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Executive Summary

This deliverable reports on current progress towards designing and developing security models,
general security framework and ideal functionalities for the Trusted Platform Module (TPM) and
its related use cases.

Standing at the view point of cryptography for the TPM, we mainly tackle issues of security model
for lattice-based Direct Anonymous Attestation (DAA) via the invention of a new property-based
security model. For the security modelling, we initially and successfully design ideal functionalities
for create/load scenario within TPM.

We make the previous outline approach for the definition of ideal functionalities more concrete
to formally capture the security of TPM functionalities and their compositions. Our design can
idealize all TPM functionalities except those that serve to provide cryptography to a consumer
application, capturing their intended semantics rather than their implementation. This idealization
is done by replacing cryptography with a Trusted Third party. We investigate the TPM commands
and further merge them into our ideal functionalities. We present the first scenario (create/load
TPM key) for our ideal functionalities design, and consider the integration of our model in the
three use cases.

We report some progress towards the development of cryptographic provably secure definition,
called property-based model. To do so, we define new symbols and oracles (concurrent and
non-current versions) to cover the gap between stand-alone setting security and Universal Com-
posability (UC) framework. We further propose a protocol which is able to convert a stand-alone
secure design to be UC-secure. In this way, we show that our new design achieves all necessary
features and security as the UC version does.
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Chapter 1

Introduction

In D3.2 First Report on Security of the TPM, we identify a number of research challenges. In this
Deliverable, we refine our research methodology on security modelling for the whole TPM and
the cryptographic security notion for the DAA.

Ideal functionalities for TPM. We make the modelling approach proposed in D3.2 more con-
crete and taking first step to capture the security of TPM functionalities via the definition
and design of the ideal functionalities. The core idea we use is to idealize the functionalities
(except those serving to provide cryptography) to a consumer application via replacing cryp-
tography used internally by the TPM by non-cryptographic approaches. The approaches
are to combine the use of trusted third party, access control and private communication
channels. Our design is able to allow that: the TPM functionalities can securely implement
the ideal functionalities and, the system can be secure even if it leverages the ideal function-
alities instead of the TPM functionalities. In other words, we equal the security of the use
of ideal functionalities to the TPM functionalities. We provide general modelling framework,
and concrete ideal functionalities for the first modelling scenario - create/load TPM key. We
at last present some discussions on how to extend the outcomes to the three project use
cases.

New cryptographic notion for DAA. In this deliverable, we introduce a new property based def-
inition for Direct Anonymous Attestation (DAA) which is the main cryptographic functionality
of TPM. In the literature, one believes that UC based model is able to capture all security
notions of DAA. However, it is still unknown that how to merge the UC notion into property-
based security setting. We close the gap between property-based and UC -based security
of DAA by defining this new security model. In the model, we first extract four common
security features and ”wrap” them into the security games with stand-alone and concurrent
oracles. We further provide security analysis to show that the new model achieves the same
security guarantees as the UC version in [19] via the combination of concurrent oracles and
a ”wrapper” protocol.

1.1 Methodology

The above two aspects have so far been investigated and researched by independent teams,
supporting fine-grained interactions with other Work Packages in the project as needed. Both of
the aspects are complimentary to each other - ideal functionalities targets to non-cryptographic
components while new cryptographic definition is for the DAA which is the main cryptographic
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function of TPM. The reason of proposing a new cryptographic definition for DAA is because we
have designed lattice-based DAA schemes which requires up-to-date security model for their se-
curity proof. Instead of delivering all-round security modelling for TPM, our strategy is to identify
and model the most common and important functionalities (which are mainly related to the three
use cases), for example, the ideal functionalities for TPM key create/load match the real need in
the implementation of use cases, the new cryptographic definition also takes the common four
features extracted from practical cases and current security definition literature. Our main philos-
ophy in the security modelling is to “wrap” the security requirements (of TPM’s functionalities) or
adversarial actions (towards to TPM) into a “box” and further interact the box with “outside world”.
This philosophy may allow us to relate the modelling strongly with the current three use cases.

1.2 Structure of the Report

Chapter 2 overviews the modelling approach via a specific example, proposes the first modelling
scenario for TPM and define the corresponding ideal functionalities. Extensions to use cases and
the discussions are presented at the end. In Chapter 3, we mainly propose a new property-based
model for DAA, and further prove how this new model fits the concurrent needs. We also show
that the new model meets the same security as the UC DAA notion. Finally, Chapter 4 summa-
rizes our findings, identifies remaining gaps, and scopes further research to be conducted.

FutureTPM D3.3 PU Page 2 of 50



D3.3 - Second Report on Security Models for the TPM

Chapter 2

Security Modelling

In D3.2 [27], we outlined an approach to defining ideal functionalities for the TPM that can serve
as both a foundation for the verification and validation of applications that rely on TPM for their
security, and a specification of the TPM’s security. This modelling approach has so far been left
abstract; we now make it slightly more concrete, taking first steps towards formally capturing the
security of the TPM’s functionalities and their compositions.

The key feature of our model is that it idealizes all TPM functionalities except those that serve to
provide cryptography to a consumer application (for example, hashing or asymmetric encryption),
capturing their intended semantics rather than their implementation. This idealization is done by
replacing cryptography with a Trusted Third Party (or a group of them), with strong access control,
and with which honest parties interact through channels not visible to the adversary.1

Intuitively, idealizing cryptography that is used internally allows one to study the security of ap-
plications and systems that rely on the TPM by: i. checking that the TPM is used in a way that
allows this idealization; and ii. analyzing only cryptography relevant to the application itself. In
cases where the application uses the TPM in a way that does not allow the treatment of cryp-
tography as ideal (for example, because it uses parameters that do not guarantee ideal security),
then the model still allows reasoning about the application’s security by modelling the TPM’s
internal cryptography in a more standard model, appropriate for the context.

Looking ahead to our example of sealing an encryption key to Platform Configuration Registers
(PCRs), the idealization allows the analysis of the application to focus on whether the application
itself uses the key securely, whilst assuming that nothing about the key leaks out (not even an
encryption of it) when stored in the TPM’s Protected Storage. As such, the model may in fact
become useful beyond the TPM itself, since the same ideal security functionality could be realized
in a different way (for example, implementing Protected Storage through actual secure storage–at
an additional cost).

We also hope that this idealization will support the use–in analyzing applications that use only
non-cryptographic feature of the TPM (such as protected storage and authentication session)–of
tools more broadly accessible than those used so far to analyze such applications. In particu-
lar, we contend that using the TPM–or indeed any Trusted Execution Environment (TEE)–as a
backend for many of the secure functionalities it offers should not require cryptographic exper-
tise, and hope that the tools afforded by our idealization approach can be deployed more readily
and with less demand on the end user than existing tools that have been used to analyze TPM
functionalities in the past.

1These are often referred to in the symbolic literature as private channels.
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Computational Symbolic Idealized
Assumptions:

• Messages are
bitstrings, and the
cryptographic
primitives are
functions from
bitstrings to bitstrings.

• The adversary is any
probabilistic Turing
machine with a
running time
polynomial in a
security parameter.

• Cryptograpy is
implemented securely
with overwelming
probability in the
security parameter.

Assumptions:

• Messages are terms
on cryptographic
primitives defined as
function symbols.

• The adversary is
restricted to compute
only using these
primitives.

• Cryptography is
implemented securely.

Assumptions:

• Messages are terms in
an algebra, with
exposed cryptographic
primitives defined as
function symbols.

• The adversary is
restricted to only call
TPM commands.

• Cryptography that is
not exposed to
applications is
provided by a Trusted
Third Party (or some
equivalent model).

Table 2.1: Assumptions considered in the three models.

2.1 Overview of the Modelling Approach

In order to formally capture the intended semantics of TPM operations, the ideal functionalities
replace the cryptography used internally by the TPM by non-cryptographic mechanisms–usually
a combination of a Trusted Third Party, access control and private channels–wherever possible.
In order to then obtain security result on a system that makes use of TPM functionalities, the
following facts need to be assumed, proved or verified:

1. the TPM algorithms securely implement the ideal functionality, that is, we can substitute
such ideal functionalities by the TPM without “losing too much security”; and

2. the system is “secure” when it uses the ideal functionalities instead of the TPM.

We envision that the former argument, that the TPM itself is “almost as secure” as our ideal func-
tionalities, could be done as a cryptographic proof (in the computational model) of indistinguishability–
or indifferentiability where relevant–given a specific adversary and trust model. This will be a
complex argument, using techniques akin to those leveraged in Chapter 3, but would only need
carried out once and for all.

By contrast, idealizing as much of the cryptography as possible without application-specific knowl-
edge should make the second task, of proving that a specific application is “secure” for some
application-specific notion of security, much more manageable, and accessible to designers and
developers with less expertise. Since this task must be performed for each application or system–
and perhaps for each combination of applications and systems, if they can interfere–simplifying it
as much as possible is a worthy goal.
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In the rest of this chapter, we focus discussions on partially defining a simplified ideal functionality,
and discussing techniques and tools that could be leveraged to fulfill the second task.

2.1.1 An Example

Consider, for example, a scenario where Enhanced Authorization (EA) is used by an honest user
to create a TPM-protected (non-primary) object sealed to a PCR state (that is, protected by a
policy constructed by measuring the state of some subset of the PCRs).

In order to load this object back into the TPM after its creation, an authorization session object
must first be constructed that also measures the state of the same subset of the PCRs. The
policy object contains a digest (the policy digest), constructed iteratively through hash chaining
the parameters of successive policy commands. When the load is performed, the constructed
policy digest is compared to that stored in the object, and the load is allowed if and only if the
digests are equal. As such, the load command actual semantics are that the object will be loaded
if it is performed within an authorization session whose policy digest matches that of the loaded
object.

However, the load command intended semantics (which we aim to capture in our idealized se-
mantics, or ideal functionality ) is that the object can only be loaded if the load command is per-
formed in an authorization session in which the same sequence of policy commands has been
performed as was performed when the object was created.

With overwhelming probability, these two semantics are equivalent (and this is indeed what an
indistinguishability proof would demonstrate), but reasoning about complex systems up to over-
whelming probability has so far remained impractical.

By contrast, studying the security of the same system in a setting where the TPM is assumed to
follow its intended semantics would yield much easier proofs, or, when insecurity is detected, a
much easier path to identifying root causes and vulnerabilities.

2.1.2 Modelling Ideal Cryptographic Functionalities

Traditional ways of modelling ideal cryptography often rely on global state under access control,
in a way similar to Morris’ language-based local objects or sealing [35].2 Bengtson, Bhargavan,
Fournet, Gordon and Maffeis [7] present a type-based approach to sealing (where values are
sealed to a property, using refinement types), later extended by Fournet, Kohlweiss and Strub [31]
to more complex type systems which, essentially, allow sealing of values to value-dependent
properties. These type-based techniques, combined with some informally-enforced verification
discipline, has been deployed to reason about complex ideal functionalities and their modular
composition.

However, these techniques have not so far been applied to concepts of Trusted Computing, and
the type-based approach, which is naturally closely tied to inductive structures, does not lend
itself well to reasoning about the TPM’s key management ecosystem, where storage hierarchies
can become graphs without loss of security.

2We note the terminology clash, and highlight that Morris’ notion of sealing is indeed quite different from the TPM
concept of sealing a protect object to a PCR state. However, we also note that Morris’ notion of sealing, and the
notion of sealing a TPM object to a PCR state in fact achieve very similar goals, although their formal definition and
the context in which they arose differ drastically.
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Other formalisms and tools have been used to model properties of TPM, key management tokens
and Application Programming Interfaces (APIs), and other Trusted Computing concepts.

• Approaches based on Abadi and Fournet’s applied π-calculus [1] (including ProVerif [9]) are
mature and stable, but do not provide appropriate support for non-monotonic global state,3

as would be needed to model volatile TPM state (including PCRs, and object and session
handles, for example) over TPM restarts.

• Approaches based on multiset rewrite rules (including Tamarin [3]) naturally support encod-
ings of state, including non-monotonic updates, but only provide limited support for inductive
structures.

Extensions and front-ends to tools from both approaches aim at implementing support for non-
monotonic global state and more complex flows. These include StatVerif [41] and GSVerif [26],
for ProVerif, and the SAPIC [36] frontend, for Tamarin.

In addition, tools from both approaches also include built-in support for some mechanisms that
could be used in addition to, or instead of, type-based sealing. More specifically, ProVerif’s notion
of private constructors and destructors could be used as a native sealing mechanism to directly
encode the ideas of Morris [35]. We further note that access control (a necessary component for
sealing to properly capture authentication) can be enforced by scoping in the applied π-calculus.

Relation to existing models of TPM security.

We note that models of TPM security already exist in the tools discussed above, and do include
the use of global states [43, 42, 41, 26]. However, none of these models differentiate between
cryptography that is used internally to the TPM and cryptography that directly serves the secu-
rity of the application. As a consequence, in those works, reasoning about application security
requires reasoning about TPM internals, even in settings where they could be treated as opaque.

Our hope is that securely idealizing cryptography that is irrelevant to application security will
eventually allow us to address much larger use cases that make use of the TPM. We first focus
on smaller use cases.

2.1.3 Towards A Reference Ideal Functionality

The roadmap for implementing this model is therefore as follows

1. Identify and select the subset of TPM functionalities that we would like to idealize, focusing
on the project Reference Scenarios. For the present document, we will focus on secure
storage, create and load functionalities.

2. Obtain an idealized model for these functionalities, and identify the best approach to model
them.

3. Define and model the set of security properties that we want to consider.

3We would like to remark that the applied π-calculus, indeed, does provide the ability to precisely model pro-
cesses, including their non-monotonic changes. However, ProVerif does not, because of the abstractions it makes,
so it can produce false counterexamples. Our point here is that there is no algorithmic way to prove arbitrary proper-
ties using the applied π-calculus.
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4. Consider what modelling tool is best suited to provide an automated verification of these
security properties.

In relation to the model of security properties, we note that the TPM Specification [44] lacks of
formal models for what security properties a given functionality is intended to provide. Moreover,
in many occasions, it lacks a rigurous definition, providing only some vague description which
might be open to interpretation. A clear example of this occurs in [44, Section 19.7]:

“Enhanced authorization is a TPM capability that allows entity-creators or adminis-
trators to require specific tests or actions to be performed before an action can be
completed. The specific policy is encapsulated in a value called an authPolicy that is
associated with an entity” [sic]

The “specific tests” and “specific actions” refers, obviously, to the assertions implemented by
the policy commands, but this requires a formal refinement on the semantics of the security
properties. An approach in this direction can be found in [43], where the “specific actions” and
“specific tests” are formally modelled by security properties (φA and φT , respectively) through the
usage of events triggered at specific points (creation and fulfillment of a policy assertion). Their
model asks whether the trace of action events of a consumer application (Caller) with the TPM
satisfies them. We provide here a simplified version of these security properties (see [43] for a
complete description):

φA =∀hS, t0.UseObjectEvent(O.authPolicy, hS)@t0 ⇒
n∨
i=1

mi∧
j=1

(∃ti,j.PolEvent(AssertionLabeli,j, hS,AssertionParamsi,j)@ti,j ∧ ti,j < ti,j−1),

φT =φT,1 ∧ φT,2 ∧ · · · ∧ φT,k.

Here, the security property φA states that a set of specific actions (e.g., signing with a specific
key) must be completed (PolEvent triggered) before using an object (UseEvent triggered). These
set of actions can be combined through AND and OR operations. On the other hand, the security
property φT states that a set of specific tests (e.g., PCRs have a certain value) is performed
before the object is used. The security properties φT,i are usually modelled as correspondence
properties, and ensure that the tests required by specific assertion commands in the policy are
fulfilled (e.g., ensure that the PCRs haven’t been changed between session assertion and object
usage). However, the approach from [43] still relies on taking into account the internal workings of
the TPM cryptography, therefore further investigation needs to be done so that these properties
can be abstracted from it and extended for their usage with the idealized TPM functionalities that
we are interested in modelling.

