
D3.5
Final Report on the Design and Security of

the QR TPM
Project number: 779391

Project acronym: FutureTPM

Project title:
Future Proofing the Connected World: A Quantum-Resistant
Trusted Platform Module

Project Start Date: 1st January, 2018
Duration: 36 months

Programme: H2020-DS-LEIT-2017

Deliverable Type: Report
Reference Number: DS-LEIT-779391 / D3.5 / v1.1

Workpackage: WP 3
Due Date: 31st December, 2020

Actual Submission Date: 8th February, 2021

Responsible Organisation: SUR
Editor: Georgios Fotiadis , José Moreira

Kaitai Liang
Dissemination Level: PU

Revision: v1.1

Abstract:

In this report, we put forth the final models towards verifying the se-
curity properties of the remote attestation service, as leveraged in
the context of one of the envisioned FutureTPM use cases; namely
the Device Management where the focus is on the secure identifi-
cation and management of network devices. The produced models
are based on the ideal functionalities of TPM commands that have
been defined through appropriate abstractions towards formally ver-
ifying the security properties of the executed protocols.

Keywords: TPM Modelling & Abstraction, Formal Verification, Tamarin prover

The project FutureTPM has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 779391.

D3.5 - Final Report on the Design and Security of the QR TPM

Editor

Georgios Fotiadis (UL), José Moreira (UB)
Kaitai Liang (SURREY)

Contributors (ordered according to beneficiary numbers)

Kaitai Liang, Liqun Chen (SURREY)
José Moreira (UB)
Georgios Fotiadis (UL)
Roberto Sassu (HWDU)
Thanassis Giannetsos (DTU)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The content of this document reflects only the author’s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability. This document has gone through the consortiums
internal review process and is still subject to the review of the European Commission. Updates to the
content may be made at a later stage.

FutureTPM D3.5 PU Page I

D3.5 - Final Report on the Design and Security of the QR TPM

Executive Summary

In this Deliverable, we complete the modelling and formal verification of one of the core services
towards building chains of trust based on the secure identification and correct configuration state
of deployed devices. More specifically, we formalize the notion of secure remote attestation and
all its relevant functionalities such as the creation of TPM keys, the Enhanced Authorization (EA)
mechanism, and the management of sessions and Platform Configuration Registers (PCRs). We
consider the modelling and formal verification of these TPM building blocks in the context of the
Device Management use case as a starting point for the security modelling of the entire TPM
platform towards supporting trust-aware service graph chains with verifiable evidence on
the integrity assurance and correctness of the comprised devices. This break down of TPM
services allows for a more effective verification process towards building a global picture of the
entire TPM platform security modelling as a Root-of-Trust.

In the context of Device Management, the main objective is to establish a secure TLS communi-
cation channel between a Router and a Network Management System (NMS) as part of a network
infrastructure. This communication channel is established in three phases where the creation of
all necessary cryptographic keys is managed: In the first phase, the Router creates an Attesta-
tion Key (AK), by leveraging the attached TPM, which is certified by a Remote Attestation (RA)
Server. In the second phase, the Router creates a TLS key, via the TPM, which is certified by the
RA Server and signed by the NMS. Finally, the third phase is focused on the establishment of the
secure communication channel between the Router and the NMS by leveraging the previously
generated secret keys.

We present our models for all these phases, based on the ideal functionalities and trusted plat-
form command abstractions that have been developed in Deliverables D3.3 and D3.4. The goal
is to successfully verify specific security properties of interest in the Device Management model,
using Tamarin lemmas. These security properties (as part of the overall integrity, confidentiality,
and secure measurements requirements) include the necessary sanity checks proving that the
model execute correctly, in that it reaches all possible branches, the availability of keys and
certificates at all honest parties, the freshness and secrecy of the created keys, and the au-
thenticity of the messages and values that each party receives. We also put forth a number of
challenges that were encountered during this modelling and verification process and the actions
taken in order to overcome them.

Finally, we provide evidence that this “bottom-up” modelling approach, followed in the context
of the remote attestation service, can be extended to other application domains with such strict
security and privacy requirements as envisioned (for instance) by the other two FutureTPM use
cases in the fields of Fintech and Assistive Healthcare. This is due to the fact that the set of TPM
commands currently modelled constitute the common denominator considered in most scenarios
leveraging the TPM as a decentralized Root-of-Trust, including also the advanced Direct Anony-
mous Attestation (DAA) protocol; as the trust anchor towards enhanced privacy preservation and
user-controlled anonymity and unlinkability. Overall, we believe that the produced models
can provide the baseline for an extensible verification methodology that enables rigorous
reasoning about the security properties of Future TPMs.

FutureTPM D3.5 PU Page II

D3.5 - Final Report on the Design and Security of the QR TPM

Contents

List of Figures V

List of Tables VI

1 Introduction 1
1.1 Methodology . 2
1.2 Structure of the Report . 4

2 FutureTPM Device Management Use Case 5
2.1 Certification of the AK . 6
2.2 Certification of the TLS key . 8
2.3 Establishment of TLS Connection . 11

3 Security Modelling of Device Management Use Case 14
3.1 Overview of Modelling Tools, Approach and Challenges 14

3.1.1 Modelling Approach . 14
3.1.2 Modelling Tools . 15
3.1.3 Modelling Challenges . 17

3.2 Recap of the AK Certification Model . 19
3.2.1 The TPM Process . 20
3.2.2 The Router Process . 22
3.2.3 The RA/NMS Server Process . 23

3.3 Modelling of TLS Certification . 24
3.3.1 The TPM Process . 24
3.3.2 The Router Process . 26
3.3.3 The RA/NMS Server Process . 28

3.4 Modelling of TLS Communication and Attestation 29
3.4.1 The TPM Process . 29
3.4.2 The Router Process . 31
3.4.3 The RA/NMS Server Process . 32

4 Formalization and Verification of Security Properties 33
4.1 Security Properties for AK Certification . 34
4.2 Security Properties for TLS Certification . 37
4.3 Security Properties for TLS Communication & Attestation 40

5 Extending our Security Models Towards Enhanced System Reliability 43
5.1 Secure Mobile Wallet and Payments Use Case 44
5.2 Activity Tracking Use Case . 45

FutureTPM D3.5 PU Page III

D3.5 - Final Report on the Design and Security of the QR TPM

6 Conclusion 48

7 List of Abbreviations 50

References 52

FutureTPM D3.5 PU Page IV

D3.5 - Final Report on the Design and Security of the QR TPM

List of Figures

2.1 Creation of AK by the Router and certification by the RA Server 6
2.2 Creation of TLS key by the Router and certification by the RA Server & NMS . . . 9
2.3 The command TPM2_Quote . 11
2.4 Establishment of TlS communication channel between the Router and the NMS . 12

