by employing its “weak” state, as this 
has allowed to retrieve the fastest possible responses from the TPM.  

More detail is presented in the next KPIs, which have been used to measure the DAA 
performance. 

3.3.3.1 Quantitative Metrics 

In terms of the quantitative evaluation of the project, the acceptance criteria set initially in D6.1 
for the scenarios of the first phase of the demonstrator (M24) have been met in their majority 
using the -LDAA1 flag, aka “weak” parameter of the current software QR-TPM implementation. 
The -LDAA1 flag selects the weakest security parameters to use in the LDAA. The parameters 
are: q = 3329 (12 bits); cyclotomic polynomial of 256; k = 3; etc. This is faster because it foregoes 
security in favour of performance due to the inefficiency of the implemented LDAA algorithm. In 
case stronger security parameters are set, then performance is significantly reduced, as at the 
typing the FutureTPM implementation is under prototyping. It needs also to be noted that ate the 
current time, the concerned current business application considers the current parameters as 
enough for the indicated scenarios. 

Unlike the applications that can replace RSA and ECC functionality with similar QR counterparts, 
the presented LDAA results and commands should not be interpreted in a similar way. Due to its 
memory requirements the current LDAA implementation is not deeply integrated in the TPM. The 
commands provided were implemented as a possible interface for a quantum-resistant 
accelerator. As such, there is not a one to one mapping to the non-quantum-resistant TPM. The 
integration of LDAA into the standard TPM commands was foregone because of backwards-
compatibility concerns. Its addition would be disruptive to the standard commands, given the 
magnitude of the data that LDAA has to operate over, and break previous TSS compatible 
programs. In order to reduce the impact of the current LDAA implementation, we have decided to 
separate the commands such that we can test the current interface without interfering with other 
applications. 

The next tables summarise the timings of the SW implementation of TPM commands for this 
demonstrator at the current version released in M21 of the project. The following table presents 
the timings of the complete sequence of commands for applying the DAA method with the use of 
the Software implementation of TPM2.0, measured at the application level of the Activity Tracker 
demonstrator.  
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TPM Command TPM2.0 Timings  

Application Timing 

Initialise and Join () 1.190250sec 

TPM2_ReadPublic 0.10071649sec 

TPM2_GetCapability (TPM_PT_REVISION) 0.099378898sec 

TPM2_Create 0.0024465sec 

TPM2_Load 0.094564203sec 

T1 Host prepares 0.097215602sec 

T2 Issuer challenges 0.0002133sec 

TPM2_Activate_Credential 0.099243sec 

TPM2_Commit  0.1003126sec 

TPM2_Hash 0.099998492sec 

TPM2_Sign (ECDAA) 0.1090904sec 

T3 Host responds 0.07920188sec 

T4 Issuer verifies response 0.0011676sec 

T5 Issuer creates credential 0.0024837sec 

TPM2_Activate_Credential 0.097036602sec 

T6 Host verifies credential 0.1101832sec 

T7 Host checks pairings 0.096997998sec 

Sign () 1.116446383sec 

TPM2_GetCapability (TPM_PT_PERSISTENT) 0.1094627 

TPM2_GetCapability (TPM_HT_PERSISTENT) 0.12004409 

TPM2_ReadPublic 0.1005071 

TPM2_GetCapability (TPM_PT_REVISION) 0.099512797 

TPM2_Load 0.073159998 

TPM2_Commit P1 (s2,y2)  0.095290492 

T8B Host commits 0.099133 

TPM2_Hash 0.1102931 

TPM2_Sign (ECDAA) 0.099247906 

T9 Host signs 0.2097952 
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TPM Command TPM2.0 Timings  

Verify() 0.0382752sec 

    T12B verify signature 0.0079627sec 

    T13 Verifier checks pairings (S,C,Q) 
0.0111749sec 

    T12B verify signature 
0.0079627sec 

    T13 Verifier checks pairings (S,C,Q) 
0.0111749sec 

Table 6: Demonstrator #2 –Timings at Application Level using the TPM2.0 (SW) 

Having as a reference point the timings with the current TPM2.0 implementation, the same 
amount of payload has been selected to perform the equivalent DAA operations (signing and 
verifying) with the QR software implementation of FutureTPM. In essence, LDAA has been used, 
utilising the same computational resources, and the timings at application and TSS level are the 
ones presented in the next table. 

QR FutureTPM Timings 

Application Timing TSS Timing 

Initialise and Join () 1.23763sec Initialise and Join () 0,097600915sec 

New issuer ldaa 0.008677sec    

New host 0.000012sec   

Startup  0.157466sec CC_Startup 0,012818105 sec 

Createprimary 0.162345sec CC_CreatePrimary 0,012704095 sec  

Create 0.201239sec CC_Create 0,017840957 sec 

Load 0.282727sec CC_Load 0,027992065 sec 

Ldaa join 0.158229sec CC_LDAA_Join 0,013578031 sec 

Ldaa sign proceed 0.156717sec CC_LDAA_SignProceed 0,012667655 sec 

Join 0.110551sec   

Sign () 38.909526 Sign () 7,52866176 sec 

Ldaa commit token link 0.167817sec CC_LDAA_CommitTokenLink  

 Ldaa SignCommit (multiples) 34.926421 sec CC_LDAA_SignCommit (multiples) 6,89314087 sec 

Host sign proceed 0.603191sec   

Host generate challenge 0.189532sec   

Ldaa sign proof (multiple) 3.0220348 sec CC_LDAA_Sign-Proof 0,63552089 sec 

Sign merge 0.004312sec   

Verify () 1.205691sec 

Start verify 1.205691sec 
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Table 7:Demonstrator #2 –Timings at Application and TSS Level using the FutureTPM QR 
Implementation (SW) 

Even with the -weak parameter activated, there was a noticeable delay in specific TPM operations 
at the level of the Application, with the most severe being in the Sign() protocol that takes 38 times 
more than the current implementation. The other noticeable delays concerns the Verify() protocol 
that takes 33 times more than in the TPM2.0, however as the time required for this operation is 
lower than 1.5 seconds, they are acceptable from the business point of view for the current 
demonstrator. 