2.2 First Modelling Scenario - Create/Load a TPM Key

We start our approach security modelling by presenting a first scenario that involves a sequence
of TPM commands for creating and loading a TPM key. More precisely, we demonstrate the
creation of a TPM key that is bound to a PCR policy. This is a simple scenario that is relevant to
all use cases in this project and it will serve as a basis for modelling additional, more complicated
TPM functionalities in the future. The TPM commands that are relevant in this scenario are the
following:

1. tpm.StartAuthSession: for creating a trial, or a policy session.
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2. tpm.PolicyPCR: to initialize the PCR policy.

3. tpm.PolicyGetDigest: to retrieve the policy digest value from a session.

4. tpm.FlushContext: to erase a session (or object) from TPM memory.

5. tpm.Create: to create a key under a parent key.

6. tpm.Load: to load the created key to the TPM.

Since we are focusing on PCR policies, the command tpm.PCRExtend is also used implicitly, in
order to modify specific PCRs. We give our abstract description of these commands below, which
are based on the TPM specification manuals [44, 45].

2.2.1 Abstract Description of TPM Commands

Creating a session: tpmStartAuthSession

Sessions are of the core components in various TPM functionalities. They can be used for en-
cryption purposes, as well as in authorization and auditing mechanisms (see [44, section 19.5]
for more details). The command tpm.StartAuthSession is used to initialize a session, meaning
that it creates a session key which is typically used to encrypt sensitive information (encryption
session), or to derive values that are used for authorization (authorization session). We restrict
ourselves to authorization sessions for now, where we distinguish three such types, namely:
HMAC, policy and trial sessions. We focus on trial and policy sessions, that are used in the
context of EA authorization, which is a new feature in TPM 2.0, and describe the command
tpm.StartAuthSession accordingly.

Policy sessions are used as an authorization mechanism by associating a policy to an object in
such a way that a user can access an object if a specific policy is satisfied. This authorization
is typically performed by verifying that certain digest values match. For policy sessions, we may
assume that no session key is created since EA authorization is accomplished by verifying that
a policy is satisfied and there is no need to involve the authorization value of an object (hence
an encryption/decryption process). This simplifies the modelling, since in this case the command
tpm.StartAuthSession will simply initialize a policy digest value, denoted by polD, as the zero-
digest. If the policy session is associated to a PCR policy, then the TPM will also set the counter
pcrC as zero. The command description is given in Fig. 2.1. We note here that policy sessions
are generated after an object has been created.

tpm.StartAuthSession(sessionType)

1: create sessionH //create session handle

2: create polD, pcrC //create policy digest value and PCR counter

3: polD←− zeroDigest

4: if sessionType 6= TRIAL then

5: pcrC←− 0

6: output(sessionH)

Figure 2.1: tpm.StartAuthSession() command for policy/trial sessions
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Trial sessions are used for initializing a policy. They are required in order to generate the policy
digest value that will be associated with an object at creation time. Thus, trial sessions are
initiated before the creation of the object.

Policy assertion: tpmPolicyPCR

The command calculates the policy based on specific PCR. In particular it provides a link be-
tween a PCR and a policy session that was previously created with the tpm.StartAuthSession

command, by updating the policy digest value using the digest in the specified PCR. It takes as
input the handle sessionH of a session, the handle pcrH of the PCR to be included in the policy
digest calculation and the expected value digestV of the PCR. If the session type is POLICY, the
TPM will retrieve the PCR digest value pcrD referenced in pcrH and will check if it matches the
value digestV that is given by the Caller. If the two digests match, the TPM will update the policy
digest value that is referenced in the handle sessionH according to the relation:

polDnew ←− H(polDold||‘TPM-CC-PolicyPCR’||pcrD)

where TPM-CC-PolicyPCR is the command code of the command tpm.PolicyPCR, which speci-
fies the command that caused the update for the policy digest value. Furthermore, the TPM will
also update the counter pcrC with the corresponding value of the counter pcrUpdateCounter of
the PCR that was included in the calculation. If the session type is TRIAL, the TPM will perform no
check for the given digestV value and no update for the PCR counter pcrC. It will simply update
the policy digest according to the above relation. In both cases, the command returns SUCCESS

or FAIL, depending on whether it was properly executed or not. The process of tpm.PolicyPCR
is described in Fig. 2.2. For more details, see [45, p. 248].

tpm.PolicyPCR(sessionH, pcrH, digestV)

1: get polD, sessionType from sessionH

2: if sessionType == TRIAL then

3: polD←− H(polD||‘TPM-CC-PolicyPCR’||digestV)
4: output(SUCCESS)

5: if sessionType == POLICY then

6: get pcrD, pcrUpdateCounter from pcrH

7: if pcrD == digestV then

8: polD←− H(polD||‘TPM-CC-PolicyPCR’||pcrD)
9: pcrC←− pcrUpdateCounter

10: output(SUCCESS)

11: else output(FAIL)

tpm.PolicyGetDigest(sessionH)

1: get polD from sessionH

2: output(polD)

Figure 2.2: tpm.PolicyPCR() command for PCR policy evaluation

Note that tpm.PolicyPCR does not return the policy digest value of a policy session. In order to
obtain this value, the command tpm.PolicyGetDigest must be executed. The Caller provides
as input the session handle sessionH and the command returns the policy digest value that is
currently stored in this session (see also Fig. 2.2). In order to remove a session and its context
from the TPM memory, the command tpm.FlushContext must be executed with input the handle
of the session to be removed.
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Create a Key: tpmCreate

This command creates a (child) key under a parent key in an existing hierarchy. It takes as input
the following parameters:

• parH: The handle of the parent key in the hierarchy, under which the new key will be created.
It contains the seedValue, which will be used in the Key Derivation Function (KDF) for
generating the (child) key, as well as other information related to the parent key.

• inSensitive: Contains sensitive data related to the key that will be created. It includes
the value userAuth, which is given by the Caller and will be set as the initial authorization
value authValue for the new key, as well as other additional sensitive information. The
inSensitive parameter is wrapped using the parent key and in addition it may be optionally
encrypted using session-based encryption [44]4.

• inPublic: This is a public area template that contains information and attributes of the new
key, such as the type (symmetric/asymmetric), the type of authorization to access the new
key, the authPolicy value, which will be set as the policy digest value polD of a policy
session to be linked with the key.

• outsideInfo: Additional data that provide a link between the Creator and the new key.
They will be included in the creationData parameter in the output.

• creationPCR: The selection of PCR that will be included in the key creation process and
will represent the state of the TPM when the object was created.

tpm.Create(parH, inSensitive, inPublic, outsideInfo, pcrSelection)

1: result←− ValidationCheck(parH) //validation check for parent key

2: authCheck←− Authorization() //authorization check for accessing parH

3: if (authCheck == TRUE) and (result == SUCCESS) then

4: decrypt inSensitive //session-based encryption and parent key

5: get userAuth from inSensitive

6: get seedValue, parName, parQN from parH

7: authValue←− userAuth

8: k←− KDF(seedValue, authValue)
9: copy inPublic to outPublic and authValue, seedValue to outSensitive

10: outPrivate←− E(outSensitive) //session-based encryption and parent key

11: get pcrD from creationPCR

12: copy H(creationPCR, pcrD), parName, parQN, outsideInfo to creationData

13: creationHash←− H(creationData)
14: create creationTicket

15: output(outPrivate, outPublic, creationData, creationHash, creationTicket)

16: else output(FAIL)

Figure 2.3: tpm.Create() command for creating a key under a parent key in a hierarchy

The command will generate a (child) key in a hierarchy under the parent key with handle parH.
The TPM will first verify that the parent key referenced in parH handle is indeed a parent key,

4This is done in order to ensure that even if an adversary has control of the parent key, has no control of the
sensitive area of its child keys.
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meaning that it is a storage key that can wrap a child key. Additionally, proper authorization is
needed for accessing the parent key, using an authorization session. The generated key will
have an authorization value authValue and will be bound to a policy session with policy digest
polD, which is set as the key authPolicy value. In particular, the command outputs the following
parameters:

• outPrivate: The private area of the new key. This contains the authValue of the key,
the private key (if the created key is asymmetric), the seedValue that was used in the
KDF function for generating the key and other sensitive information. This field is usually
encrypted using the corresponding encryption method that was used in the encryption of
inSensitive.

• outPublic: The public portion of the newly created object, containing in general the values
of inPublic, including the authPolicy digest.

• creationData: Contains data that describe the state of the TPM at the time of the key
creation. It includes a digest of the PCR selection and values pcrD that were used in
the creation process, as specified in creationPCR. It also includes certain parts from
outsideInfo, the name and Qualified Name (QN)5 of the parent key.

• creationHash: Represents the digest value that is created as the hash of creationData.

• creationTicket: A creation ticket that is used in order to verify that the created key, specif-
ically the creationData of the key, was indeed created by a valid, authenticated TPM.

An abstract description of the command tpm.Create is presented in Fig. 2.3. For a more detailed
analysis, we refer to [44, 45].

Load a Key: tpmLoad

This command loads a key to the TPM. It takes as input the handle of the parent key parH,
the private portion inPrivate of the key to be loaded (this was returned as outPrivate by the
command tpm.Create) and the public portion inPublic of the key. The later will be used in order
to create the name of the key. The command outputs the handle kH of the loaded key, as well as
the name of the key, which is the hash of its public portion, concatenated with the name of the
hash algorithm that was used and is specified in inPublic. The process is described in Fig. 2.4.
For more information, see [45, p.54].

For the key to be loaded, first a verification process is needed to test whether the key referenced
in the parent handle parH is indeed the parent key and an authorization for using the parent key.
An additional authorization process is needed in order to load the desired TPM key. This can be
performed with HMAC or policy-session.

2.3 Ideal Functionalities

We give a simple example in order to realize our notion of an ideal functionality. Let us consider
the TPM command tpm.PCRExtend(). This is used when a Caller wants to extend a digest value
in a selected PCR. More precisely, the Caller executes the command with input a PCR handle

5The qualified name of a key is the digest of all of the names of all of the ancestor keys back to the Primary Seed
at the root of the hierarchy [44].
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tpm.Load(parH, inPrivate, inPublic)

1: result←− ValidationCheck(parH) //validation check for parent key

2: parentAuthCheck←− Authorization() //authorization check for accessing parH

3: if (parentAuthCheck == TRUE) and (result == SUCCESS) then

4: decrypt inPrivate //session-based encryption and parent key

5: get authValue

6: authCheck←− Authorization() //authorization for loading key (HMAC/policy

session)

7: if authCheck == TRUE then

8: create kH //create key handle

9: name←− (nameAlg||H(inPublic))
10: output(kH, name)

11: else output(FAIL)

12: else output(FAIL)

Figure 2.4: tpm.Load() command for loading a key into the TPM

pcrH and a digest value digestV, which is the digest to be extended to the PCR that is specified
by the numeric selector pcrNum lying in pcrH. The TPM will update the current PCR value with
index pcrNum with a new one, using the following relation:

PCRDigestnew[pcrNum]←− H(PCRDigestold[pcrNum] ‖ digestV)

where H() denotes a hash function. Each PCR is also linked to a specific PCR counter, denoted
by pcrUpdateCounter, which captures the number of updates that were performed. This extra
functionality is applied as a defensive mechanism against Time-of-Check Time of Use (TOCTOU)
attacks [43]. Thus, whenever the PCRDigest value is updated, the pcrUpdateCounter will incre-
ment by one. The command performs a test on the input data to check if a PCR update can be
done. It returns SUCCESS, if it has successfully updated the PCR value and FAIL in any other
case. An abstract version of the tpm.PCRExtend command that captures the above actions is
presented in Fig. 2.5, while the complete description is given in [45, p.199].

tpm.PCRExtend(pcrH, digestV)

1: get pcrNum from pcrH

2: validationCheck←− ValidateInput() //check if operation is allowed for the

specific PCR

3: if validationCheck == SUCCESS then

4: PCRDigestnew[pcrNum]←− H(PCRDigestold[pcrNum] ‖ digestV)
5: pcrUpdateCounter←− pcrUpdateCounter+ 1

6: output(SUCCESS)

7: else output(FAIL)

Figure 2.5: tpm.PCRExtend() command

PCR values are the result of measuring platform or software state [2]. It is clear from the above de-
scription that the tpm.PCRExtend command creates a chain of hash values, in other words a chain
of measurements, where each measurement corresponds to the current state of the software.
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This PCR functionality is also used in authorization mechanisms, particularly in policy-based au-
thorization for allowing the use of objects. This is achieved by the command tpm.PolicyPCR,
which was described in the previous section. The intention of the TPM in the case of authoriza-
tion based on PCRs is to ensure that a Caller can use an object that is bound to a PCR, if and
only if he possesses the latest digest value in a specific PCR, which can only be read under
proper authorization. This suggests the following security property:

Security Property (PCR). An adversary cannot use an object that is bound to a specific PCR,
unless he can reconstruct the PCR hash chain.

A model for the command tpm.PCRExtend in stateful applied pi calculus is presented in [43].
In order to capture this security property in our model, we present the ideal functionality for the
command tpm.PCRExtend, which is denoted by FtpmPCRExtend and is described in Fig. 2.6. In this
ideal functionality, instead of calculating each time a hash of the previous PCR value and the
digest to be extended, equivalently we keep a record of all PCR extensions by appending each
new digest, provided by the Caller, to a list called PCRList. This procedure is executed by the
command append in line 3, of Fig. 2.6. The syntax

append <‘PCRList’, pcrH>, digestV;

means that the TPM will look for the the list of PCR extensions that is referenced in the PCR
handle pcrH and will append the value digestV to this list and thus the length of this list will be
automatically incremented. This is the main point of difference from the modelling approach that
is followed in [43], in which a PCR value is updated by a hash of the previous PCR value and a
new digest that is provided by the Caller.

FtpmPCRExtend :=
1: in(<‘PCRExtend’, digestV>);

2: lock pcrH;

3: append <‘PCRList’, pcrH>, digestV; //append digest value to PCR list

4: unlock pcrH

Figure 2.6: Ideal functionality FtpmPCRExtend()

The benefit of this modelling approach is that it captures the security property mentioned above
and allows us to abstract away from cryptographic operations, in particular the involvement of a
hash function. Note that in the modelling of FtpmPCRExtend, no counter is needed, since the number
of PCR updates corresponds to the length of the list PCRList.

2.3.1 Ideal Functionalities for Create/Load Scenario

Ideal functionality for creating a session: FtpmStartAuthSession

In Fig. 2.7 we present the ideal functionality for creating an authorization session of type TRIAL

or POLICY. The main purpose of this functionality is to create and initialize a list of arbitrary size,
for the policy digest value. The difference from the actual tpm.StartAuthSession, as well as the
modelling in [43], is that the policy evaluation will be represented as a list of digests instead of a
single digest value, which as we will see later on corresponds to the PCR measurement.

FutureTPM D3.3 PU Page 13 of 50



D3.3 - Second Report on Security Models for the TPM

FtpmStartAuthSession :=
1: in(<‘StartAuthSession’, sType>);

2: new sessionH; lock sessionH; //sType = TRIAL/POLICY
3: insert <‘POLDList’, sessionH>, empty[]; //policy digest list set to empty list

4: insert <‘SESSIONType’, sessionH>, sType;

5: out(sessionH);

6: unlock sessionH

Figure 2.7: Ideal functionality FtpmStartAuthSession()

Ideal functionality for policy assertion: FtpmPolicyPCR

The ideal functionality FtpmPolicyPCR will calculate the policy based on PCR values. The Caller
provides a session handle sessionH and a list of digests digestL[] as input, which is the ex-
pected PCR list. If the session handle references a policy session, the TPM will compare this list
to the actual PCR list and if there is a match, it will append the digestL[] to the policy digest list
polL[]. If the session is a trial session, the TPM will append the digestL[] to the policy digest
list polL[] directly, without performing any check. This process is described in Fig. 2.8, along
with the ideal functionality FtpmPolicyGetDigest, which outputs the policy digest list polL[].