3.1 Adversarial model overview . 15
3.2 The main process for AK certification in SAPiC 20
3.3 The TPM process for AK certification in SAPiC 21
3.4 The Router process for AK certification in SAPiC 22
3.5 The RA/NMS Server process for AK certification in SAPiC 23
3.6 The TPM process for TLS certification in SAPiC 25
3.7 The Router process for TLS certification in SAPiC 27
3.8 The RA/NMS Server process for TLS certification in SAPiC 28
3.9 The TPM process for TLS connection in SAPiC 30
3.10 The Router process for TLS connection in SAPiC 31
3.11 The RA/NMS Server process for TLS connection in SAPiC 32

4.1 Placement of Running and Commit events for the authentication (agreement) prop-
erty . 34

5.1 An overview of the entities involved in a DAA protocol 45
5.2 The DAA protocol in the case of activity tracking [8] 47

FutureTPM D3.5 PU Page V

D3.5 - Final Report on the Design and Security of the QR TPM

List of Tables

3.1 SAPiC syntax . 16

4.1 Results for AK certification . 37
4.2 Results for TLS certification . 39
4.3 Results for TLS communication and attestation 42

FutureTPM D3.5 PU Page VI

D3.5 - Final Report on the Design and Security of the QR TPM

Chapter 1

Introduction

One of the main objectives of Work Package 3 (WP3) is the security modelling of the Trusted
Platform Module (TPM) and the formal verification of its security properties. Recall from Deliv-
erables D3.3 [10] and D3.4 [11] that the adopted methodology follows a “bottom-up” approach:
The primary focus is on the modelling of TPM trust and security provided by a specific set of core
TPM functionalities, leveraged by the majority of applications that make use of the TPM, before
extending such models for reasoning about the TPM platform as a whole. In other words, we
consider those TPM functionalities that are crucial in establishing chains of trust in hetero-
geneous environments—with the FutureTPM use cases standing as applications of particular
interest. The intuition is that the provided models can serve as both a basis for reasoning about
the security of a wide set of applications and systems that make use of the TPM and for
reasoning about the security of the TPM’s mechanisms themselves.

One such core functionality of interest is secure remote attestation, which can be performed via
the advanced Direct Anonymous Attestation (DAA) protocol, or through the usage of a Privacy
CA (PCA), as is the case of the currently standardized IBM remote attestation protocol [13].
Notably, secure remote attestation is one of the most popular services provided by the TPM
and we have, therefore, chosen to base our modelling on this TPM functionality. Furthermore,
in order to model this service, we also need to consider additional TPM processes, such as the
creation of TPM keys, the Enhanced Authorization (EA) mechanism for authorizing key usage, the
management of the Platform Configuration Registers (PCRs) and the creation and management
of policy sessions.

In Deliverable D3.4 [11], we also described the reasoning behind selecting the device manage-
ment use case as a starting point for applying our modelling methodology as it leverages an
enhanced version of remote attestation functionalities towards the creation of secure TLS com-
munication channels. The underpinnings of this use case mode of operation are described in
detail in Deliverables D4.1 [8], D6.1 [7] and D6.3 [9].

Trusted Platform Command Abstractions. One of the most demanding parts in our approach is
the modelling of the TPM platform and specifically, the modelling of the internal TPM commands.
For this purpose, we have introduced in D3.3 [10] the notion of an idealized functionality. This
is a model of a TPM command that captures the actions of the trusted platform module when
the command is executed in such a way that it excludes the cryptographic operations carried
out internally (e.g., hash functions, signature creation, encryption) and replaces them with non-
cryptographic approaches. Such non-cryptographic mechanisms include the use of an equational
theory, a Trusted Third Party (TTP) or involving private channels to model the communication be-
tween parties in a secure manner. We essentially developed a trusted abstract platform model
consisting of a specific set of formally-specified primitives sufficient to implement the

FutureTPM D3.5 PU Page 1 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

core TPM functionalities beyond the core crypto operations. Such an abstraction modelling
can enable the reasoning about and comparing different TPM services under various adversarial
models and for different security guarantees, excluding any possible implications from the lever-
aged cryptographic primitives. For trusted platform module implementers, such a representation
can be considered as a golden model for the expected system behaviour. From the perspective
of formally verifying trusted hardware components, this model can provide a means of reasoning
about security and privacy (of offered services) without being bogged down by the intricacies of
various crypto primitives considered in the different platforms.

1.1 Methodology

The device management use case consists of three main entities: a (set of) Routers equipped
with a TPM (each Router and TPM forms a Platform), a Remote Attestation (RA) Server, and a
Network Management System (NMS), which is responsible for creating routing policies based on
the integrity status of the routers. In order to receive the integrity status, the NMS establishes a
secure TLS channel with the Router. Prior to that, the Router creates two different signing keys
using the TPM, an Attestation Key (AK) and a TLS key. The former is certified by the RA Server
while the later by the NMS (more precisely, it is certified by the RA Server and it is signed by the
NMS). The AK certification is achieved through the use of a PCA-based protocol, namely the IBM
remote attestation protocol [13], whereas the TLS certification is achieved by using the Subject
Key Attestation Evidence (SKAE) certificate extension. The TLS key will be used by the Router
towards establishing the secure communication with the NMS, leveraging the TLS1.3 protocol,
and the AK will be used in order to sign produced quotes reflecting on the configuration integrity
and correctness of the deployed routers. Consequently, the secure enrolment process (for each
new Router) and its communication with the NMS, can be abstracted in the following three main
phases:

1. The Router creates an AK, using the TPM and the RA Server certifies this AK via the IBM
remote attestation protocol [13].

2. The Router creates a TLS key, using the TPM, and the RA Server together with the NMS
certify this TLS key using the previously generated and certified AK.

3. The NMS is able to establish a secure TLS channel with the Router so that it can send
attestation reports, including signed quotes, via a confidential channel.

In Deliverable D3.4 [11], we have presented the compiled model for the first phase; the creation of
the AK and its certification by the RA Server. In addition, we have also presented the necessary
model for the creation of the TLS key.

Continuing with the modelling process, there are two objectives for the remainder of this deliv-
erable. The first is to present the finalized models for the second and third phases on the TLS
certification and the establishment of the TLS communication channel, respectively. The
second is to identify, model and formally verify the security properties for all the aforementioned
three phases. The adopted methodology consists of the following steps:

Step 1: Determine the TPM commands. The first step is to identify the TPM commands that are
used in the scenario we wish to model. The motivation is to present an abstract description
of the TPM commands, or in other words, a high-level description of each TPM command
that excludes the technical details presented in the TPM specification manual [24] which

FutureTPM D3.5 PU Page 2 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

are not relevant for the modelling. This will result in a better understanding of the core
operations and actions of each TPM command and will allow us to model each command
in such a way that our ideal functionalities are as close to the real commands as possible.