The main justification for these delays has to do with the fact that LDAA signature (Sign()) is a 
multi-step process and there are certain steps which take longer than others. The first one is the 
required shared matrix between the host and the TPM. Since this matrix is very large, hundreds 
of MB, it would take longer to transfer it to the TPM than to regenerate it, so it was decided to 
regenerate the matrix using a pre-determined seed. This slows down the processing immensely 
because every time a call to a sign command is made, this matrix will have to be regenerated. 
The reason behind not using a cache is because the TPM doesn't possess any cache and in the 
Software implementation we wanted to be as true to the physical device as possible.  

Another important point is the fact that the commitment scheme doesn't suit the TPM, i.e., the 
commitment scheme requires a vector matrix multiplication where the matrix is very large. Finally 
we have to be conscientious that we are emulating the TPM and thus every time we issue a 
command our OS needs to spawn the process, setup the TCP connection, run the required code 
by the TPM, transfer the data, wait until the SW-TPM responds, and finally kill the process and 
destroy all objects.  

The next table showcases the KPIs corresponding to the implemented use cases, as identified in 
D6.1 and measured in this deliverable. 

Id Metric 
Target 
Value 

Acceptance 
criteria 

(M)andatory / 
(G)ood to 

Have / 
(O)ptional 

Measured 
by M24 

Comments 

1 

Allowing only for 
trusted S5 

PersonalTracker 
interfaces to interact 
with the S5Tracker 
Analytics Engine 

100% 100% M 

With 
TPM2.0: 

100% 

With 
FutureTPM: 

100% 

Target 
Achieved. 

Packets that 
have not be 
signed, are 
automatically 
dropped 

2 

Performance 
evaluation of 

process of sending 
and analysing an 

average set of daily 
collected personal 

data 

-35% -45% M 

With 
TPM2.0: 1,5 

seconds 

With 
FutureTPM: 

40,1 
seconds 

Target not 
achieved 
Amount 
corresponds 
to 10Mb of 
data 
analysed, 
measuring in 
principle the 
sign and 
verify and 
unbundling 

3 Performance 
evaluation of the 

800 ms 2.000 ms G With 
TPM2.0: 

Target not 
achieved but 
within the 
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Id Metric 
Target 
Value 

Acceptance 
criteria 

(M)andatory / 
(G)ood to 

Have / 
(O)ptional 

Measured 
by M24 

Comments 

infrastructure during 
the Join() phase 

1,190250 
seconds 

With 
FutureTPM: 

1.23763 
seconds 

acceptable 
space 

 

4 

Improved perception 
of Individual Users’ 

trust to 
S5PersonalTracker 

as a data hub1 

100% 60% G 

With 
TPM2.0: 

100% 

With 
FutureTPM: 

90% 

Target not 
achieved but 
still 
acceptable 

Users 
commented 
on the small 
delay 
experienced, 
which 
impacted 
negatively 
their 
perception of 
trust. 

5 

Performance 
evaluation of 
checking the 
integrity of S5 

Tracking Engine and 
Data Analyst to 
avoid potential 

exploitation attempts 

- 10% - 25% O 

With 
TPM2.0: Not 
Tested yet 

With 
FutureTPM: 
Not Tested 

yet 

Testing for 
this KPI has 
been shifted 
to the 2nd 
phase of the 
demonstrator 

Table 8: Demonstrator #2 – Quantitative Metrics by M24 

3.3.3.2 Qualitative Metrics 

Support for DAA has been achieved with the current version of the software-based 
implementation of FutureTPM, which has been released by the project in order to kick start the 
demonstrators, and it covered the main scenarios that have been defined for the first version of 
the demonstrators. 

Id Metric 
Target 
Value 

(M)andatory / 
(G)ood to 

Have / 
(O)ptional 

Measured 
by M24 

Comments 

1 
Support DAA for enhanced privacy 

S5PersonalTracker 
Supported M 

With 
TPM2.0: Yes 

DAA support 
has been 

                                                
1 To be measured with the use of structured Saaty scale questionnaires, addressed to a set of 25 selected users of the S5 Activty 
tracker users that will be introduced to the advantages brought by the TPM technology 
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With 
FutureTPM: 

Yes 

successfully 
implemented 

Table 9: Demonstrator #2 – Qualitative Metrics by M24 

3.3.4 Plan for the next Period 

During the next period, the rest of the user stories as defined in deliverable D6.1 will be executed, 
while the existing user stories might be re-run in case an improved implementation of the LDAA 
is implemented in the course of the project.  

 

3.4 Conclusions 

As indicated above, LDAA has been successfully implemented in this demonstrator using the 
software implementation of the FutureTPM, however there have been some performance issues 
which are inherited by the nature and the overall architecture of the TPM, the resources needed 
to work with QR algorithms and schemes and also the business logic of the current demonstrator 
which worked with packaging, sending and unbundling data close to real-time. 

In general, however, the results (except the signature process) are acceptable, even if not very 
close to the set targets. To mitigate the delay witnessed during the signature process there is an 
idea to alter a bit the business logic of the demonstrator, scheduling the signature and the sending 
of the payload to happen at off-peak times, using pre-programmed daemons that will run in the 
background on the S5 PersonalTracker instance. This however will result in users losing the 
ability to see their data in real-time on the cloud-based infrastructure (S5 Analytics Engine). 
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Chapter 4 Demonstrator #3 – Device Management 
Demonstrator 

4.1 Demonstrator Overview 

The network device management demonstrator intends to show how system integrity challenges 
can be solved, at scale, in the scenario of a distributed telecommunications infrastructure 
composed of many network devices that are centrally managed, as described in Figure 6. In the 
demonstrator, network routers equipped with a QR-TPM are required to prove their hardware 
identity and software integrity to a Network Management System (NMS). The process is 
integrated with the usual management operations that the NMS is performing across the entire 
lifecycle of the router, from deployment stage through regular operation until their 
decommissioning, by leveraging the concept of Remote Attestation. Based on the outcome of this 
process, the NMS can decide whether any given router can be trusted for routing user traffic or, 
if it cannot be trusted, whether it should be avoided, e.g. by adjusting the routing policy on its 
neighbouring routers. The demonstrator pushes the industry state of the art by introducing new 
technologies and methods to address several of the challenges identified in the following section. 