FtpmPolicyPCR :=
1: in(<‘PolicyPCR’, sessionH, digestL[]>);

2: lock sessionH; lock pcrH;

3: lookup <‘SESSIONType’, sessionH> as sType in;

4: lookup <‘POLDList’, sessionH> as polL[] in; //get the policy digest list

5: if sType == TRIAL then

6: append <‘POLDList’, sessionH>, digestL[];

7: unlock sessionH; unlock pcrH

8: if sType == POLICY then

9: lookup <‘PCRList’, pcrH> as pcrL[] in; //get the PCR list

10: if digestL[] == pcrL[] then

11: append <‘POLDList’, sessionH>, digestL[]; //policy digest list as PCR list

12: unlock sessionH; unlock pcrH

13: else unlock sessionH; unlock pcrH

FtpmPolicyGetDigest :=
1: in(<‘PolicyGetDigest’, sessionH>);

2: lock sessionH;

3: lookup <‘POLDList’, pcrH> as polL[] in;

4: out(polL[]);

5: unlock sessionH

Figure 2.8: Ideal functionality FtpmPolicyPCR()

Note that in the ideal functionality FtpmPolicyPCR there is no need to add a counter that measures
the PCR updates, since this is captured by the length of the PCR list. Any comparison between
lists of different length will fail to update the policy.
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Ideal functionality for creating a key: FtpmCreate

The ideal functionality for creating a key is summarized in Fig. 2.9. This model considers only the
assignment of the authorization policy to the newly created key and assumes that a new key k is
securely generated. Hence we are focusing on the link of the key with a policy session. In addition
and in contrast to the actual TPM command tpm.Create, we assume that the ideal functionality
FtpmCreate creates and returns the handle kH of the new object, following the modelling of Shao et
al. [43]. In reality, the handle of the key is created and returned by the tpm.Load command, as
described in the previous section.

FtpmCreate :=
1: in(<‘Create’, polL[]>);

2: new k; new kH;

3: lock kH;

4: insert <‘AUTHPOLICY’, kH>, polL[]; //initialize authorization policy of the key

5: out(kH);

6: unlock kH

Figure 2.9: Ideal functionality FtpmCreate()

Ideal functionality for loading a key: FtpmLoad

Based on the model for creating the key, the ideal functionality FtpmLoad takes as input the handle
kH of the key to be loaded and the handle sessionH of the policy session. The TPM will retrieve
the authorization policy of the key, which is the list authPolicy[] and it will compare it with the
policy digest list polL[] that is stored in the corresponding session. If the two lists match, the
TPM will load the key (event Load(k)). This process is described in Fig. 2.10.

FtpmLoad :=
1: in(<‘Load’, kH, sessionH>);

2: lock kH; lock sessionH;

3: lookup <‘POLDList’, sessionH> as polL[] in

4: lookup <‘AUTHPOLICY’, kH> as authPolicy[] in

5: if authPolicy[] == polL[] then

6: event Load(k);

7: unlock kH; unlock sessionH

8: else unlock kH; unlock sessionH

Figure 2.10: Ideal functionality FtpmLoad()

2.3.2 Create/Load Process Command Flow

The command flow that represents the process of creating a new key and loading it in the TPM,
using the ideal functionalities, is summarized in Fig. 2.11. The Caller executes the command
FtpmStartAuthSession(TRIAL) in order to create a trial policy, with a policy digest list polL[] initial-
ized to an empty list by the TPM. The TPM returns the handle tsH of the trial session and the
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Caller runs the command FtpmPolicyPCR(tsH, digestL[]) in order to append the list digestL[]
to the policy digest list polL[]. He retrieves the updated polL[] via FtpmPolicyGetDigest(tsH) and
removes the trial session from the TPM memory by executing FtpmFlushContext(tsH).

Caller TPM
FtpmStartAuthSession(TRIAL)

polL[] ← empty[]

trial session handle: tsH

FtpmPolicyPCR(tsH, pcrH, digestL[])
polL[] ← polL[] + digestL[]

FtpmPolicyGetDigest(tsH)

polL[]

FtpmFlushContext(tsH)

FtpmCreate(polL[]) create key: k

authPolicy[] ← polL[]
key handle: kH

FtpmStartAuthSession(POLICY)
polL[] ← empty[]

policy session handle: psH

FtpmPolicyPCR(psH, pcrH, digestL[])
polL[] ← polL[] + digestL[]

FtpmLoad(kH, psH)
Load key: k

Figure 2.11: Create/Load an object in TPM

The Caller runs the command FtpmCreate(polL[]) in order for the TPM to generate the a key
with authorization policy authPolicy[] set as polL[]. Then the TPM will return the key handle
kH to the Caller. The next step is to create the policy session. The Caller executes the ideal
functionality FtpmStartAuthSession(POLICY) and receives the policy session handle psH by the TPM.
Then the command FtpmPolicyPCR(psH, digestL[]) is executed, in order to evaluate the policy,
or in other words, in order to append digestL[] to the policy digest list polL[]. Now the Caller
can load the key into the TPM by running the command FtpmLoad(kH, psH). The key will be
successfully loaded to the TPM if the authorization policy list of the key matches the policy digest
list of the corresponding policy session.

2.4 Outcomes to Use Case and Extensions

The process of creating and loading a key into the TPM is present in all the use cases that the Fu-
tureTPM project focuses on, although the generated keys have different attributes and objectives.
The model we have described in the previous sections is a generic model for creating/loading a
key that is sealed into a specific PCR. Hence we may need to adjust our model, depending on
the properties and purposes of the keys that are generated in each use case. We briefly outline
the main points to consider when integrating our model in the context of the three use cases, as
those were described in D4.1 [29] and D6.1 [28]. We only highlight here that although the keys
that are generated in the use cases might have different usage, the authorization of their usage
is performed via the EA mechanism and more precisely using policy sessions based on PCRs.
This justifies our decision of starting our modelling with the create/load functionality.
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Reference Scenario 1 – Secure Mobile Wallet and Payments

This use case focuses in the provision of enhanced security properties of the TPM (sealing, un-
sealing and key generation). To protect sensitive data (bearer token, financial token, transaction
history), this scenario uses a randomly generated key, and then protects this key with a pass-
word. The password data blob is then sealed to specific PCR values that reflect the platform
state. Fast IDentity Online (FIDO) Universal 2nd Factor (U2F) authentication is used as an ex-
tra layer of security, in order to cover Android devices without a TPM, but the particularities of
this mechanism are outside the scope of the use case. More concretely, the authorization value
authValue of the key is set as the password (see Fig. 2.3), and the loading process of such
password requires policy-based authorization using the command tpm.PolicyPCR to evaluate
the policy, which coincides with our model. That is, the key can be loaded if the password is
known, or if the authorization policy authPolicy of the password matches specific PCR values
that contain the sealed blob. The platform state, and hence the extended PCR value used for the
authorization policy, is based on the Control Flow Graph (CFG) of the Android software state and
device integrity measurements (see D6.1 [28] for details). The create and loading actions in this
use case clearly match our initial set of TPM functionalities intended to be modeled.

Reference Scenario 2 – Activity Tracking

One of the core functionalities in this use case is the implementation of the DAA scheme which
ensures the establishment of a secure and anonymous private channel for the interaction between
the S5PersonalTracker, which represents the host device that includes a TPM and the S5Tracker
Analytics Engine, which acts as the Verifier. In D4.1 [29], the description of the TPM commands
for the activity tracking use case suggests that two TPM keys are created during the execution of
the DAA-Sign and DAA-Verify sub-protocols of the DAA scheme. Both keys are bound to specific
PCR values that correspond to measurements of the CFGs that were described in D3.2 [27]. The
loading of these keys requires the verification of the corresponding PCR state and hence implying
the use of PCR policy sessions for authorization.

Reference Scenario 3 – Device Management

This use case is concerned with the protection of the communication keys between the network
devices and the Network Management System (NMS), and with the routing of network traffic
according to the trust state of such devices. During the setup phase, each device creates an
Attestation Key (AK) which is certified by the NMS, returned back to the device and retrieved by
using the appropriate set of TPM commands [29]. This process is the line with the operations
performed by a Privacy Certification Authority (CA), where the trusted entity (the NMS in this
case) needs to be trusted and manages the Endorsement Key (EK)s of the devices, which for this
particular use case, also allows creating whitelists of trusted devices. Further, a Transport Layer
Security (TLS) key needs to be created in each device in order to establish a trusted channel
with the NMS. This key will be certified by the above mentioned AK. According to the description
presented in D4.1 [29], the creation of the TLS key requires that the authPolicy is asserted
with a PCR policy, based on PCR extensions that correspond to the current system state. In this
case, the system state refers to the whitelist of allowed software to run in the device. Hence, if
the state is different, the device will be unable to load the TLS key and perform the handshake
with the NMS, which will be interpreted by that entity as an untrusted state, and will take the
approppriate measures. We note that this scenario involves multiple loads of the TLS key (and to
a lesser extent, the AK) where a verification of the authorization policy against the system’s state
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is required. Clearly, this justifies our initial modelling approach of TPM functionalities. We refer
to D4.1 [29] and D6.1 [28] for a more detailed description and analysis on the interaction of the
TPM, the host device and the NMS.
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Chapter 3

Cryptography for the TPM

In this chapter we are going to introduce a new property-based definition for Direct Anonymous
Attestation (DAA) which is the main functionality of TPM. As one may know, UC based model is
able to capture all security notions of DAA. However, it still has outstanding gaps on how to merge
it into property based security setting. Motivating by some existing problems in the current DAA
security definitions, we close the gap between property-based and UC-based security models of
DAA via the new defined model implying the UC definition of Camenisch et al. [19]. We further
provide security analysis to state that the new model provides the same security guarantees as
the UC version in [19]. Technical overview and details will be given below.

3.1 A New Property-Based Definition Of DAA

3.1.1 Introduction

The ever growing ecosystem of devices connected to the internet poses an insurmountable task
for security professionals aiming to secure such devices. Acknowledging both the finite number of
trained professionals and shortcomings of software solutions, the industry standardisation body,
The Trusted Computing Group (TCG), looks to trusted hardware as an axiom of security with its
TPM chip. In 2004 the TCG standardised the first DAA protocol in the TPM 1.2 specification [46].
Now present in more than 500 million devices, and with support for multiple DAA schemes in the
TPM 2.0 standardisation [47], DAA is one of the most widely deployed protocols of such complex-
ity. It has been adopted as a basis for EPID [16], Intel’s recommendation as an industry standard
for attestation of trusted systems in the Internet of Things. The standardisation of DAA has also
been made by ISO as ISO/IEC 11889 international standards [32, 34]. Furthermore, it is under
consideration by FIDO for their specification of anonymous attestation [18]. In addition to these
standards, DAA has applications for anonymous subscription [38, 37] and vehicle communication
(V2X) [40, 48].
DAA allows a TPM chip, embedded in a host computer, to make attestations about the state of the
host system. The TPM is used as a root of trust to create signatures on the integrity of the host
machine’s hardware and software configuration. Such attestations convince a remote verifier that
the platform (host computer and TPM) with whom it communicates is in a healthy state. Crucially,
attestations must be anonymous so that a verifier is able to check that a signature originates from
a legitimate platform without learning its identity. An additional feature of DAA is that platforms
are able to make signatures linkable so that a verifier knows when two signatures have come
from the same anonymous platform. This ‘linkability’ is steered by the use of a basename where
signatures signed using the same basename are linkable whereas those created with a fresh
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basename are not.
As well as a number of platforms and verifiers, DAA includes an issuer who decides whether a
platform can join (obtain signing credentials) or not. In practise this might be a service provider
like Google or a government authority for example. Once joined, the platform can sign messages
using a credential given by the issuer. These signatures might, for example, allow access to one
of the issuer’s services. For those familiar with the group signature setting, this process of joining,
issuance, and signing (attesting) holds many similarities. However, in DAA the TPM and Host are
required to jointly create signatures so that neither of them can make valid signatures without the
involvement of the other. With the added complexity that the TPM and Host can be in different
corruption states this makes defining DAA security a real challenge.

Problems with existing security definitions

Alarmingly, in spite of wide deployment and a large body of work, from 2004-2016 there existed
no sound and comprehensive security model of DAA. Indeed, to date, there exists no such
property-based1 definition and all previous attempts are demonstrably flawed. The shortcomings
of DAA security definitions not only represent a theoretical problem but undermine schemes al-
ready deployed in practice. In particular, a DAA scheme that allows one to forge attestations (as
it does not exclude the ‘trivial’ TPM credential (1, 1, 1, 1)) has even been standardised in ISO/IEC
20008-2 [33, 25]. There are several non-trivial challenges in designing security definitions for
DAA, however there are two significant obstacles that have, time and again, lead to flaws in se-
curity.
One of the most tricky aspects is the notion of TPM ‘identity’. Unlike related protocols such as
group signatures, where parties posses a certified public/secret key pair, the identity of a TPM is
not clearly defined since there is no public key related to the secret key used in signature gener-
ation. This has long been the Achilles heel of DAA security models since it is crucial to be able
to determine whether a given signature stems from some legitimate TPM. This is particularly
important when one wants to prevent the existence of valid signatures that do not come from any
legitimate TPM. It is then necessary to be able determine if a given signature stems from any
honest or corrupt TPM. The works [15, 24] skirt around this issue of corrupt TPM identification
by assuming that corrupt TPMs already have their secret keys exposed in a public list RogueList.
The assumption that a corrupt TPM’s signing key is automatically publicly visible in some list is
a very strong one. Moreover, a real life adversary has no obligation to publish a TPM’s signing
key if it were able to obtain one; it may choose simply to create forgeries with it. Furthermore,
the works of [15, 24] do not allow for a notion of correctness in their RogueList process. The
most recent work on property-based DAA by Bernard et al. [8] make a hidden assumption that all
TPM secret keys can be extracted from their signatures. Then a TPM’s secret key can be used
to determine whether a given signature came from that TPM. Unfortunately this extraction would
take exponential time for their accompanying scheme and is not formally defined in their work.
Another aspect of DAA, which adds to the complexity of security models, is that a platform is
made up of two entities, a TPM and host, who can be in different corruption states. This calls for
extra consideration when defining the unforgeability of DAA since here we require that a corrupt
host cannot produce a valid signature without the involvement of an honest TPM. For example,
in standard signature schemes, unforgeability is only concerned with preventing forgeries under
entirely honest users. In DAA however, an honest TPM who’s host is corrupt produces signatures
that we also want to be unforgeable. Therefore, our unforgeability definition must also cover these
‘mixed’ corrupt settings. This has been one of the major sources of complexity for DAA security

1Note that ‘property-based’ is often used interchangeably with ‘game-based’ in the DAA literature.