Step 2: Define the ideal functionalities. We describe the ideal functionality for each TPM
command that is identified in Step 1, based on its abstract description. That is, we present a
model for each TPM command which replaces the cryptographic operations that are carried
out internally by the TPM with non-cryptographic approaches. In order to do this, we need
to have a specific formal verification tool in mind and in our case, we have chosen the
Stateful Applied Pi Calculus (SAPiC) tool. The set of the ideal functionalities constitutes the
model for the TPM process.

Step 3: Model the remaining components. This is the step where we model the remaining
entities and processes of the protocol. In our case, these are the Router, which interacts
with the TPM, and the RA Server plus the NMS that will be modelled as a single process.
This part of the model captures the interaction of the TPM and the Router with the outside
world. It includes the process of creating the AK and TLS keys, their certification and
the establishment of the secure channel between the Router and the NMS. Further, we
have to highlight that we have treated the modelling of each phase independently, rather
than considering one model that captures the intricacies of all as a whole (“bottom-up”
approach). The reasoning behind this is to reduce the complexity of the compiled models,
as well as to minimize the risk of running into unexpected behavior during the verification
process, mainly non-termination issues as will be described in Section 4.

Step 4: Formal verification of security properties. The last task of our modelling process re-
volves around the actual verification of the target security properties that our model should
satisfy. Such properties are modelled in the form of Tamarin lemmas [3] and the focus was
on obtaining completely mechanized proofs; see Chapter 4 below. Examples of such secu-
rity properties include the necessary sanity check lemmas that prove the correct execution
and termination of the model (i.e., that it reaches all possible branches), the availability of
the created keys and their corresponding AK and TLS certificates at all honest parties, the
freshness and secrecy of the created TPM keys, and the authenticity of the messages and
values that each party receives.

It is important to highlight that such a “bottom-up” modelling approach is certainly a general
process that is applicable for modelling any TPM-based scenario and it is not solely specific to the
device management scenario, or the use cases of this project. We argue that such a verification
methodology, based on the use of trusted abstract platform models and idealized functionalities, is
more than just a set of proofs of correctness of specific services (e.g., secure remote attestation)
but it can also enable the security modelling of the TPM as a whole merging various functionalities
offered by the different abstraction layers. The trusted abstract platform model can serve as a
specification of primitives of TPM operation, and is designed to be extensible towards additional
features (as presented in Chapter 5) and additional guarantees against sophisticated attackers.
Based on our findings, we also posit open issues and challenges towards this generalization, and
discuss possible ways to address them, so as this type of formally verified security modelling can
act as an enabler for the further enactment of trusted computing technologies.

FutureTPM D3.5 PU Page 3 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1.2 Structure of the Report

In Chapter 2 we provide a high-level description of the device management use case and the
three phases to be modelled. In Chapter 3 we present our modelling choices and the complete
models in SAPiC for these three phases: AK creation and certification, TLS key creation and
certification and establishment of TLS communication. Chapter 4 deals with the description of
the security properties (Tamarin lemmas) and their formal verification, using Tamarin. Finally, in
Chapter 5 we discuss the extension of our model to the two additional use cases of the project
and beyond and present ideas on how our modelling efforts can be extended for future work.
Finally, we present the conclusions in Chapter 6.

FutureTPM D3.5 PU Page 4 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Chapter 2

FutureTPM Device Management Use Case

The purpose of Chapter 2 is to present an overview of the device management use case in order
to obtain suitable abstractions of the messages exchanged between the involved parties and to
have a clear view of the functionalities that we wish to model. Recall that the devices encountered
in the ecosystem of the device management scenario are a set of Routers, the RA Server and
the NMS. The use case assumes that each Router is equipped with a (quantum-resistant) TPM
which is used in order to perform specific cryptographic tasks, such as creating keys, quotes
and managing Certificate Signing Requests (CSRs). Further, each Router also contains a series
of components and libraries, e.g., the Zero Touch Provisioning (ZTP) Agent and the RA Client.
The ZTP Agent is responsible for initiating certification of the AK and the TLS keys and it is
also responsible for responding to remote attestation requests by the NMS. The RA Client is the
component that interacts with the TPM. On the other hand, the RA Server contains the RA Lib,
which is a library that is responsible for the enrolment of each Router and for the verification of
the CSRs and quotes that are received from the Router. In what follows, we will abstract all those
implementation details in our discussion.

Recall also that the scenario that we intend to model consists of three phases: the AK creation
and certification, the TLS key creation and certification and the establishment of the secure com-
munication channel between the Router and the NMS. We give an abstract description of three
phases in the following sections.

Notation. We introduce the following notation that will be used throughout this chapter. Given
a key pair k = (kpriv, kpub), we denote by certP (kpub) the certificate for the public key kpub, signed
by the entity P , with private signing key Ppriv:

certP (kpub) = (kpub, sign(kpub, Ppriv)),

where sign() is a signature algorithm. We note that kpub can also be a tuple containing some
additional information, e.g., 〈kpub, info〉. Following the TPM specification, we model the name of a
key k as the hash of its public part: kname = H(kpub), for some hash function H(). In addition, we
denote fqdnP the Fully Qualified Domain Name (FQDN) that is a unique identifier for party P .

We also make the following assumptions: A endorsement key (EK) pair with handle ekh is already
loaded into the TPM, which we denote as EK = (ekpriv, ekpub). The EK corresponds to an
asymmetric encryption key pair and is trusted by the servers. Further, we consider that the
NMS and the RA Server are equipped with a pair of signing keys, (NMSpriv, NMSpub) and
(RApriv, RApub) respectively. Finally, we assume that the RA Server’s public key is certified by
the NMS, hence, certNMS(〈RApub, fqdnNMS〉) is already created and publicly available.

FutureTPM D3.5 PU Page 5 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

2.1 Certification of the AK

The process of creating and certifying the AK is carried out between the Router, the TPM, the RA
Server and the NMS. The interaction of these parties and the exchanged messages are depicted
in Figure 2.1. For a more complete analysis, we refer the reader to Deliverable D6.3 [9], in which
the device management demonstrator is described.

Figure 2.1: Creation of AK by the Router and certification by the RA Server

The first action of the Router is to extend a specific PCR with its current system state. More
concretely, the RA Client executes the command

TPM2_PCRExtend(pcrh, swstate),

where swstate is a digest value that corresponds to the current software state of the Router. Then
the TPM will update the PCR digest value that is referenced in the handle pcrh as pcrDigest =
H(pcrDigest ‖ swstate), for some hash function H(). For the creation and certification of the
AK, the following steps are executed between the Router, the TPM, the RA Server and the NMS:

FutureTPM D3.5 PU Page 6 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1. Obtain RA Server certificate: The Router obtains the certificate certNMS(RApub, fqdnNMS)
of the RA Server, from the NMS.