3: routing policy =
f(network, trust)

Router

Router

NMS

Router

Router

1: <- query status
2: -> statistics
4: <- modify routing table

1: <- query status
2: -> statistics

1: <- query status
2: -> statistics

1: <- query status
2: -> statistics
4: <- modify routing table

Trusted control channels

Fallback data path

Preferred data path 

attacker

 

Figure 6: Demonstrator #3 – overall architecture and main entities 

4.1.1 Demonstrator Needs and Challenges 

System integrity is a fundamental security aspect. It cannot be simply assumed that a certain 
security policy is enforced on a given system without having evidence that the part of the system 
responsible to enforce the policy, called the Trusted Computing Base (TCB), is trustworthy. The 
trusted computing paradigm promoted by the TCG addresses the need of verifiable evidence 
about a system and the integrity of its TCB and, to this end, the TPM and related TCG 
specifications provide both the foundational concepts, such as Measured Boot and Remote 
Attestation, as well as the necessary building blocks, such as the TPM and the TSS, to provide 
trusted computing capabilities to a wide range of ICT systems.  

Still, there remain several challenges for the wide scale adoption of trusted computing and the 
telecommunication industry is a particular case. Often the adoption is not reaching its true 
potential due several aspects such as incomplete support infrastructures, lack of standard 
protocols, flexibility in the platform specifications, scalability, performance and availability 
concerns, and adoption in virtual infrastructures, to name a few. There is also a perceived aspect 



D6.3 – Demonstrators Implementation Report – First Release 

FutureTPM D6.3  Public  Page 31 of 50 

of incompleteness of integrity measurements or guarantees, due to the traditional focus of trusted 
computing on the system boot time or, at most, the load-time of applications, without covering 
system integrity beyond these stages, during system execution, which is especially important for 
high-availability systems that have months or years between reboots. 

A different type of challenge is related to the long expected lifecycle of telecom routers, ranging 
from 10 to 15 or even 20 years. This means that the underlying cryptographic primitives of roots 
of trust such as the TPM need to remain trustworthy also beyond the horizon for practical quantum 
computer cryptanalysis. Using a QR TPM will provide insights into transitioning from classical 
cryptography to QR cryptography, with respect to performance and integration impact. 

4.1.2 Demonstrator Architecture 

The entities in the demonstrator are: 

- the routers, that route user traffic;  
- the NMS, which manages the routers over TLS channels; 
- the RA Server, which is responsible for attesting the routers. 

The NMS augments the decision on the routing policy that is to be sent to the routers in the 
network, by factoring in the trust state of each router, in addition to the usual network-related 
parameters. The trust state is the result of Remote Attestation (RA), in which the measurements 
of the software loaded on a router is verified by an RA Server against reference values that 
characterize known (and thus trusted) software versions and configurations. If all routers are in 
respective trusted states, meaning that all the software running on the router is known to be good, 
the routing policies calculated by the NMS for the network will only depend on the network 
parameters. If a given router does not attest successfully, meaning that not all the software 
running on it is known, the NMS will push to the neighboring routers policies that divert traffic 
away from the untrusted router. This is done to the extent allowed by the network service level 
agreement, as some routers might be a single point of failure for a certain part of the network and 
avoiding them completely might break the network availability.  

Each of the entities above interface with each other through standard REST APIs, as depicted in 
the user story diagrams in section 4.3.1. Each router is modeled as a virtual machine (VM) which 
uses a dedicated QR software TPM instance running on the hypervisor and exposed by qemu. 

Compared to the architecture described in D6.1, the demonstrator introduces a new capability 
called Secure Zero Touch Provisioning (S-ZTP), which allows the automatic and secure 
establishment of trust, called enrolment, between a new router connected to the network and the 
NMS, without human intervention (other than plugging-in the router). S-ZTP eliminates the need 
of trust on first use or out-of-band trust establishment schemes, which, in practice, can be very 
unreliable from the perspectives of trust model, organization and cost. The result of successful 
enrolment of a router is materialized by the issuance of a TLS certificate that can be used to 
securely communicate with the NMS or with other routers. 

4.2 Emulated System Description 

The tests have been performed in a virtualized environment. The hardware used is an Intel i7-
6700 CPU and 16 GB of RAM. The operating systems used are Ubuntu 18.04 in the host and 
Fedora 30 in the virtual machine. The hypervisor used is KVM. 

To expose a virtual TPM in the virtual machine, libtpms and swtpm (both the non-QR and the QR 
version) have been installed in the host. Initial provisioning of the virtual TPM has been manually 
done with swtpm_setup.sh (for TPM 2.0) and with TSS utilities (for QR TPM). 

Router software for remote attestation has been installed in the virtual machine, while the RA 
Server and the server endpoint of the TLS connection have been installed in the host. 

The tests results have been obtained by running 100 times the binaries that implement the four 
main functionality of the demonstrator (AK creation, TLS key creation, TLS connection, and TPM 
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quote), by collecting the results and by calculating both the non-weighted and the weighted 
(LWMA) average. 

4.3 Implementation Path Report 

In terms of design, the Device Management Demonstrator attempts to address the challenge of 
doing remote attestation in a complex software stack like that of a router, as described in section 
4.1.1. Once the OS kernel is loaded, processes and files are loaded in parallel, driving an 
explosion of loading order paths that are almost impossible to match to a reference. Also, many 
processes often create their own files on the system (e.g. state, configuration files, logs etc.), files 
for which there can be no initial reference as for the executables. In addition, various processes 
can directly or indirectly interact with each other, such as through IPC or through successive file 
writes-reads, making it hard to evaluate the impact of an unknown process on the others. To this 
end, we have introduced the Comprehensive Integrity Verification (CIV), an architecture that 
allows to assess and/or preserve the integrity of the operating system TCB, at load time and 
during system execution, while ensuring predictability of the PCR values regardless of the order 
of loading of applications and reducing performance impact by dramatically reducing the number 
of TPM PCR extend. 