FutureTPM D3.3 PU Page 20 of 50



D3.3 - Second Report on Security Models for the TPM

over the years. One work [8] tries to combat this complexity by considering the TPM and Host as
one party so that both platform components are in the same corruption state at all times. They
then argue how to bootstrap this notion of ‘Pre-DAA’ security to (full) DAA security in which the
TPM and Host can be in different corruption states as in the real world. Unfortunately, due to the
absence of a full security proof, this lifting argument is only made informally. As shown in [19], the
argument for unforgeability cannot be lifted (under the same assumptions) to the full DAA setting.
These two subtleties of DAA have been the pitfalls leading to many flawed security models over
the years and overcoming these constitutes one of the contributions of this work.
In addition to these two intrinsic difficulties with defining DAA security, the most recent work of
Bernard et al. [8] further suffers a trivial security flaw by assuming that the issuer registers its
public key with an extractable proof of correctness or that there is a trusted setup; something not
true for their scheme. This permits a corrupt issuer to choose its key in a malformed way, allowing
it to win the non-frameability game. Also we observe that their model only permits the adversary a
single call to the challenge oracle in their anonymity game allowing for a trivially non-anonymous
scheme to be proven secure (see full paper for details []). For a comprehensive overview of the
flaws in all existing property-based DAA definitions we refer the reader to Section 2.1 of [19].
Owing to apparent difficulties with defining property-based DAA, Camenisch et al. [19] turn to
the UC model, formulating a DAA functionality to capture security. The UC model [22] provides
a watertight framework for defining security. One creates an ‘ideal functionality’, performing the
protocol in a perfectly secure way, and then proves a given instantiation indistinguishable from
this functionality. The work of [19] stands as the only solid security definition to date and forms
the basis of a subsequent line of work [20, 17]. The later papers consider an add-on feature in
which some security properties are required to hold even if the TPM is subverted. For the sake of
clear presentation our work is in line with the TCG’s foundational assumption that TPMs cannot
be subverted. We thus refer to the original UC model in [19]. In retrospect, the success of the
UC definition over previous property-based ones is unsurprising given the framework’s ability to
model complex protocols like DAA whose intended use involves composition with other crypto-
graphic protocols. In this way, one could argue that UC is the correct starting point for defining
DAA security. Unfortunately, this definition is very hard to work with, even for those familiar with
UC, where DAA proofs require as many as 17 game-hops. Consequently, researchers have con-
tinued to work with somewhat adapted property-based definitions that are still flawed.
Note that we have a UC based security notion which formally captures all the security notions of
DAA, the next big step is to bring back these UC based security notions to the familiar property-
based security setting. This would greatly simplify the proofs of DAA security and should form
the basis for future work regarding DAA. However, to be absolutely sure that the property-based
security definition is solid, unlike prior works, it is desirable to have a mechanism providing a
‘sanity-check’ that the property-based definition implies the UC-based definition.

Our Contribution

In this work we affirmatively close the gap between property-based and UC-based security mod-
els of DAA by providing a property-based security model that, after a syntactic re-structuring,
implies the UC definition of Camenisch et al. [19]. This provides a meaningful ‘sanity-check’ that
our security model is both sound and comprehensive.
Our first contribution is to define a property-based model of DAA. Our model is based on a com-
pletely different design philosophy to other property-based works. Indeed, rather than patching
the known flaws in preceding works, we extract the essential security properties of the UC defini-
tion, and reformulate them using property-based experiments. In particular, these properties are
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correctness, anonymity, unforgeability, and non-frameability. Since the UC functionality achieves
security through a series of checks and conditions that may be interleaved across multiple in-
terfaces this turns out to be a non-trivial task (For example see [19] for the UC-based security
model). Some of these checks may even contribute towards several distinct security properties,
and therefore, it is even unclear how many properties the UC-based security model implicitly em-
beds. We thus consider the reformulation of these properties as separate experiments to be a
valuable contribution on its own.
Our second contribution is to show there can be no doubt that our model provides the same se-
curity guarantees as the UC definition of [19]. This is done as follows. We begin by considering
a scheme, secure in our property-based model. We then create, via a syntactical re-structuring,
a ‘wrapper protocol’ which allows for a direct proof of indistinguishability between this wrapper
protocol and the ideal functionality in the UC framework. Importantly, this wrapping process is
merely cosmetic and does not affect the security of the protocol. Indeed, Theorem 1 provides
a ‘sanity check’ that our model is sound by providing the necessary conditions for the property-
based DAA algorithms to imply UC security (when wrapped). This puts a positive end to a long
journey of flawed property-based models proposed since 2004.
Herein, we give a more detailed overview of the techniques that we employed in this work.

Technical Overview

Comprehensive Security Definitions. When designing each experiment we aim to extract the
same guarantees that the UC-DAA functionality provides for a particular security notion. This is
a non-trivial task since in the ideal functionality Fdaa, it is often the case that numerous checks
across several of its interfaces interleave to achieve a given security notion. Thus, we must
unravel Fdaa and split its security guarantees into individual properties. We do this for each of
the five properties mentioned above. In Section 3.1.1 we highlight two main pitfalls with defin-
ing property-based DAA security. We now briefly describe the techniques used in this work to
overcome each of these obstacles. Interestingly both of these challenges are most acute in the
unforgeability game. Here, no adversary should be able to create more unlinkable signatures
than he has corrupt TPMs, nor can he produce a signature which identifies to an honest TPM
who was not involved in its creation. Crucially, this property should hold even when the platform’s
host machine is corrupt but the TPM remains honest. Whilst the solutions we present do lead
to a sound notion of unforgeability, these techniques have wider reaching benefits for the whole
model. However, the unforgeability property best motivates their necessity and exhibits their ele-
gance, so we focus on the unforgeability game below. There are several approaches explored in
the literature to tackle this heavy security notion. We take the most recent property-based model
of Bernard et al. [8] as a motivating example which becomes unstuck in the following ways.

- Due to the complexity introduced by the TPM and host being in different corruption states,
it is attractive to first consider an unforgeability game in which both parties are in the same
corruption state. One must then provide a ‘lifting’ argument to bootstrap this weaker notion
to a stronger one where the TPM and host can be in different corruption states. However,
due to the sensitive nature of the unforgeability notion, such lifting does not exist in general,
under the same hardness assumptions. Indeed, this is where the work of [8] brakes down.
Details of the attack on this scheme can be found in Section 2.2 of [19].

- A fundamental feature of the unforgeability game is to ensure that a valid signature can only
be generated by a legitimate TPM. In particular this requires that given a signature one must
be able to determine whether it has come from any honest or corrupt TPM who has ‘joined’.
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This latter case is where the difficulty lies since it is not clear how the challenger can check
this against corrupt TPMs for which he doesn’t know the secret key. This is exactly due
to the absence of a notion of TPM identity since there is no public key associated with a
TPM’s secret key. [8] makes some progress toward this problem by using extracted secret
keys from join transcripts to identify signatures coming from corrupt TPMs. Unfortunately,
the extractability of secret keys from each join transcript is something not assumed in the
accompanying scheme nor is formally defined in the security model.

To overcome this first problem of great complexity introduced by the presence of a TPM and host
that can be in different corrupt states, we accompany our security experiments with a detailed set
of oracles (see Figure A.1) used to simulate honest parties for the adversary. Where interactive
protocols are considered, our oracle definitions allow the adversary to make queries on individual
protocol messages rather than having to complete the full protocol before moving on. For exam-
ple, the adversary is not obliged to complete a signing protocol with one TPM before beginning
another with a different TPM. This is done by adapting the notation used in group signatures [4],
[13] to the DAA setting. The granularity of these oracle definitions is essential for capturing all
meaningful adversarial behaviour, something only attempted in [8], though there it was for the
vastly simplified setting where the TPM and host are assumed to be in the same corruption state.
Although this slightly adds to the complexity of oracle definitions, we are rewarded with a much
more succinct set of security experiments which we can be sure capture the multitude of cor-
ruption settings in DAA. Indeed, our model comprises fewer security experiments than the most
recent attempt of Barnard et al. in which a vastly simplified ‘pre-DAA’ is considered.
To tackle the second issue of TPM identification we import the auxiliary algorithms Ext and Identify
from [19] where they are used informally. We formalise them for the first time, giving definitions
which display their necessary interdependence. Ext is used to extract TPM secret keys from a
TPM’s communication with an (honest) issuer. We then use an IdentifyT algorithm which deter-
mines whether a given TPM key was used in a given join transcript. This algorithm borrows from
the ideas of [8] and is used in this work as an intermediate step in determining whether a given
signature was signed using a TPM that has joined. This algorithm tells us whether a TPM with
that key has joined. Identify can then be used to determine whether a signature was generated
using this secret key. Thus, we formalise the method of determining whether a valid signatures
was signed by a TPM that has joined. Our definition of these algorithms formalises, for the first
time, the process of extraction, avoiding the pitfalls of [8] and making way for a more succinct,
intuitive security notion. In particular this resolves the long-standing issue of defining a TPM iden-
tity since, unlike in group signatures, there is no notion of user identity in DAA.
Besides overhauling the unforgeability definition, we make small, but essential alterations to the
anonymity and non-frameability games. Here, we allow the adversary to choose the issuer’s se-
cret key. Since schemes like EPID do not assume a trusted setup nor require the issuer to register
its public key with an extractable proof of correctness, we have to model this correctly. We also
allow the adversary multiple calls to the challenge oracle in the anonymity experiment. Failure to
do so in [8] lead to a definition allowing for trivially non-anonymous schemes to be proven secure.
This is demonstrated in the Appendix of the full paper [].

Implying the UC definition. The remaining task it to check that our new definition indeed cap-
tures all desirable aspects of DAA security. We give a natural confirmation of this by proving that
our model implies the UC-DAA definition of [19]. Theorem 1 is a statement of this result.
To build confidence in any property-based definition of DAA, one should be able to claim that it at
least provides, in essence, the same security guarantees as the UC-DAA definition of [19]. The
use of ‘essence’ here is a strategic one since clearly no property-based definition can provide
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the composability guarantees as one in the UC model. Nevertheless, existing works [21] have
successfully shown how a new property-based definition can be re-formulated or ‘wrapped’ to im-
ply an existing UC definition. Crucially, this process should not affect the security guarantees of
the new definition but should merely serve to make a direct comparison between them possible.
Indeed, one can view this merely as a cosmetic repackaging of the property-based algorithms to
create a UC protocol that can be compared to an existing UC functionality.
Proving that a property-based definition implies one formulated in the UC framework presents a
number of challenges. First and foremost, the UC framework [22] assumes by default a com-
pletely asynchronous network in which only one party can be activated at any given time. As a
consequence of this and DAA’s interactive protocols, the authors of [19] were forced to split the
join and sign interfaces of their ideal functionality each into two phases: a request and proceed
phase. This has the knock on effect that schemes proven in the UC model must also contain
these split phases even though any implementation must eventually combine them to create a
single join protocol and a single signing protocol. Indeed, the ability to define intuitive, single join
and signing protocols in our new model is very attractive for scheme design and something we
consider a valuable and non-trivial contribution. We define a wrapper protocol ΠDAA in Section
3.1.3 that matches the compact, intuitive join and sign algorithms of our model to the split inter-
faces of the UC DAA functionality. Our main result, Theorem 1, shows that protocol ΠDAA realises
the UC functionality Fdaa [19]. This is done by a series of game hops where indistinguishably be-
tween games is shown by reducing to the assumed security properties of our new model. Thus,
this result confirms that our property based model captures the full essence of DAA security and
does not suffer from the flaws of previous property-based models.

3.1.2 Syntax and Security Model

We first develop the syntax in this section and then present the property-based security definition
of a DAA scheme in Section 3.1.2. Due to the complex nature of the security notion for DAA, in
this section, we also prepare some oracles and auxiliary algorithms needed to formally define the
security requirements.
Before describing the security model and its technicalities we informally discuss how DAA works
and the desired security properties. In a DAA scheme, we have four main entities: a number of
TPMs, a number of hosts, an issuer, and a number of verifiers. A TPM and a host together form
a platform which performs the join protocol with the issuer who decides if the platform is allowed
to become a member. Once a member, the TPM and host (i.e., platform) can together sign
messages with respect to a basename bsn. If a platform signs with bsn =⊥ or a fresh basename,
the signature must be anonymous and unlinkable to previous signatures. That is, any verifier
can check that the signature stems from a legitimate platform via a deterministic verify algorithm,
but the signature does not leak any information about the identity of the signer. Only when the
platform signs repeatedly with the same basename bsn 6=⊥, it will be clear that the resulting
signatures were created by the same platform, which can be publicly tested via a (deterministic)
link algorithm.
The desirable security properties of a DAA scheme can be described informally as follows:
Correctness: When an honest platform generates a signature on message m and basename
bsn, an honest verifier will accept this signature. Furthermore, two signatures σ1 and σ2 generated
by the same honest platform using the same basename bsn 6=⊥ should link according to the link
algorithm. To an honest verifier, it should not matter in which order two signatures are supplied
when testing their linkability.
Anonymity: An adversary that is given two signatures, w.r.t. two different basenames or bsn =⊥,
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cannot distinguish whether both signatures were created by one honest platform, or whether two
different honest platforms created the signatures. We require this property to hold even when the
issuer is corrupt.
Unforgeability: No adversary can produce more unlinkable signatures than he has corrupt TPMs
and cannot produce a signature that identifies to an honest TPM who never took part in its signing.
In particular, this captures the scenario where a platform with an honest TPM and corrupt host
cannot produce a signature attesting to the fact that the platform is in the ‘right’ configuration.
This property only holds when the issuer is honest.
Non-frameability: No adversary can create signatures on a message m w.r.t. basename bsn
that links to a signature created by an honest platform, when this honest platform never signed m
w.r.t. bsn. We require this property to hold even when the issuer is corrupt.

Syntax

We begin by providing the syntax of DAA. The following syntax represents the algorithms run
by the parties involved in a DAA scheme: an issuer I which controls who can obtain signing
credentials; a set of platforms each comprised of a
TPM and Host, and a set of verifiers who may request attestations from a platform. Formally, a
DAA scheme DAA consists of the following (interactive) PPT algorithms:

Setup(1λ)→ param: The set-up algorithm takes as input the security parameter 1λ and outputs
a description of the system parameters param.

TPM.Kg(param) → (esk, epk): The TPM key generation algorithm takes as input the system
parameters param and outputs an endorsement secret/public key pair (esk, epk) for a TPM.

I.Kg(param) → (isk, ipk,ML): The issuer key generation algorithm takes as input the system
parameters param and outputs an issuer secret/public key pair (isk, ipk) for the issuer I and
initialises an empty members list ML.

IpkVf(ipk, param)→ 1/0: The issuer public key verification algorithm takes as input the issuer’s
public key and the system parameters and outputs 1 or 0 to indicate accept or reject.

〈JoinTPM(esk), JoinH(epk, ipk), Issue(isk, epk,ML)〉: This is an interactive join protocol between
a TPM, host, and issuer. At the end of the interactive protocol, the algorithms output a
TPM signing key sk, a credential cre, and an updated members list ML ← ML ∪ {epk},
respectively.

〈SignTPM(sk,m, bsn), SignH(cre,m, bsn)〉 This is an interactive sign protocol between a TPM
with signing key sk, message m, and a basename bsn and host with credential cre, message
m, and basename bsn as inputs. At the end of the interactive protocol, the algorithms output
⊥ and σ, respectively.

Verify(ipk, σ,m, bsn,RL) → 1/0: The deterministic verification algorithm takes as input the is-
suer’s public key ipk, a signature σ, a message m, a basename bsn, and a revocation list
RL, and returns 1 or 0 to indicate accept or reject.

Link(ipk, σ, σ′,m,m′, bsn) → 1/0: The deterministic linking algorithm takes as input the issuer’s
public key ipk, two signatures σ, σ′ w.r.t two messages m, m′, and a common basename
bsn. The algorithm returns 1 or 0 to indicate accept or reject.
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The correctness and security requirements for DAA will be formalized via an experiment between
an adversary and a challenger in the following Section 3.1.2. Below, we provide some details on
the above syntax so as to help understand DAA and the following sections better. We present
them in a sequence or remarks.

Remark 1 (Significance of endorsement keys). The endorsement keys (esk, epk) of the TPM are
mainly used to create an authenticated channel between a TPM and the issuer during the join
protocol. This is necessary since the TPM can only communicate with the issuer via the (possibly
malicious) host. However, as in other advanced signature schemes such as group signatures
[5, 6], this will be implicit in the scheme for simplicity.

Remark 2 (Significance of members list ML). The issuer manages the members list ML created
by the issuer key generation algorithm I.Kg. The list ML keeps track of which TPMs have joined
through the interactive join protocol. We will always assume membership management is done
by including the endorsement public keys of the TPMs to ML and make it explicit in the syntax.
This is how membership is managed in practice and makes use of the authentication that the
endorsement keys allow.

Remark 3 (Key-based revocation). Our syntax captures the notion of key-based revocation. As
one of the popular methods in the literature, e.g., [10, 19] and preference of the TCG, we model
key-based revocation where we include the signing secret keys sk of corrupted TPMs in RL to
revoke signatures. More discussions will be provided in the following section.

Security Model

Before we formally state our security definition, we define several oracles and auxiliary algorithms,
Identify and Ext, which allow for a more succinct and intuitive description of our security definition.