2. Extract fqdnNMS from certificate and begin the enrolment: The Router extracts the value
fqdnNMS from the certificate.

3. Create AK key: The Router creates the AK for signing, using the TPM. Recall from Deliver-
able D3.4 [11] that this AK will not be linked to any policy. This implies that the authorization
policy of the key will be zero. The AK creation is presented in the red frame in Figure 2.1.
In particular the Router executes the command TPM2_StartAuthSession(TRIAL) in order
to initiate a trial session. The TPM creates a fresh session handle trialsh and initializes the
policy digest trialpd of this session to zero. Then the TPM sends the handle trialsh back
to the Router. The Router executes the command TPM2_Create(trialsh, zero) in order to
create the AK pair. The TPM sets the authorization policy akap of the AK to zero, it creates
the key pair AK = (akpriv, akpub = pk(akpriv)) and returns (akap, akpub) to the Router.

In order for the Router to load the key to the TPM, it creates a policy session, by executing
the command TPM2_StartAuthSession(POLICY). The TPM creates a fresh session han-
dle aksh, it initializes the policy digest akpd of this session to zero and sends to the Router
the session handle aksh. The Router then executes the command TPM2_Load(aksh, akap) in
order to load the key in the TPM. The TPM creates the handle akh for the AK, as well as its
name akname = H(akpub) and returns both (akh, akname) to the Router. More details on the
abstract description of the TPM commands that are used in this step, as well as a detailed
description of the creation of TPM keys, are given in Deliverable D3.3 [10, Section 2.2].

4. Get AK cert: The Router asks the RA Server to issue a certificate for the AK it generated.
For this purpose, it sends to the RA Server the public parts ekpub and akpub of the EK and
AK, the name akname of the AK and the fqdnRouter. This initiates the enrolment process.

5. Check if Router EK credential is in NMSDB: The RA Server asks the NMS if the EK creden-
tial of the Router requesting an AK certificate has been added to the NMSDB (the Router is
already enrolled); this prevents any Router from getting an AK certificate. The NMS checks
the EK credential against the entries in its NMSDB and responds accordingly.

6. Generate credential blob and verify challenge response by Router: The RA Server asks
the Router to prove that it possesses the EK. This is accomplished through the IBM re-
mote attestation protocol. In particular, the RA Server creates a fresh value challenge and
executes the TPM command

TPM2_MakeCredential(ekpub, challenge, akname),

which outputs the pair (credBlob, secret) 1. The value credBlob is composed of the en-
cryption of the challenge with a symmetric key generated using a seed value and an HMAC
value for this encryption with a key also generated by the seed value. The value secret is
essentially the encryption of the seed value using the public part of the endorsement key
ekpub (see Deliverable D3.4 [11, Figure 2.2], for more details on the abstract description

1We note here that the RA Server does not have access to the Router’s TPM. The execution of the command
TPM2_MakeCredential can be either done using a virtual TPM, or it can be done by simply executing the same
instructions and operations of this command.

FutureTPM D3.5 PU Page 7 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

of the TPM command TPM2_MakeCredential). The pair (credBlob, secret) is sent to the
Router. The proof is derived from the Router, by executing the command

TPM2_ActivateCredential(ekh, akh, aksh, credBlob, secret),

which retrieves the challenge value after performing the necessary validation checks and
sends it to the RA Server (see Deliverable D3.4 [11, Figure 2.3], for the abstract description
of the TPM command TPM2_ActivateCredential).

7. Generate AK certificate and send it to Privacy CA: The RA Server generates a certificate
for the AK generated by the Router and asks Privacy CA in the RA Server to sign the
certificate.

8. Sign AK certificate: The Privacy CA in the RA Server signs the AK and the RA Server
sends the AK certificate to the Router. This is represented by certRA(〈akpub, fqdnRouter〉).

9. Store AK certificate: RA Server stores the signed AK certificate in the RADB.

After the successful completion of the above steps, both the Router and the RA Server have the
certificate certRA(〈akpub, fqdnRouter〉) for the AK that is created by the Router using the TPM. The
certified AK will be then used in the next step, in particular in order for the RA Server to certify
the TLS key that will be created by the Router.

The commands that are needed in the AK certification phase are, initially TPM2_PCRExtend and
then the commands TPM2_StartAuthSession, TPM2_Create, TPM2_Load, for creating and load-
ing the AK, and TPM2_MakeCredential, TPM2_ActivateCredential for creating and activating
a credential. The abstract description of these commands is presented in Deliverables D3.3 [10],
for the first three and [11] for the credential-related commands. Their modelling as ideal function-
alities, as well as the modelling of the certification of the AK were the main subjects of Deliverable
D3.4 [11]. A recap of this model will be presented in Section 3.2

2.2 Certification of the TLS key

The second step towards the modelling of the device management use case is the creation of a
TLS key by the Router and its certification, using the previously generated AK key. Again, this
step requires the interaction between the Router and the TPM, the RA Server and the NMS.
The exchanged messages between these parties are described in Figure 2.2. For additional
information and a more detailed description we again refer the reader to Deliverable D6.3 [9].

We give a detailed description of the TLS certification procedure, since the modelling of this step
is one of the innovations considered also in this deliverable. Recall from D3.4 [11] that unlike the
AK, the TLS key will be linked to a PCR policy. That is, the PCR value that was extended in the
AK certification process, will be used in order to update the policy digest of the policy session
associated to the TLS key. Precisely, the following steps are executed for the TLS certification,
which follow the description in Deliverable D6.3 [9].

1. Generate TLS key and CSR with SKAE: The Router creates a TLS signing key, using the
TPM and this TLS key is linked with a PCR policy. The process of creating a TPM key that
is bound to a PCR policy is presented in detail in Deliverable D3.3 [10, Chapter 2, Figure
2.11]. In is also described in the red frame in Figure 2.2. In brief, the Router executes the
command TPM2_StartAuthSession(TRIAL) in order to create a trial session with handle

FutureTPM D3.5 PU Page 8 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Figure 2.2: Creation of TLS key by the Router and certification by the RA Server & NMS

trialsh and initializes its policy digest trialpd to zero. The TPM returns the handle of the ses-
sion to the Router, which executes the command TPM2_PolicyPCR(trialsh, pcrh, v), with in-
put the handle of the session, the handle of the PCR and the digest value v = (pcrDigest ‖
swstate), which is the expected PCR value that was updated using the TPM2_PCRExtend

command. The TPM updates the policy digest of the session according to the relation

trialpd = H(trialpd ‖ ‘TPM_CC_PolicyPCR’ ‖ v),

where H() is a hash function. The Router executes TPM2_PolicyGetDigest(trialsh) in or-
der to obtain the policy digest trialpd and uses this value to create the TLS key TLS =
(tlspriv, tlspub), via the command TPM2_Create(trialsh, trialpd). The TPM sets the au-
thorization policy tlsap = trialpd and returns the authorization policy tlsap and the public

FutureTPM D3.5 PU Page 9 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

part tlspub of the TLS key to the Router. Now the Router creates a policy session with
TPM2_StartAuthSession(POLICY) and the TPM sets tlspd = zero and returns the session
handle tlssh to the Router. The Router executes TPM2_PolicyPCR(tlssh, pcrh, v) in order to
update tlspd and then TPM2_Load(tlssh, tlsap) and obtains the handle and name of the TLS
key: (tlsh, tlsname). The process of creating the TLS key is presented in contained in the
red box in Figure 2.2.