CIV is building on the IMA and EVM features of the Linux kernel and introduces a new Linux 
Security Module (LSM) called Infoflow, which implements the Clark-Wilson integrity model [1]. It 
monitors the information flows between TCB processes and those outside the TCB and can 
prevent violations or record them in the TPM-protected IMA measurement list. CIV introduces a 
concept of digest lists to limit the reporting of measured software only to the case when that 
software is unknown (not added to the digest list). This approach ensures predictable PCR values 
and reduced usage of the TPM and, consequently, reduced performance impact. It also 
introduces Simple Remote Attestation (Simple RA), to minimize the effort of integrating Remote 
Attestation in existing distributed architectures, by using implicit attestation over existing secure 
protocols (e.g. TLS), while addressing the lack of dedicated standard attestation protocols and 
thus mitigating interoperability concerns. The CIV overview is depicted in Figure 7. 

 

Figure 7:  Demonstrator #3 – CIV architecture 

The workflow is the following: CIV verifies immutable files by searching for a file digest in the 
digest lists provided by the software vendor. Alternatively, CIV detects/prevents offline attacks on 
mutable files by verifying the HMAC and detects/prevents online attacks by restricting through 
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the Infoflow LSM the processes that are able to modify those files. Measurements produced by 
CIV (only if the verification failed) are used by the Simple Remote Attestation Protocol for reporting 
the integrity status of the router to the NMS. 

The following changes have been made to the system architecture compared to D6.1 and are 
reflected in the revised user stories in section 4.3.1: 

- introduce the ZTP client on the router, to support secure zero touch provisioning; 
- the RA Server pushes the trust state of a router to the NMS, during S-ZTP (previously the 

NMS was pulling it from the RA server); 
- the TLS CA has been moved from the RA server to the NMS. 

Initially, the demonstrator used the regular TPM 2.0 and switched later to the QR software TPM 
2.0 once it became available. This has required modifications across to all software stacks that 
use the TPM, in order to accommodate for larger key, buffer or command sizes due to the QR 
algorithms: TPM driver, TSS, SeaBIOS, qemu. 

A major implementation challenge was how to modify existing software to perform implicit remote 
attestation. We wanted to use one of the most widely adopted library for implementing secure 
protocols, OpenSSL, without modifying it. Integrating our code in OpenSSL would have required 
a lot of effort, without the guarantee that upstream developers accepted it.  

We opted for a more efficient approach, by implementing the implicit (and explicit) remote 
attestation functionality in a separate software called attest-tools. attest-tools consists of several 
components: RA lib (verifiers) to verify the integrity of the system attested from attestation data, 
RA lib (enrolment), to perform initial steps necessary for the subsequent remote attestation 
process, RA lib (skae), to parse attestation data from a X.509 extension. The API exposed by RA 
lib (skae) is suitable to use together with OpenSSL. In particular, it exposes a function that can 
be used as an additional method during the verification of the peer’s certificate. 

The additional verification method checks the Subject Key Attestation Evidence (SKAE) certificate 
extension, standardized by TCG. Implicit RA consists in verifying additional guarantees for the 
key used in the secure communication (e.g. TLS): the key is securely stored in the TPM and is 
associated with a good software configuration. 

OpenSSL however, although it allows developers to specify a callback function called during the 
peer’s certificate verification, it does not give the possibility to specify additional parameters for 
that callback. This is a significant limitation because RA lib (skae) needs as input the requirements 
from the remote attestation verifier for the software configuration associated to the TLS key and 
additional information necessary to verify the SKAE (e.g. the certificate of the Attestation Key 
used to sign the TLS key). 

We solved this issue by implementing a mechanism to load the data necessary for the SKAE 
verification at a different time than the time of the verification itself. Developers using attest-tools 
create a new data context and add to that context attestation data received from the peer, before 
the TLS connection is established. The data context is stored in a global variable, so that it is 
accessible by the callback function invoked by OpenSSL when the SKAE of the peer’s certificate 
is being verified. The result of the SKAE verification is stored in another structure called verifier 
context, which can be accessed by the application, to check if the SKAE verification was 
successful or which errors have been encountered by attest-tools. 

Another implementation challenge was to modify the software which exposes the software TPM 
to the virtual machine. In particular, this software uses a fixed length buffer that was deemed by 
developers sufficient to store any TPM command and response. However, with the introduction 
of quantum resistant algorithms such as Kyber and Dilithium, the buffer length became insufficient 
due to the larger key size. Usage of the newly introduced algorithms became possible only after 
doubling the length of the buffer in many of these software components (i.e. Linux kernel, 
SeaBIOS, qemu). 
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4.3.1 User Stories Realisation 

Description 

User Story Title: HWDU.NA.1 – As a Network Administrator, I want to enrol the router with the 
NMS so that it is accepted in the network infrastructure. 

User Story Confirmations: 

 The router appears in the list of devices managed by the NMS based on its TPM-

based identity 

TPM Functionalities: 

 NVRAM access 

User Story Implementation: 

 

Figure 8: Router registration 

Components: 

 ZTP Agent: Agent running on each router, responsible to initiate the enrolment 

process and to respond to implicit RA requests from the NMS. 

 RA Server: Remote Attestation Server that exposes a REST API to routers for 

device enrolment and explicit RA. 

 RA Client: Remote Attestation Client running on each router to generate TPM keys, 

quotes and CSRs and to send certificate requests to RA Server. 

 RA Lib (enrolment): Library running on RA Server to perform enrolment of each 

router. 

 RA Lib (verifier): Library running on RA Server to verify CSRs (for implicit RA) and 

quotes (for explicit RA). 

 NMS: Network Management System. 

Workflow: 
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1. Extract EK cred from routers to be enrolled 

 The Network Administrator accesses the router and extracts the EK credential 

from the TPM 

2. Send EK cred and router FQDN to NMS 

 The Network Administrator sends the extracted EK credential and the desired 

router FQDN to the NMS 

3. Store EK cred and router FQDN in DB 

 The NMS stores the EK credential and router FQDN in the NMS DB 

Issues encountered: see Section 5.2 for the generic implementation challenges 

Status: Completed 

Degree of realisation: Full 

 

Description 

User Story Title: HWDU.NA.2 – As a Network Administrator I want to define a trusted routing 
policy on the NMS so that the traffic is processed according to the trust states of routers. 