Oracles. Since DAA must capture various security notions such as anonymity, unforgeability,
and non-frameability, it would be helpful to abstract what the adversary can do in each of these
property-based security definitions in the form of oracle access. In this section, we define several
oracles that help us simplify the property-based definition provided in Section 3.1.2.
Concurrent Oracle Access. It is crucial that oracles simulating a DAA protocol to an adversary
allow him the same concurrent access as he would have in real life. For example, an adversary
in control of two host machines might begin a join session using one of its honest TPMs whilst
using the other to commence a signing session. This example demonstrates that oracles simu-
lating part of an interactive protocol (joining or signing) can be interleaved with other oracles by
the adversary. In other words, he should be allowed to make a query that corresponds to the first
move of an interactive protocol and receive the corresponding reply. Then, he should be able to
query an entirely different oracle with no obligation to complete the protocol he started with the
first. Only oracles defined in this way capture, with sufficient granularity, the true nature of a real
life adversary’s power in the DAA setting. Of equal importance is that concurrent adversarial ac-
cess is the default setting in the UC framework used to define DAA security in [19]. Thus, in order
that our property-based definition implies the same level of security, we must define oracles that
give the adversary equivalent power. We follow the standard notation for defining such oracles as
used in group signatures [4], [13]. The algorithms comprising a protocol are modelled as interac-
tive Turing machines (ITIs) which take as input a protocol message Min and an internal state st
and output a message Mout, a new internal state st′, and a decision dec ∈ {cont, accept, reject}.
We cut the protocol into pieces where each ‘piece’ is defined by the receiving of a message and
then the sending of a response message. We say that an ITI (algorithm) run as part of a protocol
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List label List description Entry Format
HT Identities of honest TPMs with corrupt host. i
HP Identities of honest TPMs with honest host i.e., honest platform. i
CP Identities of corrupt TPMs with corrupt host i.e., corrupt platform. i
ESK Secret TPM endorsement keys. eski
EPK Public TPM endorsement keys. epki
HSK Honest TPM (secret) signing keys. ski
CSK Corrupt TPM signing keys (extracted) ski
CRE Signing credentials. crei
SL Signatures obtained from the signing oracle SignO. (i,m, bsn)
CL Queries made to the challenge oracle ChalO. (i0, i1, bsn).
TS Communication transcript of calls to IssueO. Scheme dependent

Table 3.1: Global lists maintained by oracles.

returns cont if the protocol is still going on, reject if some check failed or an invalid input was
received, and accept if everything runs as expected and there is no next step for that ITI in the
protocol.
Oracle Descriptions. As mentioned above, the oracles are an abstraction of the adversary’s ability
in the property-based security definition. For example, we may want an adversary to be able to
obtain signatures from honest platforms. In the descriptions below, we omit the input protocol
messages Min for readability and adopt the same convention when referring to the oracles in the
security games and proofs but note that they are included in the formal definitions of Figure A.1.
The following global lists, initially set to empty, are maintained by the oracles: HT is a list of honest
TPMs (whose host is corrupt); HP is a list of TPMs which are part of an entirely honest platform
P , i.e., the host is also honest; CP is a list of corrupt TPMs which are part of an entirely corrupt
platform; ESK and EPK are lists of secret and public TPM endorsement keys respectively; HSK
is a list of honest TPM signing keys; CRE is a list of signing credentials; SL is a list of signatures
obtained from the SignO oracle; CL records the identity pair and list of basenames sent in queries
to ChalO; TS is a list of communication transcripts of calls to the IssueO oracle; CSK is a list of
corrupt TPM’s secret keys extracted . We summarise these for reference in Table 3.1.
The following is an informal explanation of the seven oracles which will be used in our property-
based definition. Note that some of the following oracles take an extra party parameter as input.
The party parameter may take one of the values in {M,P} (TPM or entire platform) and is used
to indicate the honest party which the oracle is to play the part of (where it is unclear).

AddHonO(·; party): The add honest party oracle on input a TPM identity i, creates an honest
TPM Mi (if party = M) or a platform containing TPM Mi (if party = P). It generates a
pair of TPM endorsement keys (esk, epk) for the TPM. Finally, it returns the TPM’s public
endorsement key epk.

AddCrptO(·, epk; party): The add corrupt party oracle on input a TPM identity i and an arbitrary
string epk, creates a corrupt TPM Mi (if party = M) or platform containing TPM Mi (if
party = P) and sets the TPM’s public endorsement key as epk. It returns 1 to indicate
completion of this task.

InitO–P(·)2: The initialise platform oracle on input a TPM identity i, creates a signing key sk and
credential cre for the platform with TPM i. This is done by retrieving the TPM endorsement

2 We note that this is a special oracle only used to define correctness of the DAA scheme.
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keys (esk, epk) and running the entire interactive join protocol on behalf of the TPM, host
and issuer. The oracle returns 1 to indicate completion of this task.

JoinO(·; party): The join party oracle on input a TPM identity i, allows an adversary to perform
the join protocol with an honest TPMMi (if party =M) or a platform containing TPMMi (if
party = P). If party =M, then the oracle plays the role of the honest TPMMi and executes
the interactive join protocol with the adversary by running the JoinTPM algorithm. If party =
P , then the oracle plays the role of the honest platform and executes the interactive join
protocol with the adversary by running the JoinTPM and JoinH algorithms. The oracle
returns 1 to indicate completion of this task.

IssueO(·): The issue oracle on input a TPM identity i, allows an adversary to perform the join
protocol with an issuer to obtain signing credentials. The oracle runs the Issue algorithm to
create a credential cre for the platform with TPM i. If TPM i is corrupt, then the oracle stores
the transcript TS[i] of the communication with the adversary. Finally, the oracle returns cre.

SignO(·, ·, ·, ·; party): The signing oracle on input a TPM identity i, a message m, a basename
bsn, generates a signature made by an honest TPM Mi (if party = M) or a platform
containing TPM Mi (if party = P). If party = M, the oracle adds an entry (i,m, bsn, ∗)
to the signing queries list SL and returns 1 to indicate completion of this task. Here, ‘∗’
captures the fact that the TPM (played by the oracle) does not see the final signature. If
party = P , the oracle adds an entry (i,m, bsn, σ) to SL and returns the signature σ.

ChalO(·, ·, ·, ·; b): The challenge oracle on input two TPM identities i0 and i1, a message m and
basename bsn, generates a signature on message m and basename bsn under identity ib.
The oracle returns the signature σ.

IdentifyO(·, ·, ·, ·): The identify oracle, on input a TPM identity i, a signature σ, message m, and
basename bsn, runs Identify(σ,m, bsn,HSK[i])3. The oracle returns the resulting output bit.

Non-Concurrent Oracle Access. Building on the intuitive explanation of the oracles, we present in
Figure 3.1 the formal oracle definitions with non-concurrent access. We opted to make our oracle
definitions short and accessible so that the proofs of the property-based definition would remain
simple (relatively to the proofs in the UC setting). In Figure 3.1, we assume that the adversary
cannot interleave the interactive protocols run between the JoinO, IssueO, and SignO oracles. We
also assume that algorithms JoinTPM, JoinH, Issue, and SignTPM output some special symbol
indicating failure of execution and say that the algorithm “terminates” when it outputs a valid
value. A more stringent formalization will be provided for the concurrent setting in Appendix A,
Figure A.1.
Concurrent Oracle Access. While the property-based definition defined through the oracles with
non-concurrent access is very handy and intuitive, unfortunately, it does not imply UC-security. To
this end, we generalize the oracles in Figure 3.1 to capture concurrent access by using the notion
of stateful oracles as done by Bellare et al. [6] and Bootle et al. [14] for groups signatures. The
formal description is provided in Appendix A, Figure A.1. As can be seen there, the adversary
can interleave oracle calls and interact with the oracles in a concurrent fashion; this is captured by
slightly modifying the interactive oracles JoinO, IssueO, and SignO to take an extra input called the
protocol message Min. More details will be provided in Appendix A. Although these may look quite

3This algorithm determines whether a given signature was signed using a given key. See Definition 1 for a formal
definition of this algorithm.
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AddHonO(i; party)
• If i ∈ HT ∪ HP ∪ CT ∪ CP, then Return ⊥.
• If party =M, then HT← HT ∪ {i}.
• If party = P , then HP← HP ∪ {i}.
• (esk, epk)← TPM.Kg(param).
• (ESK[i],EPK[i]) := (esk, epk).
• Return EPK[i].

AddCrptO(i, epk; party)
• If i ∈ HT ∪ HP ∪ CT ∪ CP, then Return ⊥.
• If party =M, then CT← CT ∪ {i}.
• If party = P , then CP← CP ∪ {i}.
• (ESK[i],EPK[i]) := (⊥, epk).
• Return accept.

JoinO(i; party)
– If party = P :
• If i /∈ HP or CRE[i] 6=⊥, then Return ⊥.
• Run 〈JoinTPM(ESK[i]), JoinH(EPK[i], ipk), ?〉,

where ? is an arbitrary algorithm run by
the adversary.

• If JoinTPM terminates, then HSK[i] := ski.
• If JoinH terminates, then CRE[i] := crei.
• Return 1.

– If party =M:
• If i /∈ HT, then Return ⊥.
• Run 〈JoinTPM(ESK[i]), ?, ?〉, where ? is an arbitrary

algorithm run by the adversary.
• If JoinTPM terminates, HSK[i] := ski.
• Return 1.

IssueO(i)
– If i ∈ HT:
• Run 〈JoinTPM(ESK[i]), ?, Issue(isk,EPK[i],ML)〉,

where ? is an arbitrary algorithm run by the
adversary.

• If Issue terminates, then CRE[i] := crei.
• Return CRE[i].

– If i ∈ CP:
• Run 〈?, ?, Issue(isk,EPK[i],ML)〉, where ? is

an arbitrary algorithm run by the adversary.
• If Issue terminates, then CRE[i] := crei, and

record the view of Issue in the transcript list TS[i].
• Return CRE[i].

InitO–P(i)
• If i /∈ HP, then Return ⊥.
• Run 〈JoinTPM(ESK[i]), JoinH(EPK[i], ipk),
Issue(isk,EPK[i],ML)〉 to obtain HSK[i], CRE[i],
and an updated members list ML respectively.

• Return 1.

SignO(i,m, bsn; party)
– If party = P :
• If i /∈ HP or CRE[i] =⊥ or HSK[i] =⊥,

then Return ⊥.
• Run 〈SignTPM(HSK[i],m, bsn),
SignH(CRE[i],m, bsn)〉 to obtain signature σ.

• SL← SL ∪ {(i,m, bsn, σ)}.
• Return σ.

– If party =M:
• If i /∈ HT or HSK[i] =⊥, then Return ⊥.
• Run 〈SignTPM(HSK[i],m, bsn), ?〉, where ? is

an arbitrary algorithm run by the adversary.
• If SignTPM terminates, then
SL← SL ∪ {(i,m, bsn,⊥)}.

• Return 1.

ChalO(i0, i1, bsn,m; b)
• If ib′ /∈ HP or CRE[ib′ ] =⊥ or HSK[ib′ ] =⊥ for
b′ ∈ {0, 1}, then Return ⊥.
• If |CL| ≥ 1 and (i0, i1, ∗) 6∈ CL, then Return ⊥.
• Run 〈SignTPM(HSK[ib],m, bsn),
SignH(CRE[ib],m, bsn)〉 to obtain challenge
signature σ.

• CL← CL ∪ {(i0, i1, bsn)}.
• Return σ.

IdentifyO(i, σ,m, bsn)
• If i /∈ HT ∪ HP, then Return ⊥.
• b← Identify(σ,m, bsn,HSK[i]).
• Return b.

Figure 3.1: Oracles with non-concurrent access.
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different from Figure 3.1, we emphasize that in essence they both capture the aforementioned
intuitive oracle description, and the only difference lies in how we model concurrent access.

Remark 4 (Considerations for oracle use). The oracle definitions given in Figure 3.1 are designed
to provide the reader with a clear intuition as to the function of each of them so that one might
use them in a security proof. Whilst simple, the use of these oracles should be made with care-
ful attention to the following details, which are covered comprehensively by the more granular
definitions of Appendix A. One should allow an adversary, calling one of the interactive oracles,
to discontinue that interaction before the interaction is complete or even begin communicating
with another oracle before replying to the first. To do so, Figure A.1 uses stateful oracles as
used by Bellare et al. in [6]. This notation covers the possibility that an adversary may mix and
match inputs and outputs from different oracles. Also note that the interactive algorithms (SignO,
JoinO, IssueO) additionally take as input a protocol message Min. We omit these in Figure 3.1 for
readability but they can be found in the full oracle definitions of Appendix A.

Auxiliary Algorithms. In the unforgeability requirement of DAA it will be necessary to know given
a signature σ, message m, basename bsn, whether this signature was produced by a TPM who
has joined. Precisely, was this signature signed with a key that was earlier used in a join session
(and thus on which signing credentials have been issued). We formalise this notion by defining
an extraction algorithm Ext which, given a join transcript and a set of trap-doored parameters, can
extract the TPM secret key used in that transcript. Then, given a TPM key and a join transcript,
we also define an IdentifyT algorithm which determines whether the key was used in a given
transcript or not. Finally, a third algorithm Identify is used to determine whether a given signature
was generated using a given TPM key. The interdependencies of these three algorithms defined
in Definition 1 provide us a framework for determining whether a signature was created using a
TPM who has joined or not.
In the following definition we denote the space of all TPM secret keys K.

Definition 1. For any DAA scheme DAA, we require the existence of auxiliary algorithms SimSetup,
and deterministic algorithms Ext, Identify, and IdentifyT with the following properties where the
oracles provided to the adversary A are defined in Figure A.1:

1. For all PPT adversaries A, if we run (param, td)← SimSetup(1λ) and param′ ← Setup(1λ),
then we have ∣∣Pr[A(1λ, param)→ 1]− Pr[A(1λ, param′)→ 1]

∣∣ = negl(λ),

where the probability is taken over the randomness used by SimSetup and Setup.

2. For all ipk such that IpkVf(ipk, param) = 1, where param← Setup(1λ) or param← SimSetup(1λ),
then given a signature σ on some message m and basename bsn such that Verify(ipk, σ,m, bsn) =
1, there exists a unique sk ∈ K such that Identify(σ,m, bsn, sk) = 1.

3. For all (param, td) ∈ SimSetup(1λ), (ipk, isk,ML) ∈ I.Kg(param), and PPT adversary A
with oracle access to (AddHonO(·;M), AddCrptO(·, ·;P), JoinO(·;M), SignO(·, ·, ·;M),
IssueO(·)), then for any i such that CRE[i] 6= ⊥ we have:

• IdentifyT(TS[i], sk) = 1, where sk← Ext(param, td, ipk, isk,TS[i]), and
• there is a unique sk ∈ K such that IdentifyT(TS[i], sk) = 1.

Unforgeability using Identify: In the unforgeability game, we allow the adversary to make join re-
quests to the honest issuer on behalf of a corrupt host or entirely corrupt platform. The adversary
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will eventually output a signature which it claims wasn’t signed using any TPM that has joined or
that originates from an honest TPM who never signed it. In order to check this claim, we extract
(using Ext) the TPM secret key from the join transcript of each corrupt platform that joins. By
definition of IdentifyT, we know that an extracted key is exactly the one used in the given join
transcript. We then run Identify with the given signature on each of the honest TPM signing keys
and also the extracted secret keys (for the corrupt TPMs) in turn. If the signature doesn’t identify
to any of these then the adversary wins the game. This precisely captures the property that no
adversary can make valid signatures without using a key for which signing credentials have been
issued. Readers familiar with the group signature setting will note the similarity of this notion
to traceability. Finally, the adversary also wins if the signature identifies to an honest TPM who
never signed it.

Key-based revocation: To instantiate secret key-based revocation we assume that the Identify
algorithm is run as a subroutine of Verify to check that the given signature doesn’t identify to
any of the compromised TPM keys listed in the revocation list RL. Precisely, in order to verify a
signature σ with respect to a message m, basename bsn, and revocation list RL one does the
following.