Further, the Router needs to create the Subject Key Attestation Evidence (SKAE). The
SKAE consists of the public part of the TLS key plus its authorization policy and the sig-
nature of both using the private part of the AK (see [14] for more information). In other
words

skae = (〈tlspub, tlsap〉, sign(〈tlspub, tlsap〉, akpriv)).

In order to create the SKAE, the Router executes the command

TPM2_Certify(tlssh, tlsh, akh).

The abstract description of the command TPM2_Certify is presented in Deliverable D3.4 [11,
Figure 2.1]. The output of this command is the pair (certInfo, signature), where certInfo
is the value to be certified, in our case 〈tlspub, tlsap〉 and

signature = sign(〈tlspub, tlsap〉, akpriv).

Note that the signature on 〈tlspub, tlsap〉 is created using the private part of the AK. The
pair (certInfo, signature) is returned to the Router which creates the SKAE value skae =
(certInfo, signature).

Now the Router creates a Certification Signing Request (CSR) for the TLS key. The CSR
is composed of the message (skae, fqdnNMS, tlspub) and the signature on that message
using the private part of the TLS key. For the creation of the signature, the Router executes
the command

TPM2_Sign((skae, fqdnNMS, tlspub), tlssh, tlsh),

with input the message to be signed (skae, fqdnNMS, tlspub), the handle of the session tlssh
and the handle of the TLS key tlsh. The command TPM2_Sign is described in Deliverable
D3.4 [11, Figure 2.4]. We note here that in order for the signing command to be executed,
an authorization check is required for using the TLS key. In other words, the TPM checks
whether the authorization policy of the TLS key tlsap is equal to the policy digest of the
session tlspd. After the correct execution of the TPM2_Sign command, the Router creates
the CSR as:

csr = [(skae, fqdnNMS, tlspub), sign((skae, fqdnNMS, tlspub), tlspriv)].

2. Get TLS key cert and begin the enrollment: The Router asks the RA Server to issue a
certificate for the Router TLS key. That is, the Router sends to the RA Server the csr that it
created.

3. Check if AK cert is in DB: The RA Server, which acts as a verifier, checks if there is a
certificate for the AK the Router used for signing the TLS key. Recall from the previous
section that the RA Server stores the AK certificate CERTRA(〈akpub, fqdnRouter〉) in its
database RADB.

FutureTPM D3.5 PU Page 10 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

4. Verify SKAE from CSR: The RA Server, verifies that the message (skae, fqdnNMS, tlspub)
is indeed signed by the private part of the TLS key. It also verifies the correct construction
of the skae value, in other words, it checks whether the public part of the TLS key is signed
by the AK that is associated to this Router.

5. Get signed TLS key cert from CSR: The RA Server forwards the csr to the NMS, so that
the NMS CA can sign it.

6. Verify CSR has correct FQDN from EK cred: The NMS verifies that the value fqdnNMS is
correct.

7. Sign TLS key cert: The NMS signs the TLS key certificate. That is, it creates the certificate
CERTNMS(tlspub); basically it signs the public part of the TLS key with its private singing
key NMSpriv.

8. Store TLS key cert in NMSDB: The NMS stores the TLS key certificate of the Router in the
NMSDB; the TLS key certificate is delivered to Router.

9. Enrolment complete, received AK and TLS key cert: The Router successfully receives the
TLS key certificate.

After the successful completion of the above steps, both the Router and the NMS have the TLS
certificate CERTNMS(tlspub).

2.3 Establishment of TLS Connection

Once both the AK and TLS certificates are created, the NMS is able to establish a secure commu-
nication channel with the Router. This phase requires the use of the TPM command TPM2_Quote

in order to create and sign a quote via the TPM. We present here the abstract description of this
command.

1 TPM2_Quote(signH, sesH, qData, inScheme, pcrSelect)
2 auth = authorization(signH, sesH)
3 if (auth = TRUE)
4 get ssk from signH

5 for i1,...,in in pcrSelect

6 create attestStruct = [PCR[i1]||...||PCR[in]]

7 quote = H(attestStruct||qData)
8 signature = sign(quote, ssk)
9 output(quote, signature)

10 else output(FAILURE)

Figure 2.3: The command TPM2_Quote

The command TPM2_Quote is used to quote selected PCR values. In other words, the TPM will
create a digest value which is computed as the hash of the concatenation of specific PCR values,
chosen by the caller and the resulting digest will be signed by the TPM. An abstract description
of TPM2_Quote is given in Figure 2.3. It requires as input the handle signH of a signing key
that will be used to sign the quote. In order to access the contents of the handle, enhanced
authorization is required and so the handle of a session sesH is also present in the input. In
addition, some external information qData and the signature scheme inScheme are also given as

FutureTPM D3.5 PU Page 11 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

input, along with a set of indices pcrSelect, which points to the PCRs that will be included in the
quote. The TPM will compute the quote value as quote = H(PCR[i1] ‖ . . . PCR[in] ‖ qData), for
i1, . . . , in ∈ pcrSelect. The command will output quote and the signature on that quote, using
the secret signing key ssk referenced in signH, namely signature = sign(quote, ssk). The
command is described in Figure 2.3.

The establishment of the secure communication channel between the Router and the NMS in-
volves the following steps:

Figure 2.4: Establishment of TlS communication channel between the Router and the NMS

1. Establish TLS connection: The NMS establishes a TLS connection with managed routers.
This is accomplished via the TLS1.3 protocol and using the TLS key TLS = (tlspriv, tlspub)
that was previously created by the Router. Modelling the interactions between the Router
and the NMS in the context of the TLS1.3 protocol is outside the scope of this report and
therefore we exclude the precise description of the TLS1.3 part. The result of this step
is the establishment of a common session key sessionkey between the Router and the
NMS. This is a symmetric encryption key that will be used by these two parties for secure
communication.