User Story Confirmations: 

 A routing policy depending, among others, on the trust state of routers is defined in 

the NMS. 

Issues encountered: - 

Status: OnGoing 

Comments: Planned for the second round of experimentation 

 

Description 

User Story Title: HWDU.NA.3 – As a Network Administrator I want to enforce the trusted 
routing policy in the network to reduce the risk of traffic leaking by untrusted routers. 

User Story Confirmations: 

 Routing tables on adjacent routers are modified when the trust state of a given 

neighbouring router changes 

Issues encountered: - 
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Status: OnGoing 

Comments: Planned for the second round of experimentation 

 

Description 

User Story Title: HWDU.NA.4 – As a Network Administrator I want to monitor the overall trust 
state of the network infrastructure. 

User Story Confirmations: 

 The NMS displays the trust state and routing table for each router in the network 

TPM Functionalities: 

 Key storage, signing, decryption, platform configuration 

User Story Implementation: 

 

Figure 9: Router runtime verification 

Components: 

 ZTP Agent: Agent running on each router, responsible to initiate the enrolment 

process and to respond to implicit RA requests from the NMS. 

 RA Server: Remote Attestation Server that exposes a REST API to routers for 

device enrolment and explicit RA. 

 RA Client: Remote Attestation Client running on each router to generate TPM keys, 

quotes and CSRs and to send certificate requests to RA Server. 
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 RA Lib (enrolment): Library running on RA Server to perform enrolment of each 

router. 

 RA Lib (verifier): Library running on RA Server to verify CSRs (for implicit RA) and 

quotes (for explicit RA). 

 NMS: Network Management System. 

Workflow: 

1. Establish TLS connection 

 The NMS establishes a TLS connection with managed routers. 

 The router replies to the NMS and sends the certificate associated to the 

generated TLS key. 

2. Verify router TLS key cert 

 The NMS queries the DB to verify the router TLS key certificate. 

3. TLS key unusable, perform explicit RA 

 If implicit RA fails (TPM key unusable in the router due to configuration 

change), ZTP Agent asks RA Client to perform explicit RA 

4. Collect measurements and generate TPM quote. 

 RA Client collects measurements from the system and asks the TPM to 

perform the quote operation. 

5. Send measurements and TPM quote 

 RA Client sends measurements and TPM quote to RA Server. 

6. Check if AK cert is in DB 

 RA Lib (verifier) checks whether the TPM quote has been signed by a TPM AK 

for which a certificate was released by RA Server. 

7. Verify measurements and TPM quote 

 RA Lib (verifier) verifies the measurements and TPM quote sent by RA Client 

in the router. 

8. Send verification result 

 RA Server sends the result of router integrity verification to the NMS so that it 

can be seen by the Network Administrator. 

9. Store verification result 

 The result of the router integrity verification is stored in the NMS DB. 
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Issues encountered: it was not known in the concept phase where the CA used to sign router 

certificates should be placed. During the software architecture phase, we chose to have 

different CAs depending on the purpose: the likely existing NMS CA for TLS certificates (since 

the NMS contacts the routers), and a new Privacy CA (included in the RA Server) for Trusted 

Computing specific functionality. 

Status: OnGoing 

Degree of realisation: Partial 

Comments: The routing policy functionality and the UI will be delivered with the 2nd release.  

 

Description 

User Story Title: HWDU.NO.1 – The Network Operator connects the router to the network and 
is able to verify the device integrity based on a whitelist. 

User Story Confirmations: 

 A TPM key is generated on the router for use to establish trusted channels. 

 The TPM key is validated by the NMS (i.e. it can be used only with software and 

integrity policy approved by the Network Administrator). 

 A trusted management channel is established between the NMS and the router (on 

the router the TPM enforces the validated TPM key policy). 

 An LED light on the router case indicates that the router has connected to the NMS. 

TPM Functionalities: 

 Key storage and certification, identity verification, signing, decryption. 

User Story Implementation: 

 

Figure 10: Router AK certificate generation 
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Workflow (AK certificate): 

1. Obtain RA Server cert 

 ZTP Agent obtains RA Server certificate from the NMS. 

2. Extract RA Server FQDN from cert and begin the enrolment 

 ZTP Agent extracts RA Server FQDN from the certificate and passes it to RA 

Client. 

3. Generate AK 

 RA Client generates an AK that will be used to certify the TLS key and sign TPM 

quotes. 

4. Get AK cert 

 RA Client asks RA Server to issue a certificate for the AK it generated. 

5. Check if router EK cred is in NMS DB 

 RA Server asks the NMS if the EK credential of the router requesting an AK 

certificate has been added to the NMS DB by the Network Administrator; this 

prevents any router from getting an AK certificate. 

6. Generate credential blob and verify challenge response by router 

 RA Lib (enrolment) generates a credential blob and asks RA Agent in the router 

to prove that the router possesses the EK. 

7. Generate AK cert and send it to Privacy CA 

 RA Lib (enrolment) generates a certificate for the router AK and asks Privacy CA 

in RA Server to sign the certificate 

8. Sign AK cert 

 Privacy CA signs the AK certificate; RA Server sends it to the router. 

9. Store AK cert 

 RA Server stores the signed AK certificate in the DB 
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Figure 11: TLS key certificate generation 

Workflow (TLS key certificate): 

1. Generate TLS key and CSR with SKAE 

 RA Client generates a TPM key for TLS (the key policy is specified as a 

parameter of TPM2_Create(); the policy should specify the correct software 

configuration for which the TPM will allow the key to be used). 

 A malicious router can specify a bad policy (e.g. for an incorrect/insecure 

software configuration) but cannot convince the RA Lib (verifier) that the 

policy was good (the generated key and the specified key policy are 

signed internally by the TPM, so the router has no control over this 

process). 

 The TPM signature is made with an Attestation Key (AK), which can be reliably 

associated by the RA Lib (verifier) to a router with the EK credential of that router. 

 RA Client also creates a CSR for the generated key and includes the TPM 

signature in a certificate extension called Subject Key Attestation Evidence 

(SKAE) defined by TCG. 