1. Set b← Verify(σ,m, bsn, ∅), where ∅ is the empty list.

2. For each ski ∈ RL, set bi ← Identify(σ,m, bsn, ski).

3. If b = 0 or ∃ i such that bi = 1, then verification fails.

4. Else, verification passes.

We note that this ‘hard-coding’ of the Verify algorithm might appear quite restrictive. However, this
assumption allows for a smooth proof of Theorem 1. Whilst this may be an artifact of the proof,
we don’t consider it to be a strong assumption since all existing secure DAA schemes satisfy this.
We further note that this assumption naturally imposes the desired security properties on the
revocation process. For example, a signature cannot pass verification if it identifies to some key
on the revocation list. Furthermore, a previously invalid signature cannot be made valid by adding
extra keys to the revocation list. Finally, if one only requires stand-alone security, i.e., security
which does not necessarily imply UC security, it may be more intuitive and allow for more flexible
scheme design if one formulated the above revocation guarantees as an experiment instead of
hard-coding Verify in this way.

Security Definitions. Here we define the properties of a secure DAA scheme: correctness,
anonymity, unforgeability, and non-frameability. The experiments referred to in the following defi-
nitions are presented in Figure 3.2.
Correctness. We require that signatures produced by honest platforms are accepted by the Verify
algorithm. In addition, we require that two signatures produced by the same platform with the
same basename bsn 6=⊥ are linked w.r.t. Link. Finally, Link is required to be symmetric.

Definition 2. A DAA scheme DAA is said to be correct if for all λ ∈ N, the advantage,

AdvCorr
DAA,A(λ) := Pr[ExpCorr

DAA,A(λ) = 1]

is negligible (in λ) for all PPT adversaries A.
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Anonymity. It is essential that attestations made by a platform do not reveal anything about its
identity. Precisely, we require that no adversary should be able to determine which of two honest
platforms has produced a given signature, even if he controls the issuer. Note that anonymity
can only be preserved for fully honest platforms. Clearly, a corrupt host can append identifying
information to any signature to reveal the platform’s identity since it is the only one able to interact
directly with the outside world.

Experiment: ExpCorr
DAA,A(λ)

– param← Setup(1λ);HP,EPK,ESK,CRE,HSK := ∅.
– (isk, ipk,ML)← I.Kg(param)
– If IpkVf(ipk, param) = 0, then Return 0.
– (i,m0,m1, bsn)← A(ipk;AddHonO(·;P), InitO–P(·))
– σb ← SignO(i,mb, bsn;P) for b ∈ {0, 1}
– If Verify(ipk, σ0,m0, bsn, ∅) = 0 or Verify(ipk, σ1,m1, bsn, ∅) = 0, then Return 0.
– If bsn 6=⊥ and Link(ipk, σ0, σ1,m0,m1, bsn) = 0 or Link(ipk, σ1, σ0,m0,m1, bsn) = 0, then Return 1.
– Return 0.

ExpAnon–b
DAA,A(λ)

– param← Setup(1λ);HP,EPK,ESK,CRE,HSK, SL,CL := ∅.
– (ipk, st)← A(param).
– If IpkVf(ipk, param) = 0, then Return 0.
– b∗ ← A(param, st;AddHonO(·;P), JoinO(·;P), SignO(·, ·, ·;P),ChalO(·, ·, ·, ·; b)).
– If ∃(i,m, bsn, σ) ∈ SL s.t. bsn 6=⊥ and (i, ∗, bsn) ∈ CL or (∗, i, bsn) ∈ CL then Return 0.
– If b∗ = b, then Return 1.
– Return 0.

ExpUF
DAA,A(λ)

– (param, td)← SimSetup(1λ);HT,CP,EPK,ESK,CRE,HSK, SL := ∅.
– (ipk, isk,ML)← I.Kg(param).
– (σ,m, bsn)← A(param, ipk;AddHonO(·;M),AddCrptO(·, ·;P), JoinO(·;M), IssueO(·), SignO(·, ·, ·;M), IdentifyO(·, ·, ·, ·)).
– If Verify(ipk, σ,m, bsn, ∅) = 0, then Return 0.
– For all i ∈ CP, run ski ← Ext(param, td, ipk, isk,TS[i]), and set ski ← CSK[i].
– If ∃i ∈ HT s.t Identify(σ,m, bsn,HSK[i]) = 1 and (i,m, bsn, ∗) /∈ SL, then Return 1.
– If ∀i ∈ CP, Identify(σ,m, bsn,CSK[i]) = 0, then Return 1.
– Return 0.

ExpNF
DAA,A(λ)

– param← Setup(1λ);HP,EPK,ESK,CRE,HSK, SL := ∅.
– (ipk, st)← A(param).
– If IpkVf(ipk, param) = 0, then Return 0.
– (i, σ,m, bsn)← A(param, st;AddHonO(·;P), JoinO(·;P), SignO(·, ·, ·;P), IdentifyO(·, ·, ·, ·)).
– If Verify(ipk, σ,m, bsn, ∅) = 0, then Return 0.
– If i /∈ HP or (i,m, bsn, σ) ∈ SL, then Return 0.
– If ∃ (i,m∗, bsn, σ∗) ∈ SL s.t. Link(σ, σ∗,m,m∗, bsn) = 1, then Return 1.
– If bsn = ⊥, Identify(σ,m, bsn,HSK[i]) = 1, and (i,m, bsn, ∗) /∈ SL, then Return 1.
– Return 0.

Figure 3.2: Security experiments for property-based definition of DAA.

The adversary’s aim is to guess which of two TPMs (of his choice) has signed a chosen message
and basename. The powers afforded toA include control of the issuer and so his first action must
be to output the issuer’s public key. Secondly, he is given oracle access allowing him to create
honest platforms which he can instruct to join and request signatures from. A may also call the
challenge oracle ChalO on two honest platforms, and a sequence of message and a basename
pairs on which he receives signatures signed under one of those identities (fixed for all queries).
He must then output a bit b∗ to indicate which of the two TPMs he thinks has signed the signatures
returned by ChalO. A wins the game if he guesses correctly. We indicate the shared state of the
two adversarial actions using st. Note that we do not explicitly give A the power to create corrupt
TPMs and platforms since he controls the issuer and can therefore simulate corrupt TPMs and
platforms internally.
Since we instantiate our model with the Identify algorithm which tells us whether a given signature
was created under a given secret key, any user can trivially determine whether a signature was
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created under their own secret key. Furthermore, A cannot query both the signing oracle and the
challenger with the same identity and basename. Otherwise, A could simply win the game by
using the Link algorithm.

Remark 5 (Anonymity with subverted TPM). There is one line of work which defines anonymity
in the presence of a subverted TPM [20], [17], and only the model [17] allows one to construct
efficient schemes. Whilst the anonymity definition there is stronger, one can only model a specific
form of ‘isolated’ corruption in which only the code of a TPM can be specified by the adversary
who does not have continued access to the TPM. For the sake of simplicity and of focusing on
conventional schemes we do not consider anonymity of an honest host with corrupt TPM in this
work.

Remark 6 (Alternative definition for anonymity). The reader will note that the anonymity experi-
ment defined in Figure 3.2 is in the ‘left-or-right’ style where the challenger chooses between one
of two TPMs supplied by the adversary who must determine which is the signatory. In the full
paper [] we present an alternative ‘real-or-random’ variant in which the adversary supplies only
a single TPM identity and the challenger either answers signing queries using that platform or
creates a fresh TPM (once and for all) and uses this TPM to answer the queries. The adversary
must then decide whether signatures were produced by the platform he chose or by the fresh
one. We show the equivalence of these two notions as long as A is required to output a proof of
knowledge of his secret key. We emphasise their equivalence since the ‘real-or-random’ variant
will be useful for our UC implication.

Definition 3 (Anonymity of DAA). A DAA scheme DAA is said to be anonymous if and only if for
all λ ∈ N, the advantage

AdvAnon
DAA,A(λ) := |Pr[ExpAnon-0

DAA,A = 1]− Pr[ExpAnon-1
DAA,A = 1]|

is negligible (in λ) for all PPT adversaries A.

Unforgeability. Unforgeability ensures that no adversary can produce more unlinkable signatures
than he has corrupt TPMs and cannot produce a signature that identifies to an honest TPM who
never took part in its signing. This property is unique in that it can only hold when the issuer
is honest, else a corrupt issuer simply creates dummy users which cannot be identified by the
challenger. Unforgeability must be maintained for platforms containing an honest TPM, even if
the host is corrupt and says that no adversary can create a signature that identifies to an honest
TPM who never signed it or that does not identify to any TPM (honest or corrupt) that has joined.
The challenger C begins by generating the issuer’s secret and public key. Next, the adversary
A makes a round of oracle queries. These allow him to create honest TPMs, create corrupt
platforms, join using an honest TPM or corrupt platform, use an honest TPM to create signatures,
and determine whether a given signature was signed by a given TPM. The adversary must then
output a signature on a message and basename of his choice. The Ext algorithm is used by
the challenger to extract secret keys for each of the corrupt TPM’s that A is using to join. The
challenger then checks that the output signature is valid. Next, the challenger checks whether
the signature identifies to any of the honest TPMs (for which C knows sk) but was never signed
by them. If so, A wins the game. Finally, A also wins the game if the output signature does not
identify to any of the TPMs that have joined (honest or corrupt).
After creating a corrupt TPM, an adversary can simulate the part of an honest host himself. Thus,
where there is a corrupt TPM, we assume the host to be corrupt also. Similarly, when a TPM is
honest we assume the host to be corrupt. This is also because we do not require unforgeability
to hold for a corrupt TPM and honest host.
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Definition 4 (Unforgeability of DAA). A DAA scheme DAA is said to be unforgeable if and only if
for all λ ∈ N, the advantage,

AdvUF
DAA,A(λ) := Pr[ExpUF

DAA,A(λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 7 (Absence of revocation list in unforgeability experiment). We note that our unforge-
ability experiment makes no mention of revocation lists. This might seem strange to the reader,
however the security properties relating to the revocation process are covered by the assumption
that Verify is hard-coded to internally run Identify on each secret key of RL. Indeed, this is proven
formally via our UC implication Theorem 1. One can see this intuitively in the following way.
Consider a modified unforgeability experiment where winning conditions depend on a non-empty
revocation list as done in security experiments of group signature schemes such as [11, 39]. It is
easy to see that winning outputs of such an experiment would also constitute a winning output of
our current same assuming that Verify is hard-coded in this way.

Remark 8 (Redundancies omissible for stand-alone security). At this point it is important to note
that there are a few features of the property-based security model which, while necessary for
Theorem 1 to hold, may not appear to provide meaningful security enhancements if one only
requires stand-alone security.
First, the non-frameability experiment prevents an adversary from creating a signature under
bsn = ⊥ which identifies to some honest platform who never signed it, even when the issuer is
corrupt. In practice, this kind of ‘framing via secret key’ is never noticed since one would need
the secret key of the honest platform in order to test that the signature identifies. Therefore, the
effective result of such an attack is for an adversary to make valid signatures. However, if the
issuer is corrupt, the adversary can make valid signatures anyway by internally running a corrupt
platform.
In both the unforgeability game and the non-frameability game, the adversary is provided with
an IdentifyO(·, ·, ·, ·) oracle which allows him to determine whether a given signature was signed
by a particular TPM. On first glance, this seems redundant since considering only the security
experiments defined in Figure 3.2, all signatures are made through signing queries or by the
adversary himself so he can always determine the TPM who signed a signature without needing
to call the IdentifyO(·, ·, ·, ·) oracle. However, this oracle turns out to be necessary to simulate
the Verify interface of Fdaa in the proof of Theorem 1. In this simulation, the simulator needs to
know whether the signature provided for verification comes from one of the honest TPMs or from
somewhere else. This is necessary since he wants to determine whether the input signature
constitutes some kind of forgery or framing. He must first compile a list of all existing TPMs
to which the signature identifies. Since he doesn’t know the secret keys of honest TPMs (he
created these using calls to his property-based oracles) he cannot test for such identifications.
Instead, he calls the IdentifyO(·, ·, ·, ·) with each honest TPM in order to determine this. Note that
our model (and Fdaa) only guarantees standard (not strong) existential unforgeability. Otherwise,
when provided a signature σ on some message m for verification, the simulator could check
whether any of the honest TPMs had signed m and if σ was not what the signing oracle returned
then this would constitute a forgery of a strong unforgeability experiment.
We note that one could omit the above features of the experiments when proving the security of
a scheme without losing any meaningful security. However, Theorem 1 regarding UC implication
would no longer hold.

Non-Frameability. This ensures that one cannot create signatures on messages that an honest
platform never signed but that link to signatures the platform did create. As in anonymity, we
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allow the issuer to be corrupt and can only guarantee security for an entirely honest platform. In
particular, honest TPMs with a corrupt host cannot be protected from framing. This is because the
host controls the output of signatures and could also run a corrupt TPM that had joined and and
use the corrupt TPM’s key to create signatures instead of using the honest TPM’s contribution.
The resulting signatures can’t be protected from framing since they use the corrupt TPM’s signing
key.
The adversary A first chooses the issuer’s secret key and announces the corresponding public
key since all further actions will depend on this value. Next, he can make queries to oracles
that allow him to create honest platforms, join using an honest platform, request signatures from
an honest platform on a message and basename of his choice, and determine whether a given
signature was signed by a given TPM. He must then output a TPM identity i and a valid signature
σ on a message m and basename bsn that isn’t in the signing queries list. A wins the non-
frameability game if the output identity is part of an honest platform and there exists a signature
signed by that platform which links to the output signature. A can also win if the output signature,
with bsn = ⊥, identifies to some honest platform who never signed it.
Note that we do not explicitly allow A to create corrupt TPMs and platforms since he controls the
issuer and can simulate these internally as in the anonymity game.

Definition 5 (Non-frameability of DAA). A DAA scheme DAA is said to be non-frameable if and
only if for all λ ∈ N, the advantage,

AdvNF
DAA,A(λ) := Pr[ExpNF

DAA,A(λ) = 1],

is negligible (in λ) for all PPT adversaries A.

Remark 9 (Absence of revocation list in non-frameability experiment). As with our unforgeability
experiment, we demonstrate that although our non-frameability experiment makes no mention of
revocation, the assumption that Verify is hard-coded to run Identify on each value in RL covers all
desirable properties relating to revocation within non-frameability. Indeed, this is proven via our
UC implication Theorem 1. Below we give the intuition as to why this is true.
Consider a modified non-frameability experiment in which the adversary may additionally output
a revocation list RL and we check that his signature is valid by running Verify(ipk, σ,m, bsn,RL).
Note that this is what is done in the security experiments of group signatures with verifier local
revocation [12, 39]. One can easily show that if A can give a winning output in this modified
experiment, it gives us one for the current experiment assuming that Verify is hard-coded as
described.

Now that we have formalised all the security requirements of DAA we can define the overall
DAA security. The definition acknowledges three extra assumptions. Firstly, the existence of
the auxiliary algorithms SimSetup, Identify, IdentifyT, and Ext defined in Definition 1. Secondly,
that KBR is instantiated using a Verify algorithm that internally runs Identify on each key in the
revocation list. Finally, we assume signatures link if and only if they identify to a common signing
key. Including this last condition allows for much more succinct property definitions.

Definition 6 (DAA security). A DAA scheme DAA is said to be secure if and only if it is correct,
anonymous, unforgeable, non-frameable, and the following hold:

1. There exist auxiliary algorithms SimSetup, Identify, IdentifyT, and online-extraction algorithm
Ext as defined in Definition 1.

2. We assume that key-based revocation is instantiated by a verification algorithm that implic-
itly runs Identify on each secret key of the provided revocation list.
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3. Given two valid signature-message-basename tuples (σ,m, bsn) and (σ′,m′, bsn) for a com-
mon basename bsn 6= ⊥, it holds that Link(σ, σ′,m,m′, bsn) = 1 if and only if there exists
an input sk such that Identify(σ,m, bsn, sk) = Identify(σ′,m′, bsn, sk) = 1.