2. Verify router TLS key cert: The NMS verifies the TLS certificate by querying the NMSDB.

3. Collect measurements and generate TPM quote: The NMS encrypts some additional qual-
ifying data qData using the symmetric encryption key sessionkey and sends the ciphertext
c′ to the Router. The Router executes the command

TPM2_Quote(akh, aksh, qData, pcrSelection),

in order to create a signature on the quote quote = H(pcrDigest ‖ qData), using the
private part of the AK, where pcrDigest is the digest contained in the PCR referenced in
pcrSelection and H() is a hash function. The TPM returns the pair (quote, signature) to
the Router.

FutureTPM D3.5 PU Page 12 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

4. Send measurements and TPM quote: The Router forwards the pair (quote, signature) to
the RA Server .

5. Check if AK cert is in DB: The RA Server checks whether the quote it received has been
signed by a TPM AK for which a certificate CERTRA(〈akpub, fqdnRouter〉) was released by
the RA Server.

6. Verify measurements and TPM quote: The RA Server (verifier) verifies the measurements
and TPM quote sent by the Router. Essentially this implies the verification of the signature
by the RA Server, using the public part akpub of the AK.

7. Send verification result: RA Server sends the result of router integrity verification to the
NMS so that it can be seen by the Network Administrator.

8. Store verification result: The result of the Router integrity verification is stored in NMSDB.

FutureTPM D3.5 PU Page 13 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Chapter 3

Security Modelling of Device Management
Use Case

We advance to the main part of this report which is the security modelling of the device manage-
ment scenario. More specifically, we describe our models for the three phases that were analyzed
in Chapter 2: certification of the AK, certification of the TLS key and establishment of TLS
communication. We start by reviewing our model for the certification of the AK key that was
presented in Deliverable D3.4 [11]. We then proceed with the detailed description of the com-
piled models used for the creation of a TLS signing key by the Router and its certification by the
RA Server and the NMS. Finally, we present the third part of the model, the establishment of a
TLS communication channel between the Router and the NMS and the generation of attestation
reports.

Modelling Notation. In our TPM-related models, we denote FTPM2_CommandName as the ideal func-
tionality we are targeting, or equivalently our model for the TPM command TPM2_CommandName.

3.1 Overview of Modelling Tools, Approach and Challenges

Before we proceed with the description of our models, we summarize the adopted approach, the
tools used, and the challenges encountered. This section is mainly a summary of observations
and discussions from previous deliverables for completeness purposes.

3.1.1 Modelling Approach

Recall from Deliverable D3.4 [11] that our adversarial model is the usual Dolev-Yao model [12],
in which the adversary is allowed to monitor and modify all exchanged messages between the
processes. In order to keep our model as simple as possible, we consider three main processes:
the TPM, the Router and the RA Server with the NMS acting as a single process, as shown in
Figure 3.1. The components that are part of each entity, which are described in the previous
chapter, are aggregated into these three processes as follows:

• Process Router = [Router, ZTP Agent, RA Client]

• Process RA and NMS Server = [RA Server, RA Lib, Privacy CA, RADB] and [NMS, CA,
NMSDB]

FutureTPM D3.5 PU Page 14 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Figure 3.1: Adversarial model overview

• Process: TPM = [Set of ideal functionalities]

Our main goal, when defining the model for the device management use case, is to capture the
communication between these three processes in a way that replicates the real-world interactions
and modes of operation to the maximum possible extent. The reasoning behind aggregating the
RA and NMS servers into a single process is based on the assumption that there is a trusted
infrastructure supporting the interactions between these two processes. Hence it is not a viable
target for an adversary. This includes not only the communication between these two servers, but
also the access to their local databases or services.

As shown in Figure 3.1, the adversary is allowed to monitor and interfere in the communication
between the Router and the servers according to the rules of the Dolev-Yao model. However, the
model for the communication between the Router and the TPM needs to take into account the
newly introduced concept of “ideal functionalities” (i.e., our models of the TPM commands), and
it is considered independently. As discussed in Deliverable D3.4 [11], the ideal case would be
to test for the envisioned security properties under the presence of the strongest adversary type
that we can consider—hence, the adoption of the Dolev Yao adversary model. However, this is
an overly powerful, unrealistic adversarial model in the real world: the adversary can intercept,
drop, replay, etc. any message between any of the processes. In particular, the adversary can
read, drop or send arbitrary commands to the TPM at any time point, and regard the attached
TPM as a TPM Oracle. In order to create a model that allows a more realistic approach, we treat
the channel between the Router and the TPM in a special way. For an initial approach, it could
be considered that it is a completely private channel, i.e., the adversary does not have access
to it. For relaxed trust assumptions (e.g., when the router has malware installed) we can allow
the adversary certain degree of control over that channel (e.g., by making it a public channel with
restrictions). However, this initial idea does not work well in practice, since modelling this channel
as a synchronous, private channel in the applied pi-calculus lead to a number of issues that will
be discussed below in Section 3.1.3.

3.1.2 Modelling Tools

As we have already mentioned in the introduction and also in Deliverable D3.4 [11], in order to
better support the modelling of the device management use case and the verification and analy-
sis of its security properties, we use the Tamarin prover and its front-end SAPiC [3, 15, 16, 19]. In

FutureTPM D3.5 PU Page 15 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

〈M,N〉 ::= x, y, z ∈ V variables
| p ∈ PN public names
| n ∈ FN fresh names
| f(M1, . . . ,Mn) s.t. f ∈ Σ of arity n function application

〈P,Q〉 ::= processes
| 0 terminal (null) process
| P | Q parallel execution of processes P and Q
| !P replication of process P
| νn;P binds n to a new fresh value in process P
| out(M,N);P outputs message N to channel M
| in(M,N);P inputs message N to channel M
| if Pred then P [else Q] P if predicate Pred holds; else Q
| event F ;P F ∈ F executes event (action fact) F
| P +Q non-deterministic choice
| insertM,N ;P inserts N at memory cell M
| deleteM ;P deletes content of memory cell M
| lookupM as x in P [else Q] if M exists, bind it to x in P ; else Q
| lockM ;P gain exclusive access to cell M
| unlockM ;P waive exclusive access to cell M
| [L] −[A]→ [R];P (L,R,A ∈ F∗) provides access to Tamarin MSRs

Table 3.1: SAPiC syntax

Notation: n ∈ FN, x ∈ V,M,N ∈ T , F ∈ F . As opposed to the applied pi-calculus [1], SAPiC’s input
construct in(M,N);P performs pattern matching instead of variable binding.

particular, we developed our models using the SAPiC front-end, which allows us to define proto-
cols in a calculus (similar to applied pi-calculus) rather than directly into Tamarin multiset rewrite
rules (MSRs). Therefore, the front-end converts the processes specification into (labeled) MSRs
to be analysed by Tamarin. The verification of the security properties is achieved by modelling
these properties using Tamarin lemmas. Tamarin is a state-of-the-art tool for symbolic verifica-
tion and automated analysis of security properties in protocols, under the Dolev-Yao model [12],
with respect to an unbounded number of sessions. We refer to the Tamarin manual [3] for more
information, as well as to Chapter 4 for the analysis of our Tamarin lemmas.