2. Get TLS key cert and begin the enrolment 

 RA Client asks RA Server to issue a certificate for the router TLS key 

3. Check if AK cert is in DB 

 RA Lib (verifier) first checks if there is a certificate for the AK the router used for 

signing the TLS key  

4. Verify SKAE from CSR 
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 RA Lib (verifier) verifies that the CSR is signed with a TPM key, that the TPM 

key is signed with an AK belonging to the given router and that the signed policy 

is correct (i.e. the router has a good software configuration). 

5. Get signed TLS key cert from CSR 

 RA Server sends the CSR with the verified SKAE to the NMS, so that the NMS 

CA can sign it. 

6. Verify CSR has correct FQDN from EK cred 

 The NMS verifies that the FQDN the router included in the CSR is the same that 

was sent by the Network Administrator during the router registration phase. 

7. Sign TLS key cert 

 The NMS CA signs the TLS key certificate 

8. Store TLS key cert in DB 

 The NMS stores the TLS key certificate of the router in the NMS DB; the TLS 

key certificate is delivered to RA Client. 

9. Enrolment complete, received AK and TLS key cert 

 RA Client informs ZTP Agent that it successfully received the AK and TLS key 

certificates. 

After the enrolment is complete, ZTP Agent tries to establish a connection with the NMS to 
verify whether the enrolment was successful. 

Issues encountered: implementing the enrolment logic was particularly complex due to lack 

of existing TCG guidance on using the TSS for this purpose. We used the IBM Attestation Client 

Server from Ken Goldman as reference for implementing this feature in attest-tools. 

Status: Complete 

Degree of realisation: Full 

4.3.2 Unit Test Results 

Test Case DEVMAN1 

Reference Code DEVMAN1 

Components RA lib (enrolment) 

Description 
This unit test aims at verifying the correctness of the router identification. 
The unit test checks that the library is able to generate and validate 
challenges required to identify a router. 

Status Performed 
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Unit Tests 
Results 

The library correctly generates and encrypts the challenges on RA Server, 
which, in turn, can be successfully decrypted by the RA Client. 

 

Test Case DEVMAN2 

Reference Code DEVMAN2 

Components RA lib (verifier) 

Description 
This unit test aims at verifying the correctness of the integrity verification 
done by RA lib (verifier). The unit test receives attestation data, performs 
integrity verification and checks the result from reference data. 

Status Performed 

Unit Tests 
Results 

The library is able to recognize missing or tampered information and fully 
verify the integrity of the router from the provided data. 

 

Test Case DEVMAN3 

Reference Code DEVMAN3 

Components RA Client (prev. called RA Agent) 

Description 

This unit test extends the functionality of the FUTURETPM02. This unit 
test aims at verifying the correctness of the TPM key and certificate 
generation. This unit tests verifies that a TPM key is created with the given 
policy and that the generated certificate is associated to that TPM key. 

Status Performed 

Unit Tests 
Results 

The library successfully extracts the attestation policy from the certificate 
signing request and verifies the correctness of the software configuration 
associated to the TLS key.  

 

Test Case DEVMAN4 

Reference Code DEVMAN4 

Components RA Client, RA Server 

Description 
This unit test aims at verifying the communication between the RA Client 
and the RA Server. The unit tests verify that both components are able to 
correctly generate requests and parse responses. 

Status Performed 

Unit Tests 
Results 

The library successfully performs the expected functionality. 
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4.3.3 KPIs Measured 

4.3.3.1 Quantitative Metrics 

The table below shows the differences in performance when the demonstrator uses TPM 2.0 and 
QR-TPM. Entries in bold report the total time necessary to execute a demonstrator functionality. 
The time was take from the virtual machine. Entries with regular style report the list of TPM 
commands executed for the demonstrator functionality in the previous row (not exhaustive, for 
brevity reasons). Only for the router boot phase detailed measurements are not shown, as the 
TPM commands are sent by the kernel and not by the TSS. 

The first and the third column of the table report the TPM command executed by the demonstrator. 
The third column contains information only if the algorithm used is different. The second and 
fourth column report the time necessary to execute a TPM command and it has been taken 
between the beginning and the end of TSS_Execute() function in the TSS. 

From the detailed performance measurement we can conclude that the QR-TPM is slower than 
the unmodified SW-TPM (TPM 2.0). Higher execution times can be explained by the increased 
size of the data being transmitted between the TSS and the TPM (500 bytes for TPM 2.0 and 
about 4000 bytes for QR-TPM). Another reason that applies for the PCR commands is that the 
number of allocated PCR banks in the QR-TPM (7) is higher than the number of PCR banks in 
TPM 2.0 (4). Also, NVRAM operations are slower due to the different amount of data to fetch (the 
public key in the EK credential is bigger). Key creation commands cannot be compared because 
RSA key generation is not deterministic, while Kyber and Dilithium key generation is deterministic. 
TPM operations that require asymmetric cryptography (e.g. TPM2_Load(), 
TPM2_ActivateCredential(), TPM2_Certify(), TPM2_Sign()) are seven to ten times slower in the 
QR-TPM. 

From the application perspective, the performance degradation is not as high. The AK creation 
for example is only about three times slower in the QR TPM. The difference is more significant 
for the other functionalities of the demonstrator. 

TPM 2.0 Command 

TPM 2.0 

Timings 

(TSS) 

FutureTPM Command 

FutureTPM 

Timings 

(TSS) 

Router Boot 6.159  6.466 

TPM2_ReadClock 
N/A 

(kernel) 
 

N/A 

(kernel) 

TPM2_SelfTest N/A  N/A 

TPM2_GetCapability N/A  N/A 

TPM2_PCR_Extend 
(SHA1,SHA256,SHA384,SHA512

) 
N/A 

TPM2_PCR_Extend 
(SHA1,SHA256,SHA384,SHA512,SHA3-256,SHA3-

384,SHA3-512) 
N/A 

TPM2_StirRandom N/A  N/A 

TPM2_GetRandom N/A  N/A 

TPM2_HierarchyChangeAuth N/A  N/A 

TPM2_PCR_Read (SHA1) N/A TPM2_PCR_Read (SHA1) N/A 

TPM2_Load (sealed blob under 
rsa 2048) 