3.1.3 Property-based to UC Model Implication

Here we construct the DAA wrapper protocol ΠDAA shown in Figures 3.3 and 3.4 which provides
a generic transformation of a property-based DAA scheme DAA to one compatible with the uni-
versal composability framework.
This transformation is essentially a syntactic re-structuring. The main function of the wrapper is
to define the interfaces of ΠDAA so that they match those of Fdaa [19] (See Appendix of full paper
[] for the Fdaa functionality). Figures 3.3 and 3.4 show how one can use the algorithms of DAA
to construct the abstract scheme ΠDAA. The next step is then to prove that this abstract scheme
realises the DAA functionality Fdaa assuming that DAA is secure according to Definition 6.
Additionally, for the interactive protocols join and sign, the wrapper uses the following conven-
tion. Where interactive protocols occur (joining and signing), messages output by the respective
algorithms are enhanced (by the wrapper) with algorithm and session specific identifiers. For
example, if JoinH sends a request MIssue to join with Mi to the issuer, then the wrapper sends
(JOIN, sid, jsid,Mi,MIssue) to I. Here sid is the session identifier for that run of the protocol
whereas jsid is the join session identifier specific to that platform’s join session. This syntax
allows us to distinguish between protocol messages and objects added by the wrapper. Further-
more, the wrapper assumes that the TPM manufacturer has already embedded all TPMs with
endorsement keys and has registered the list of public endorsement keys with Fca. This is equiv-
alent to having already run TPM.Kg and registering all epk’s with Fca. To make the protocol ΠDAA

more readable we omit explicit calls to the sub-functionalities with sub-session IDs etc. and sim-
ply say e.g., issuer I registers its public key with Fca.
In the theorem which follows we use three hybrid functionalities. These are artifacts of the way
in which we prove things in the UC model and have been used in prior works. Their purpose is
to provide idealised forms of functionalities that we do not consider cryptographically in our work
but whose existence we depend on. Fauth∗ models the authenticated channel between TPM and
issuer; this is established via an authentication protocol running in parallel with the join protocol
and whose details are outside the scope of this work. Fca represents the certificate authority
with whom the issuer registers its public key and the TPM manufacturer maintains a public list of
existing TPM endorsement public keys. Finally, FDcrs is the common reference string functionality
which gives all parties a set of up-to-date system parameters. For formal definitions of Fca, FDcrs
and Fauth∗ we refer the reader to [23], [22], and [19] respectively. We assume, as in the the UC
DAA definition, that the host and TPM can communicate directly, meaning that they have an au-
thenticated and perfectly secure channel. This models the physical proximity of the host and TPM
forming the platform: if the host is honest an adversary can neither alter nor read their internal
communication, or even notice that communication is happening.
We now present our main result showing that the wrapper protocol, if secure according to the
new model, enjoys the same security guarantees as provided by the UC definition. There are
two additional conditions that a (wrapped) DAA scheme, secure in the property-based model,
must satisfy in order to achieve UC security. Firstly, the issuer must register its public key using
an extractable proof of knowledge of its secret key. Secondly, the host is assumed to begin and
end the interactive join and signing protocols. All of these conditions are met by existing DAA
schemes except the first which, where omitted, has lead to security flaws.

Theorem 1. Let DAA be a DAA scheme that is secure according to Definition 6. Then ΠDAA
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Setup:

1. I upon input (SETUP, sid):

- Checks that sid = (I, sid′) for some sid′.
- Retrieves param← FDcrs.
- Runs (ipk, isk,ML)← I.Kg(param) and store (isk,ML, sid)

- Registers ipk with Fca.
- Outputs (SETUPDONE, sid).

Join Request:

1. Hj upon input (JOIN, sid, jsid,Mi):

- Parses sid = (I, sid′), retrieves ipk and epki from Fca.
- Sets stiJoinH := (epki, ipk), deciJoinH := cont.
- Runs (stjJoinH,MIssue, dec

j
JoinH)← JoinH(stiJoinH;⊥).

- Sends (JOIN, sid, jsid, (Mi,MIssue)) to I.

2. I upon receiving (JOIN, sid, jsid, (Mi,MIssue)) from Hj :

- Creates a join request record 〈sid, jsid,Mi,Hj,MIssue, 〉.
- Outputs (JOINPROCEED, sid, jsid,Mi).

Join Proceed:

1. I upon input (JOINPROCEED, sid, jsid) :

- Retrieves both the join record 〈sid, jsid,Mi,Hj,MIssue〉 and (isk,ML) from its records.
It may also retrieve epki from Fca if not included in MIssue.

- Sets stiIssue := (isk, epki,ML), deciIssue := cont.
- Runs (stiIssue,MJoinH, dec

i
Issue)← Issue(stiIssue;MIssue).

- Sends (JOIN, sid, jsid,MJoinH) to Hj .

2.(H) If Hj receives a message of the form (JOIN, sid, jsid,MJoinH) from I,Mi, or Fauth∗ :
- If deciJoinH 6= cont, does nothing. records.
- Runs (stiJoinH,MJoinTPM/Issue, dec

i
JoinH)← JoinH(stiJoinH,MJoinH).

- If deciJoinH = accept, sets crei := stiJoinH and outputs (JOINED, sid, jsid).
- If deciJoinH = cont, sends (JOIN, sid, jsid,MJoinTPM/Issue) toMi/I.

2.(M) IfMi receives a message of the form (JOIN, sid, jsid,MJoinTPM) from Hj :

- If stiJoinTPM is undefined, retrieves eski from its records and sets stiJoinTPM := eski,
deciJoinTPM := cont.

- If deciJoinTPM 6= cont, does nothing.
- Runs (stiJoinTPM,MJoinH/Issue, dec

i
JoinTPM)← JoinTPM(stiJoinTPM;MJoinTPM).

- If deciJoinTPM = accept, sets ski := stiJoinTPM.
- Sends (JOIN, sid, jsid,MJoinH/Issue) to Hj directly or via Fauth∗ respectively.

2.(I) If I receives a message of the form (JOIN, sid, jsid,MIssue) from Hj or Fauth∗ :
- If deciIssue 6= cont, does nothing.
- Runs (stiIssue,MJoinH, dec

i
Issue)← Issue(stiIssue;MIssue)

- If deciIssue = accept, sets ML = stiIssue.
- Sends (JOIN, sid, jsid,MJoinH) to Hj

Figure 3.3: DAA protocol ΠDAA
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Sign Request:

1. Hj upon input (SIGN, sid, ssid,Mi,m, bsn):

- Creates a sign record 〈sid, ssid,Mi,m, bsn〉.
- Retrieves crej from its records.
- Sets stiSignH := (crei,m, bsn), deciSignH := cont.

- Runs (stiSignH,MSignTPM, dec
i
SignH)← SignH(stiSignH;MSignH).

- Sends (SIGN, sid, ssid,MSignTPM) toMi.

2. Mi upon receiving (SIGN, sid, ssid,MSignTPM) from Hj :

- Creates a sign record 〈sid, ssid,Hj,m, bsn〉.
- Outputs (SIGNPROCEED, sid, ssid,m, bsn).

Sign Proceed:

1. Mi upon input (SIGNPROCEED, sid, ssid):

- Retrieves the sign record 〈sid, ssid,Hj,m, bsn〉 and ski from its records.
- Sets stiSignTPM := (ski,m, bsn) and deciSignTPM := cont.

- Runs (stiSignTPM,MSignH, dec
i
SignTPM)← SignTPM(stiSignTPM,MSignTPM).

- Sends (SIGN, sid, ssid,MSignH) to Hj .

2.(Mi) IfMi receives a message of the form (SIGN, sid, ssid,MSignTPM) from Hj :

- If deciSignTPM 6= cont, does nothing.

- Runs (stiSignTPM,MSignH, dec
i
SignTPM)← SignH(stiSignTPM;MSignTPM).

- Sends (SIGN, sid, ssid,MSignH) to Hj .

2.(H) If Hj receives a message of the form (SIGN, sid, ssid,MSignH) from tpmi:

- If deciSignH 6= cont, does nothing.

- Runs (stiSignH,MSignTPM, dec
i
SignH)← SignH(stiSignTPM;MSignTPM).

- If deciSignH = accept, sets σ := stiSignH.
- Outputs (SIGNATURE, sid, ssid, σ).

Verify:

1. V upon input (VERIFY, sid,m, bsn, σ,RL) :

- Sets f ← Verify(ipk, σ,m, bsn,RL).
- Outputs (VERIFIED, sid, f).

Link:

1. V upon input (LINK, sid, σ,m, σ′,m′, bsn) with bsn 6=⊥:

- Sets f ← Link(σ,m, σ′,m′, bsn)

- Outputs (LINK, sid, f).

Figure 3.4: DAA protocol ΠDAA
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presented in Figures 3.3 and 3.4 securely realises Fdaa in the (Fauth∗ ,Fca,FDcrs)-hybrid random
oracle model if the following hold:

1. The issuer registers its public key using an online-extractable proof of knowledge πI of the
underlying secret key, with some certificate authority.

2. The host initializes and terminates the interactive join and signing protocols.

As noted in [19], obtaining composable security comes with the caveat that where knowledge ex-
tractors are used to prove security, one is restricted to on-line (straight-line) extractors [30] only.
This is because rewinding does not work in the UC setting since the environment will observe the
repeat adversarial behaviour induced by rewinding his state. Note that Ext is only well defined
with respect to Definition 1 for on-line extraction [30]. Whilst we believe our security definition
could be adapted to support extraction by rewinding also, this technique is not supported in the
UC framework and so such a scheme could never obtain composable security. Since our pri-
mary aim is to design a property-based definition that implies the UC definition, we assume all
proofs of knowledge used in the join protocol and by the issuer to register his public key are on-
line (straight-line) extractable. Whilst [19] argue that the simulator used in security proofs could
equally use rewinding, they note that one could only achieve stand-alone security. Furthermore,
one must be careful to limit the number of simultaneous join sessions to be logarithmic in the
security parameter to avoid exponential blow-up in the reduction algorithm’s runtime when ex-
tracting witnesses by rewinding.
In order to prove that the DAA scheme ΠDAA referred to in Theorem 1 satisfies the UC DAA def-
inition of [19] we proceed as follows. We must show that no environment E can distinguish the
real world, in which it is working with ΠDAA and adversary A from the ideal world in which it uses
the DAA ideal functionality Fdaa as defined in [19] (see Appendix of full paper for details []) with
simulator S. We begin with the real world protocol ΠDAA. Next we define an entity C, which we
call the challenger, who runs this real world protocol for all parties. C is then split into two parts; a
functionality F and a simulator S. We first have a useless functionality which forwards all inputs
from honest parties to the simulator and then relays the output back to those honest parties. Over
a series of game hops we modify S and F so that F handles more of the inputs from honest par-
ties on its own. At the end we are left with the ideal functionality Fdaa and a satisfying simulator.
Due to space limitations, we present the full details of the complex security proof including inter-
mediate functionalities and simulators in the Appendix of the full paper [] . Here we give a brief
overview of the game hops used and the techniques used to prove indistinguishably between
each hop.

Proof Sketch of Theorem 1

Game 1: This is the real world protocol.
Game 2: The challenger C now receives all inputs and simulates the real world for all honest
parties. It also simulates the hybrid functionalities honestly. By construction this is equivalent to
the previous game.
Game 3: We now split C into two parts: a ‘dummy’ functionality F and a simulator S. F simply
forwards all inputs from honest parties to S. S simulates the real world protocol and relays the
outputs back to F who in turn passes them onto E . This is simply a restructuring of the previous
game and is thus equivalent to the previous game.
Game 4: In this game we let our intermediate F handle the Setup related interfaces using the pro-
cedure specifed in Fdaa. Consequently, F expects to receive the algorithms (ukgen, sig, ver, link,
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identify) from the simulator. For ukgen, ver, link, and identify, S can simply provide the algorithms
from the real-world protocol, where it omits the revocation check from ver. The sig algorithm,
though, must contain the issuer’s private key, so S has to be able to get that value.
When I is honest, S will receive a message from F asking for the algorithms, which informs S
what is happening and allows him to start simulating the issuer. Since S is running the issuer, it
knows its secret key and sets the sig algorithm accordingly.
When I is corrupt, S starts the simulation when the issuer registers his key with Fca that is con-
trolled by the simulator. Since the public key includes an (on-line extractable) proof of knowledge
of the issuer’s secret key, S can extract the secret key from there and define the sig algorithm
accordingly. By the simulation soundness of the SPK, this game hop is indistinguishable for the
adversary.
Game 5: F now handles the verify and link queries using the provided algorithms ver and link
from the previous game, rather than forwarding the queries to S. We do not let F perform the
additional checks (Check (ix) - Check (xvii)) done by Fdaa, though, but add these only later. For
Check (xiii), F rejects a signature when a matching sk′ ∈ RL is found, but does not exclude
honest TPMs from this check yet.
Because verify and link do not involve network traffic, the simulator does not have to simulate
traffic either, we must only make sure the outputs do not change. The verification algorithm ver
that F uses is almost equal to the real world protocol. The only difference is that ver used by
F does not contain the revocation check. F now performs this check separately. Since, by an
assumption of Definition 6, key-based revocation is instantiated precisely by running the Identify
algorithm on each key in RL this separation will not change the verification outcome.
For linking, F executes the Link algorithm that S supplied, which is equivalent to the real world
algorithm, so the outcome will clearly be equivalent.
Game 6: In this step we change F to also handle the join-related interfaces, meaning it will
receive the inputs and generate the outputs. We let F run the same procedure as Fdaa, but again
omit the additional checks (Check (ii)- Check (iv)).
We have to ensure that F outputs the same values as the real world does. As the join interfaces
do not output crypto values, but only messages like ‘start’ and ‘complete’, we simply have to
guarantee that whenever the real world protocol would reach a certain output, the functionality
also allows that output, and vice versa.
For the direction from the real world to the functionality this is clearly given, since F does not
perform additional checks and thus will always proceed for any input it receives from S. For all
outputs triggered by F , the simulator has to give explicit approval which allows S to block any
output by F if the real world protocol would not proceed at a certain point.
If the host and/or TPM are honest, the simulator knows the identitiesMi, Hj and correctly uses
them towards F as well as in the simulation. If both, the TPM and host are corrupt but the issuer
is honest, then S cannot determine the identity of the host, as the host does not authenticate
towards the issuer in the real world. This does not impact the real world simulation of the issuer,
but the simulator has to choose an arbitrary corrupt host Hj now when invoking F with the JOIN
call. This will only result in a different host being stored in the ML list in F , but F never uses this
identity when the corresponding TPM is corrupt.
In the final join interface JOINCOMPLETE, the simulator has to provide signing key sk of the TPM.
When the TPM is honest, S knows the key anyway and if the TPM is corrupt, S extracts the signing
key from the join transcript using Ext (see Definition 1). Note that F sets sk ←⊥ when both the
TPM and host are honest. However, this has no impact yet, as the signatures are still created by
the simulator and the verify and link interfaces of F do not run the additional checks that make
use of the internally stored records and keys. Overall, this game hop is indistinguishable by the
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simulation soundness of join transcripts.
Games 7, 8, 9, 10: Over the next four game hops, we gradually modify F so that it eventually
handles all signing queries instead of merely forwarding them to S. As before, F will use the
(sign) interfaces from Fdaa, with the difference that it does not perform the Checks (v)-(viii) which
we add in a later game.
When the TPM or the host is corrupt, S has to provide the signature value, which it takes from
the real world simulation, and thus perfectly mimics the real world output. When both the TPM
and the host are honest, F creates the signatures internally in an unlinkable way; it chooses a
new sk per basename and TPM, or per signature when bsn =⊥ and then runs the sig algorithm
for that fresh key. F keeps the internally chosen keys 〈Mi,Hj, bsn, ski〉 in a list DomaninKeys to
ensure consistency if a TPM wishes to reuse the basename
This change is indistinguishable under the assumed anonymity of protocol ΠDAA. Suppose an
environment can distinguish a signature by an honest party with the sk it joined with from a sig-
nature by the same party but with a different sk. Then one can use such an environment to win
the ‘real-or-random’ anonymity game described in the Appendix of the full paper []. To see this,
we consider a sequence of sub-games where, in one game, a signature is generated using the
true sk used in the joining of that TPM and in the next game that same signature is created by
sampling a fresh secret key. To show that these two sub-games are indistinguishable, we embed
the challenge oracle ChalOror(·, ·, ·) into the simulator so that the signature S returns is the one
obtained on querying the ChalOror(·, ·, ·) oracle. If the environment thinks it is observing the sec-
ond sub-game, it must be that we are in the ‘random’ case, else we are in the ‘real case’. Thus we
can use the distinguishing power of the environment to win the real-or-random anonymity game.
By the equivalence of these two anonymity notions (see Appendix of full paper []), we can then
win the ‘left-or-right’ anonymity game. Since protocol ΠDAA is assumed to satisfy the left-or-right
notion of anonymity, this change is indistinguishable.
Another important modification made to F is a check that all honestly generated signatures verify
and identify correctly. Once again, we reduce to a property of real-world protocol ΠDAA; its cor-
rectness.
The last important modification to F is that for honest platforms, F now checks that a newly gen-
erated signature doesn’t identify to the signing key of some other TPM. Since there is a unique
value sk which identifies to each valid signature, this matching key corresponds to some honest
platform. We then argue that due to the exponential size of the key space, the probability than
one samples the same key as some other TPM is negligible.
Game 11: When verifying signatures, F now rejects any signature identifying to two different
signing keys. By assumption that there is a unique TPM signing key to which a valid signature
identifies, this new check does not alter the verification outcome.
Game 12: F now rejects signatures that do not identify to a TPM secret key used in an earlier join
session. Importantly this check is only triggered if the issuer is also honest. In order to show that
this check will not trigger, we demonstrate how such a triggering signature constitutes a game
winning forgery in the unforgeability game defined in Figure 3.2. In particular, our reductionist
simulates Game 12 to the environment by making use of IssueO(·) and the other oracles available
to it in the unforgeability game. Since ΠDAA is assumed unforgeable, Game 12 is indistinguishable
from Game 11.
Game 13: F ’s verify interface now rejects signatures that identify to some honest TPM who never
signed them. We show that if an environment is able to distinguish Games 12 and 13, it must
be able to create a signature triggering this check which constitutes a game-winning output in
the unforgeability game. Since ΠDAA is assumed unforgeable, Game 13 is indistinguishable from
Game 12.
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Game 14: F now introduces a new check that disallows signatures identifying to some honest
platform who never signed them, even when the issuer is corrupt. We show that if there is a dis-
tinguisher who can distinguish between Games 13 and 14, then one can construct a reductionist
who wins the non-framability game described in Figure 2. We consider the cases when this check
triggers for bsn 6= ⊥ and bsn = ⊥ separately, showing that neither situations occur with more than
negligible probability if ΠDAA is non-frameable and unforgeable as assumed.
Game 15: Previously, F rejected any signature that identified to some signing key on the revo-
cation list RL. Now such signatures are only rejected if they additionally identify to no honest
platforms. To show that this is indistinguishable from the previous game, we must show that sig-
natures rejected by the revocation list check that also identify to some honest platform occur with
negligible probability. In other words, the additional constraint of this check affects the outcome
of verification with negligible probability. We assume that there is a distinguisher, able to tell the
difference between Games 14 and 15. We construct a reductionistR who uses this distinguisher
to win the anonymity experiment defined in Figure 3.2. Once this reductionist observes a signa-
ture rejected by this new check, he learns the TPM key of an honest platform. He can then call
the challenge oracle with this platform and some other randomly chosen honest platform. If the
challenge signature identifies to this newly discovered key then it must have come from that plat-
form. If not, it came from the second platform. Since protocol ΠDAA is assumed to be anonymous,
Game 13 is indistinguishable from Game 14.
Game 16: F now puts requirements on the link algorithm. We show that these requirements do
not change the output of the Link interface. The introduction of this new check would only change
the output distribution in the following two cases. Firstly, two signatures that previously linked
now do not. This would happen if Link(σ, σ′,m,m′, bsn) = 1 but either Identify(σ,m, bsn, sk) = 0
or Identify(σ′,m′, bsn, sk) = 0. Alternatively two signatures that previously did not link but now
do, i.e., Link(σ, σ′,m,m′, bsn) = 0 but Identify(σ,m, bsn, sk) = Identify(σ′,m′, bsn, sk) = 1. By
assumption, (see Definition 6) neither of these situations can occur since it is assumed that
signatures have the property that they link if and only if there is some value sk such that both
signatures identify to sk.