The reasoning behind using Tamarin and SAPiC for our modelling process is justified in Deliver-
able D3.4 [11, Section 4.1]. In summary, we opted out from considering other automated tools
like ProVerif [4], or its extension StatVerif [2], as they are less suitable for modelling protocols with
non-monotonic global state, e.g., protocols that “forget” information. However, it is rather chal-
lenging to model protocols with arbitrarily mutable global state, as it is required in the environment
considered here. Another reason for choosing Tamarin and SAPiC is that there is already several
existing works, such as the works by Shao et al. [21, 20], which have been successful in proving
cryptographic properties for TPM functionalities.

For completeness, we briefly describe the main SAPiC syntax, depicted in Table 3.1. We also
refer the reader to the Tamarin prover manual [3], to Deliverable D3.4 [11, Section 4.1], and to
the original work by Kremer and Künnemann [16]. The calculus comprises an order-sorted term
algebra with countably infinite sets of publicly known names PN , freshly generated names FN
and variables V . It also comprises a signature Σ, i.e., a set of function symbols, each with an
arity. The messages are elements of a set of terms T over PN , FN and V , built by applying the

FutureTPM D3.5 PU Page 16 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

function symbols in Σ.

The set of facts is defined as

F = {F (M1, . . . ,Mk) s.t. M1, . . . ,Mk ∈ T , F ∈ Σ of arity n}.

The special fact K(M) states that the term M is known to the adversary. For a set of roles, the
Tamarin MSRs define how the system, i.e., protocol, can make a transition to a new state. An
MSR is a triple of the form [L] −[A]→ [R], where L and R are the premise and conclusion of the
rule, respectively and A is a set of action facts, modeled by SAPiC events. For a process P the
trace Tr(P) = [F1, . . . , Fk] is an ordered sequence of action facts generated by firing the rules in
order.

Tamarin allows to express security properties as temporal, guarded first-order formulas, modelled
as trace properties. The construct F@i states that the fact F occurs (equivalently is true) at
timepoint i. A property can be specified as a lemma or a restriction, depending if the property
being verified or enforced [19]. We will discuss more on this in Chapter 4.

Everything that SAPiC does can be expressed in MSRs in Tamarin. However, compared to direct
MSR encoding, modelling using SAPiC helps to develop a concise model that guarantees that
the user cannot make mistakes in modeling state, concurrency, locks, progress, reliable channels,
or isolated execution environments. For some of these, the encoding is likely more clever than
ad-hoc modelling a user would come up with using MSRs. In this context, SAPiC has a better
chance for termination.

3.1.3 Modelling Challenges

We discuss some of the main challenges that were encountered when working with the afore-
mentioned tools. We note that, except for observational equivalence (which is out of the scope
of our analyses), Tamarin is sound and complete, but it may not terminate, since the protocol
verification problem is known to be undecidable. In that case, user intervention is required in
the form of auxiliary lemmas.

Modelling the TPM-Router channel. Even though the model for this channel is simple con-
ceptually, this has posed a significant drawback when trying to model it. As discussed above, the
initial idea is that this channel should behave as a private channel if the router is not compro-
mised, and it should allow some control to the adversary when the trust model is relaxed, e.g.,
making the channel public if we assume a full compromise. Of course, if the adversary has full
control over the TPM and the communication channel with the host Router, then it is impossible
to prove any meaningful security property, and hence we ignore this case.

In Deliverable D3.4 [11, Section 4.2] we discussed several alternatives to model the communi-
cation channel between the Router and the TPM. We further extend this discussion in order to
reflect the conclusions obtained from the modelling process. Recall that our goal is to model
a channel that behaves similarly to a private channel when there is no compromise between
the router and the TPM. The final approach, therefore, has considered a combination of several
strategies provided by SAPiC, since a single one has proven to be unsuccessful for our purposes.
Therefore, our final model uses a combination of:

1. Usage of Tamarin restrictions to limit the capabilities of the adversary: This consists in
using a template for sending/receiving messages to/from the TPM with events placed at the
appropriate locations as follows:

FutureTPM D3.5 PU Page 17 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

//Template for sending a TPM command (Router process)

let pat_tpm_send_command = <TPM_CommandCode, param_1, ..., param_k> in

event TPM_SendCommand(pat_tpm_send_command);

out(pat_tpm_send_command);

P

//Template for receiving a TPM command (TPM process)

let pat_tpm_send_receive = <TPM_CommandCode, param_1, ..., param_k> in

in(pat_tpm_receive_command);

event TPM_SendCommand(pat_tpm_receive_command);

Q //TPM processess command here.

Moreover, we have to implement the following restriction on the execution traces, which will
limit the adversary capabilities:

restriction RestrictionTpmCommand:

"All c #i.TPM_ReceiveCommand(c)@i

==> ((Ex #j.TPM_SendCommand(c)@j & (j < i))

& not(Ex #k.TPM_ReceiveCommand(c)@k & not(#k = #i)))"

That is, we ensure that in order for a TPM to receive (and process) a message, an (injective)
TPM call must have been executed in the Router process. Therefore, the above restriction
will forbid the adversary from calling the TPM arbitrarily, unless the Router has first made
a well-formed TPM call. This approach, however, gives the adversary the capability to
eavesdrop and rearrange the messages sent to the TPM, which might not represent a
realistic scenario.

2. Usage of the public channel: Even though we could use a similar strategy for the output of
the TPM, whenever it is possible, we output the response of the TPM to the public channel.
This means that, indeed, we are considering a more pessimistic scenario, since the adver-
sary has full control on this output. However, since the TPM is a trusted component and
the adversary does not have access to internal secrets such as the EK or private parts of
the objects, this approach has worked well in many occasions. That is, in most cases, we
can assume that the output of the TPM is available to the adversary to prove the security
properties we are interested in.

3. Direct usage of multiset rewrite rules. The SAPiC calculus has an advanced (and often
discouraged) feature which allows direct access to the multiset rewrite system of Tamarin.
See Table 3.1 above. In order to emulate an asynchronous message transfer between the
Router and the TPM, we use the following templates to make calls at the Router process
and receive calls at the TPM process:

//Template for sending a TPM command (Router process)

let pat_tpm_send_command = <TPM_CommandCode, param_1, ..., param_k> in

[]�-[]->[TpmCommandNameIn(pat_tpm_send_command)];

P

//Template for receiving a TPM command (TPM process)

let pat_tpm_send_receive = <TPM_CommandCode, param_1, ..., param_k> in

[TpmCommandNameIn(pat_tpm_send_command)]�-[]->[];

Q //TPM processess command here.