N/A TPM2_Load (sealed blob under kyber security=3) N/A 
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TPM 2.0 Command 

TPM 2.0 

Timings 

(TSS) 

FutureTPM Command 

FutureTPM 

Timings 

(TSS) 

TPM2_StartAuthSession N/A  N/A 

TPM2_PolicyPCR (SHA1) N/A TPM2_PolicyPCR (SHA256) N/A 

TPM2_Unseal N/A  N/A 

TPM2_FlushContext N/A  N/A 

AK Creation 0.300  0.834 

TPM2_NV_ReadPublic (EK 
credential length) 

0.000921  0.01377 

TPM2_GetCapability 0.000590  0.013580 

TPM2_NV_Read (EK credential) 0.004778  0.01802 

TPM2_Create (AK, rsa 2048) 0.004779 TPM2_Create (AK, dilithium mode=2) 0.031657 

TPM2_CreatePrimary (EK, rsa 
2048) 

0.011244 TPM2_CreatePrimary (EK, kyber security=3) 0.020212 

TPM2_Load (AK, rsa 2048) 0.002805 TPM2_Load (AK, dilithium mode=2) 0.030117 

TPM2_StartAuthSession 0.000799  0.013721 

TPM2_PolicySecret 0.000592  0.013733 

TPM2_ActivateCredential 0.002394  0.018827 

TPM2_FlushContext 0.000471  0.013273 

TLS Key Creation 0.194  0.655 

TPM2_PCR_Read (SHA1) 0.000789 TPM2_PCR_Read (SHA256) 0.013633 

TPM2_Create (TLS, rsa 2048) 0.004865 TPM2_Create (TLS, dilithium mode=2) 0.032031 

TPM2_Load (TLS, rsa 2048) 0.002942 TPM2_Load (TLS, dilithium mode=2) 0.030333 

TPM2_Load (AK, rsa 2048) 0.002779 TPM2_Load (AK, dilithium mode=2) 0.030129 

TPM2_Certify 0.002279  0.023121 

TPM2_FlushContext 0.000492  0.013544 

TPM2_ReadPublic (SRK, rsa 
2048) 

0.002016 TPM2_ReadPublic (SRK, kyber security=3) 0.018828 

TPM2_StartAuthSession (SRK 
used as salt key) 

 

0.001963 
 0.018708 

TPM2_PolicyPCR (SHA1) 0.000601 TPM2_PolicyPCR (SHA256) 0.013880 

TPM2_RSA_Decrypt 0.003242 TPM2_Sign 0.022728 

TLS Connection 0.073  0.331 
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TPM 2.0 Command 

TPM 2.0 

Timings 

(TSS) 

FutureTPM Command 

FutureTPM 

Timings 

(TSS) 

TPM2_ReadPublic (SRK, rsa 
2048) 

0.002401 TPM2_ReadPublic (SRK, kyber security=3) 0.018779 

TPM2_StartAuthSession(SRK 
used as salt key) 

0.002068  0.018585 

TPM2_Load (TLS, rsa 2048) 0.003677 TPM2_Load (TLS, dilithium mode=2) 0.030866 

TPM2_PolicyPCR (SHA1) 0.000623 TPM2_PolicyPCR (SHA256) 0.013606 

TPM2_RSA_Decrypt 0.003241 TPM2_Sign 0.022806 

TPM2_FlushContext 0.000492  0.013335 

Quote 0.066  0.381 

TPM2_Load (AK, rsa 2048) 0.003126 TPM2_Load (AK, dilithium mode=2) 0.029669 

TPM2_Quote 0.002785  0.022542 

TPM2_FlushContext 0.000531  0.013034 

Table 10:  Demonstrator #1 – Comparison of Timings between TPM2.0 (SW) and FutureTPM (SW) 

Regarding KPIs 1 and 2, to the best of our knowledge, the Simple RA introduced in the 
demonstrator is applicable to all types of routers and/or compute devices running Linux. In the 
case of highly customized Linux versions, it might be possible to require minor adaptations, while 
keeping the concept unchanged.  

For KPIs 3 and 5 there was no known industry solution at the time of starting the project to achieve 
the target values. Therefore, we developed the new CIV architecture that allowed us to fill the 
gap. 

Id Metric 
Target 
Value 

Acceptance 
criteria 

(M)andatory 
/ (G)ood to 

Have / 
(O)ptional 

Measured 
by M24 

Comments 

1 

Amount of 
routers whose 

integrity is 
monitored by 

NMS 

100% 100% M 

With 
TPM2.0: 

100% 

With 
FutureTPM: 

100% 

 

2 

Amount of 
routers hiding 
their integrity 

status 

0% 0% M 

With 
TPM2.0: 

0% 

With 
FutureTPM: 

0% 

No enrolled router can 
hide its status. 
However, due to 
limitations of dynamic 
routing protocols, a 
router whose identity is 
not known to the NMS 
might still operate in 
the network. 
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Id Metric 
Target 
Value 

Acceptance 
criteria 

(M)andatory 
/ (G)ood to 

Have / 
(O)ptional 

Measured 
by M24 

Comments 

3 

Amount of 
detected 

integrity attacks 
on routers 

80% (with 
integrity 
models) 

60% 
(standard 

IMA) 
M 

With 
TPM2.0: 

80% 

With 
FutureTPM: 

80% 

Besides attacks  
detected by standard 
IMA, we additionally 
cover attacks on: 

- mutable files; 
- non-regular files (e.g. 

IPC, socket etc.). 

Not covered: 

- control flow attacks; 
- file path protection. 

4 

Amount of traffic 
diverted to 
alternative 

paths when a 
router is 

compromised 

75% 55% G 

With 
TPM2.0: 

N/A 

With 
FutureTPM: 

N/A 

Planned for 2nd 
release. 

5 
Amount of files 
whose integrity 
can be verified 

100% 
(with 

integrity 
models) 

99% 
(standard 

IMA) 

G 

M 

With 
TPM2.0: 

100% 

With 
FutureTPM: 

100% 

All files can be verified. 