The functionality F described in Game 15 is exactly Fdaa as defined in [19]. Since we have shown
the indistinguishability of each game hop, we have that protocol ΠDAA realizes Fdaa.

Till here, we has presented all the technical contents. In summary, we have extracted four com-
mon features and further reflected them into the new property-based definition. The new model
implies the UC version and meanwhile maintains the same security level.
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Chapter 4

Conclusion

In this report, we define ideal functionalities for TPM in the context of create/load TPM key and a
new cryptographic security notion–property-based model–for DAA.

For the design of ideal functionalities for TPM, we target to idealize the functionalities which do
not provide cryptographic functions. To do so, we combine the use of trusted third party, access
control and private channels. Via the security modelling, we now guarantee that the security
of TPM can be reduced to the secure implementation of the ideal functionalities. All still points
to the need for the TPM to be modelled and analysed as a whole, rather than as the sum of
independent parts, in order to properly capture possible interactions with outside surroundings,
the prime and first example of which is the create/load TPM key. We further provide discussions
on the extension for the current outputs to support the three use cases.

Since DAA is the main cryptographic algorithm of TPM and we have designed and developed
some lattice-based DAA algorithms (in the previous deliverable), we here propose a new security
model for DAA in the property-based setting. The new model contains four necessary features
supporting both stand-alone and concurrent security oracles. The model can be further extended
to imply the UC notion, guaranteeing the security level of UC, via the use of wrapper protocol.

The above two contributions are complementary. The first design is for the non-cryptographic
functionalities (being used to interact TPM’s functionalities with outside surroundings) while the
second modelling is designed for DAA which is the main crypto-function of TPM. Both of the
modelling are built on top of the extraction of most common and important functionalities and
features of TPM. In this way, our modelling can cover and support most of TPM practical use
(w.r.t. the use cases).

We may consider to extend the ideal functionalities design to other crucial functionalities of TPM.
But this will mainly depend on the practical requirements and deployment of the three use cases
(i.e., D6.2).
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Chapter 5

List of Abbreviations

AK Attestation Key

API Application Programming Interface

CA Certification Authority

EA Enhanced Authorization

EK Endorsement Key

FIDO Fast IDentity Online

CFG Control Flow Graph

DAA Direct Anonymous Attestation

HMAC Hash-Based Message Authentication Code

HSM Hardware Security Module

KDF Key Derivation Function

NMS Network Management System

PCR Platform Configuration Register

QN Qualified Name

TCG Trusted Computing Group

TEE Trusted Execution Environment

TLS Transport Layer Security

TOCTOU Time-of-Check Time of Use

TPM Trusted Platform Module

TTP Trusted Third Party

UC Universal Composability

U2F Universal 2nd Factor

WP Work Package
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Appendix A

Concurrent Oracle Definitions

It is crucial that oracles simulating a DAA protocol to an adversary allow him the same concurrent
access as he would have in real life. For example, an adversary in control of two host machines
might begin a join session using one of its honest TPMs whilst using the other to commence a
signing session. This example demonstrates that oracles simulating part of an interactive protocol
(joining or signing) can be interleaved with other oracles by the adversary. In other words, he
should be allowed to make a query that corresponds to the first move of an interactive protocol
and receive the corresponding reply. Then, he should be able to query an entirely different oracle
with no obligation to complete the protocol he started with the first. Only oracles defined in
this way capture, with sufficient granularity, the true nature of a real life adversary’s power in
the DAA setting. In the main body of this work Figure 3.1 presents simplified, non-concurrent
versions of these oracles. We choose this presentation structure so as to provide intuition on
the function of these oracles. However, we reiterate the important considerations one must bare
in mind when referring to the simplified oracles of Figure 3.1. In particular, one must allow an
adversary to interleave calls to interactive oracles so that he is not obliged to finish an interaction
with one before beginning one with another. Note that the full definitions in Figure A.1 cover this
concurrency explicitly.

Of equal importance is that concurrent adversarial access is the default setting in the UC frame-
work used to define DAA security in [19]. Thus, in order that our property-based definition implies
the same level of security, we must define oracles that give the adversary equivalent power. We
follow the standard notation for defining such oracles as used in group signatures [4], [13]. The
algorithms comprising a protocol are modelled as interactive Turing machines (ITIs) which take as
input a protocol message Min and an internal state st and output a message Mout, a new internal
state st′, and a decision dec ∈ {cont, accept, reject}. We cut the protocol into pieces where each
‘piece’ is defined by the receiving of a message and then the sending of a response message.
We say that an ITI (algorithm) run as part of a protocol returns cont if the protocol is still going
on, reject if some check failed or an invalid input was received, and accept if everything runs as
expected and there is no next step for that ITI in the protocol.
Figure A.1 provides formal definition for these oracles.
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InitO–P(i)
• If i /∈ HP, then Return ⊥.
• CRE[i] :=⊥, deciJoinTPM := cont, deciIssue := cont.
• stiJoinTPM := (ESK[i])
• stiJoinH := (EPK[i], ipk)
• stiIssue := (isk,EPK[i],ML)
• (stiJoinH,MIssue, dec

i
JoinH)← JoinH(stiJoinH;⊥).

• While (deciJoinTPM ∧ deciJoinH ∧ deciIssue = cont) do
◦ (stiIssue,MJoinH, dec

i
Issue)← Issue(stiIssue;MIssue).

◦ (stiJoinH,MJoinTPM, dec
i
JoinH)← JoinH(stiJoinH;MJoinH).

◦ (stiJoinTPM,MJoinH, dec
i
JoinTPM)← JoinTPM(stiJoinTPM;MJoinTPM).

◦ (stiJoinH,MIssue, dec
i
JoinH)← JoinH(stiJoinH;MJoinH).

• If (deciJoinTPM ∨ deciJoinH = accept):
◦ If deciJoinH = accept, then CRE[i] := stiJoinH.
◦ If deciJoinTPM = accept, then HSK[i] := stiJoinTPM.

• Return 1.

JoinO(i,Min; party)
– If party = P :
• If i /∈ HP or CRE[i] 6=⊥, then Return ⊥.
• If not defined, set deciJoinH = deciJoinTPM = cont.
• If deciJoinH 6= cont, then Return ⊥.
• If stiJoinH is undefined
◦ stiJoinH := (EPK[i], ipk).
• If stiJoinTPM is undefined:
◦ stiJoinTPM := (ESK[i]).
• (stiJoinH,MJoinTPM, dec

i
JoinH)← JoinH(stiJoinH;Min).

• While (deciJoinTPM ∧ deciJoinH = cont) do
◦ (stiJoinTPM,MJoinH, dec

i
JoinTPM)← JoinTPM(stiJoinTPM;MJoinTPM)

◦ (stiJoinH,MIssue, dec
i
JoinH)← JoinH(stiJoinH;MJoinH).

• If (deciJoinTPM ∨ deciJoinH = accept):
◦ If deciJoinTPM = accept, then HSK[i] := stiJoinTPM.
◦ If deciJoinH = accept, then CRE[i] := stiJoinH.
• Return (MIssue, dec

i
JoinH).

– If party =M:
• If i /∈ HT, then Return ⊥.
• If deciJoinTPM is undefined, set deciJoinTPM := cont.
• If deciJoinTPM 6= cont, then Return ⊥.
• If stiJoinTPM is undefined:
◦ stiJoinTPM := (ESK[i]).
• (stiJoinTPM,MJoinH, dec

i
JoinTPM)← JoinTPM(stiJoinTPM;Min).

• If deciJoinTPM = accept, then
◦ HSK[i] := stiJoinTPM.
• Return (MJoinH, dec

i
JoinTPM).

IssueO(i,Min)
• If i /∈ HT ∪ CP, then Return ⊥.
• If deciIssue is undefined, set deciIssue = cont.
• If deciIssue 6= cont, then Return ⊥.
• If stiIssue is undefined
◦ stiIssue := (isk,EPK[i],ML).

• (stiIssue,MJoinH, dec
i
Issue)← Issue(stiIssue;Min).

• If i ∈ CP, then TS[i]← TS[i] ∪ {(Min,MJoinH)}.
• If deciIssue = accept, then
◦ CRE[i] := MJoinH.

• Return (MJoinH, dec
i
Issue).

IdentifyO(i, σ,m, bsn)
• If i /∈ HT ∪ HP, then Return ⊥.
• b← Identify(σ,m, bsn,HSK[i]).
• Return b.

AddHonO(i; party)
• If i ∈ HT ∪ HP ∪ CT ∪ CP, then Return ⊥.
• If party =M, then HT← HT ∪ {i}.
• If party = P , then HP← HP ∪ {i}.
• (esk, epk)← TPM.Kg(param).
• (ESK[i],EPK[i]) := (esk, epk).
• Return EPK[i].

AddCrptO(i, epk; party)
• If i ∈ HT ∪ HP ∪ CT ∪ CP, then Return ⊥.
• If party =M Then CT← CT ∪ {i}.
• If party = P Then CP← CP ∪ {i}.
• (ESK[i],EPK[i]) := (⊥, epk).
• Return accept.

SignO(i,m, bsn,Min; party)
– If party = P :
• If i /∈ HP or CRE[i] =⊥ or HSK[i] =⊥, then Return ⊥.
• stiSignH := (CRE[i],m, bsn).
• stiSignTPM := (HSK[i],m, bsn).
• deciSignH := cont.
• deciSignTPM := cont.
• MSignH := ⊥.
• While (deciSignH = cont) do
◦ (stiSignH,MSignTPM, dec

i
SignH)← SignH(stiSignH;MSignH).

◦ (stiSignTPM,MSignH, dec
i
SignTPM)← SignTPM(stiSignTPM;MSignTPM).

• If deciSignH = accept
◦ σ ← stiSignH.
◦ SL← SL ∪ {i,m, bsn, σ}.
• Return σ.

– If party =M:
• If i /∈ HT or HSK[i] =⊥, then Return ⊥.
• If undefined, deciSignTPM := cont.
• If deciSignTPM 6= cont, then Return ⊥.
• If stiSignTPM is undefined
◦ stiSignTPM := (HSK[i],m, bsn).
• (stiSignTPM,MSignH, dec

i
SignTPM)← SignTPM(stiSignTPM;Min).

• If deciSignTPM = accept
◦ SL← SL ∪ {i,m, bsn,⊥}.
• Return (MSignH, dec

i
SignTPM).

ChalO(i0, i1, bsn,m; b)
• If i′b /∈ HP or CRE[i′b] = ⊥ or HSK[i′b] = ⊥ for b′ ∈ {0, 1}
then Return ⊥.

• If |CL| ≥ 1 and (i0, i1, ∗) /∈ CL, then Return ⊥.
• stibSignH := (CRE[ib],m, bsn).
• stibSignTPM := (HSK[ib],m, bsn).
• decibSignTPM, dec

ib
SignH := cont.

• MSignH := (CRE[ib],m, bsn).
• While (decibSignTPM ∧ decibSignTPM = cont) do
◦ (stibSignH,MSignTPM, dec

ib
SignH)← SignH(stibSignH;MSignH).

◦ (stibSignTPM,MSignH, dec
ib
SignTPM)← SignTPM(stibSignTPM;MSignTPM).

• If decibSignH = accept

◦ σ ← stibSignH.
• CL← CL ∪ {(i0, i1, bsn)}.
• Return σ.

Figure A.1: Details of the oracles used in the security games.
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