Table 11: Demonstrator #3 – Quantitative Metrics by M24 

 

4.3.3.2 Qualitative Metrics 

TPM-based secure channels can be implemented by following existing specifications and several 
examples exist in the industry. However, it has not practical so far to bind the TPM keys to the 
complete software configuration, due to the traditional Measured Boot concept which is not 
suitable for complex operating system scenarios, where several processes are executed in 
parallel. Introducing CIV enables to overcome this limitation and achieve the below qualitative 
KPIs. 

Id Metric 
Target 
Value 

(M)andatory / (G)ood 
to Have / (O)ptional 

Measured by M24 Comments 

1 
Traffic routing 

based on router 
trust state 

Supported M 
With TPM2.0: N/A 

With FutureTPM: N/A 

Planned for 
2nd release. 

2 

Trusted channels 
between NMS 

and each router 
in the network 

Supported M 

With TPM2.0: 
Supported 

With FutureTPM: 
Supported 
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Id Metric 
Target 
Value 

(M)andatory / (G)ood 
to Have / (O)ptional 

Measured by M24 Comments 

3 

Device 
authentication 
key for trusted 

channel 
protected by 

TPM 

Supported M 

With TPM2.0: 
Supported 

With FutureTPM: 
Supported 

 

4 

Integrity 
protection of 

router 
configuration 
data using a 

TPM key 

Supported M 

With TPM2.0: 
Supported 

With FutureTPM: 
Supported 

 

Table 12: Demonstrator #3 – Qualitative Metrics by M24 

4.3.4 Plan for the next Period 

During the next period, the rest of the user stories as defined in deliverable D6.1 will be executed. 
Once the virtual QR TPM becomes available, the demonstrator will switch to it and re-run the 
performance measurements for its respective set of QR algorithms. 

4.4 Conclusions 

The Device Management demonstrator implementation is proceeding according to plan. There 
have been a number of design and implementation issues that have been overcome, new 
features have been added (S-ZTP) and new technologies have been introduced (CIV 
architecture) to solve existing industry challenges.  

The performance measurements are reasonable and do not dramatically impact the router 
system, enabling to achieve the set KPIs. 

In the first period, the demonstrator has focused on the enrolment and remote attestation parts. 
In the subsequent period, the demonstrator will add support for the regular device management 
logic according to the remaining user stories. 
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Chapter 5 Summary and Conclusion 

The current deliverable aims to cover main activities of the evaluation, validation and refinement 
phase related to setting up, executing and evaluating the three envisioned use cases; namely the 
“Secure Mobile Wallet and Payments”, “Personal Activity and Health Kit Data Tracking” and “Device 
Management” reference scenarios. It reflected on the pilot implementation and integration of the 
FutureTPM framework in three different use cases (called demonstrators), to test the assumptions 
of the project, and the feasibility, the applicability and the overall acceptance of post-quantum 
TPM in specific business cases, not only in terms of security, but also in terms of performance, 
availability and of other business critical indicators.  

The key outputs have been the: (i) definition of a set of tests for the list of core, integral components 
plus the technologies to be leveraged towards carrying on with such tests, paying special attention 
to the integration plan, and (ii) analysis of the first set of results related to the performance 
evaluation of the SW-based QR TPM and the implemented Trusted Software Stack (TSS) with 
timings of the sequences of TPM commands, for achieving the security, privacy, and trust 
properties of interest per reference scenario 

Towards this direction, the work performed for each one of the aforementioned demonstrators till 
M24 of the project was presented here. 

 In the context of the Secure Mobile Wallet and Payment use case, sealing and unsealing 
operations have been successfully implemented using the software implementation of the 
FutureTPM. We contacted a thorough comparison on the performance of both HW TPM2.0 
and SW-based FutureTPM, in order to provide deep insights on their operational behaviour 
in the context of the demonstrator. The results advocate that the performance of the software 
implementation of the FutureTPM meets the performance KPIs. The time discrepancies 
among the contacted measurements are justified by the nature of the TPMs 
(Software/Hardware) and the interception placement (TSS/Application) for capturing the 
timings. Further experiments will be conducted for the 2nd release of the demonstrator, in 
order to evaluate the performance for the rest of the user stories under the distributed nature 
of the overall architecture of the dedicated TPM server and the resources needed to work 
with QR algorithms and schemes. Overall, the performance of FutureTPM meets the goals 
of the demonstrator. 

 In the context of the Personal Activity and Health Kit Data Tracking use case, the LDAA has 
been successfully implemented using the software implementation of the FutureTPM, 
however, there have been some performance issues which are inherited by the nature and 
the overall architecture of the TPM, the resources needed to work with QR algorithms and 
schemes and also the business logic of the current demonstrator which worked with 
packaging, sending and unbundling data close to real-time. In general, however, the results 
(except the signature process) are acceptable, even if not very close to the set targets. To 
mitigate the delay witnessed during the signature process there is an idea to alter a bit the 
business logic of the demonstrator, scheduling the signature and the sending of the payload 
to happen at off-peak times, using pre-programmed daemons that will run in the background 
on the S5 PersonalTracker instance. 

 In the context of the Device Management use case, the performance measurements are 
reasonable and do not dramatically impact the router system, enabling to achieve the set 
KPIs 

The final version of the overall documentation and the validation of the demonstrators will be part of 
deliverable D6.5 and D6.6 of the project, to be delivered in M33 and M36 respectively, as this is the 
point that will mark the successful implementation of all demonstrator activities and the full evaluation 
of the FutureTPM platform as a whole. 
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Chapter 6 List of Abbreviations  

Abbreviation Translation 

AK Attestation Key 

CFA Control Flow Attestation 

CFG Control Flow Graph 

CFP Control Flow Path 

CISQ Consortium for IT Software Quality  

DH Diffie-Hellman 

eBPF enhanced Berkeley Packet Filter 

FIDO Fast ID Online 

KPI Key Performance Indicators 

KVM Kernel-based Virtual Machine 

MFA Multifactor Authentication 

NFC Near Field Communication 

PCR Platform Configuration Register 

PDP Policy Decision Point 

PE Policy Enforcement  

PEP Policy Enforcement Point 

QEMU Quick Emulator 

RA Risk Assessment 

SKAE Subject Key Attestation Evidence 

WP Work Package 
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