FutureTPM D3.5 PU Page 18 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Note that the state fact TpmCommandNameIn(pat_tpm_send_command) is produced by the
Router, consumed by the TPM process, and it is not availble to the adversary at any time
point. A similar approach can be devised for the TPM outputs, i.e., the TPM produces a
state fact that is consumed by the Router process.

As commented above, our model required a combination of these approaches to specific TPM
calls in order to be able to prove the desired security properties and reach termination, and
examples of those alternatives can be found in the code listings in Section 3.3 below. Clearly, if
a security property holds in a channel specified with the strategies discussed above, then it will
also hold for a private channel.

Partial deconstructions and non-termination We have also discussed in Deliverable D3.4 [11]
that when modelling in Tamarin, it is sometimes the case that the tool encounters partial decon-
structions left (also known as open chains), complicating the proof of a security property by either
taking a very long time, or not terminating. One of the reasons that causes this malfunction is
that when modelling certain protocols with complex interactions between the processes or per-
sistent state, such as the device management use case, even if we don’t explicitly model the
secure communications between the parties involved, the protocols use cryptography to protect
secrets that are exchanged. However, if the adversary forwards an encrypted, unknown secret
to a process, then it can be the case that the process might decrypt or, in general, execute an
operation unavailable to the adversary, and then output the result of this operation. If Tamarin
identifies that a process outputs a processed message, then it cannot exclude the possibility that
this message represents an “useful” knowledge for the adversary. Therefore, Tamarin concludes
that such honest processes can be regarded as an oracle, e.g., a decryption oracle, and it might
try to use it unsuccessfully to derive a key that it needs to decrypt another term.

Partial deconstructions occur in the pre-processing step of the verification of the protocol, when
Tamarin tries to identify all the possible sources for all the state facts used in the protocol (see [18]
for more details). As we will see in the next chapter, this happens in the AK certification process
of the device management use case, particularly when using our models for the TPM commands
TPM2_MakeCredential and TPM2_ActivateCredential. We tackle this problems by using a
sources lemma, in order to guide the proof and help Tamarin terminate. More concretely, as
discussed in Deliverable D3.4 [11], partial deconstructions occur in this case when the tool is
unable to identify the origin of the fresh value for the∼challenge in the PCA protocol for certifying
the AK creation.

We remark that partial deconstructions and non-termination are two related but not directly de-
pendent issues, i.e., one does not directly imply the other. Removing partial deconstructions
often helps to achieve termination, but this is not always the case. Non-termination heavily de-
pends on the efficiency of the heuristics, and it can sometimes change drastically even with minor
modifications of the model. Therefore, we had to find the appropriate approaches in modelling
the different components in order to achieve termination in the verification of the required security
properties.

3.2 Recap of the AK Certification Model

In this section we present a brief overview of the work that was done in Deliverable D3.4 [11,
Chapter 4] for the security modelling of the AK certification process in the device management
use case, based on the abstraction described in Figure 2.1 above. This is the final version of

FutureTPM D3.5 PU Page 19 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let main_process =
2 (TPM || Router || RANMSServer)
3

4 //TPM objects
5 new ∼ek_sk;
6 let ek_pk = pk(∼ek_sk) in
7 out(ek_pk);
8

9 event SecretKey('EK', ∼ek_sk);
10

11 new ∼ek_h;
12 out(∼ek_h);
13

14 //Router objects
15 new ∼RouterID;
16 out(∼RouterID);
17

18 //RA objects
19 new ∼ServerID;
20 out(∼ServerID);

21 new ∼ssk_ra;
22 let spk_ra = pk(∼ssk_ra) in
23 out(spk_ra);
24

25 event SecretKey('RAK', ∼ssk_ra);
26

27 //NMS objects
28 new ∼ssk_nms;
29 let spk_nms = pk(∼ssk_nms) in
30 out(spk_nms);
31

32 event SecretKey('NMS', ∼ssk_nms);
33

34 main_process

Figure 3.2: The main process for AK certification in SAPiC

the model for the AK certification in that it also contains the necessary events that will be used in
Section 4.1 in order to capture the security properties that are relevant to this process.

Initialization and main process. In the device management use case, the EK is the parent
key of the AK in an endorsement hierarchy. Recall from Deliverable D3.4 [11] modelling this
key hierarchy is out of the scope of our models, and hence we assume that the EK pair, de-
noted (∼ek_sk, ek_pk) and the EK handle ∼ek_h are generated as global variables and avail-
able to the corresponding parties. In addition, we also assume that the RA/NMS Server pro-
cess has two pairs of signing keys (∼ssk_ra, spk_ra) corresponding to the RA Server and
(∼ssk_nms, spk_nms) corresponding to the NMS. Given any fresh private key ∼k_priv, we can
generate its associated public key via the function application k_pub = pk(∼k_priv).

The main process is depicted in Figure 3.2, and it is triggered at line 34. It essentially creates
the private keys and the associated public keys available to all the processes and the adversary,
a number of identifiers (RouterID and ServerID) used for convenience when defining the security
properties, and it runs the TPM, Router and RA/NMS Server processes in parallel.

3.2.1 The TPM Process

Now, we describe our model for the TPM process. According to Figure 2.1, for the AK certifica-
tion process, the Router requires four TPM commands: TPM2_StartAuthSession, TPM2_Create,
TPM2_Load and TPM2_ActivateCredential. Actually, as we have mentioned above, there is a
fifth TPM command that is executed by the Server, namely TPM2_MakeCredential. The ideal
functionalities for these five TPM commands are presented in Deliverable D3.3 [10] and D3.4 [11].
Recall from Section 2.1 that the command TPM2_MakeCredential makes no use of secret infor-
mation (i.e., it is only provided in the TPM specification for convenience) and is executed by the
RA Server either using a software TPM, or by implementing the operations described in the TPM

FutureTPM D3.5 PU Page 20 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let TPM =
2 insert 〈 'authPolicy', ∼ek_h〉, nil;
3 insert 〈 'privatePart' , ∼ek_h〉, ∼ek_sk;
4 insert 〈 'publicPart' , ∼ek_h〉, ek_pk;
5 insert 'PCR', nil;
6

7 !(
8 //TPM2_Create
9 (

10 let pat_tpm_command =
11 〈'TPM2_Create', authPolicy〉 in
12 in(pat_tpm_command);
13 event TPM_ReceiveCommand(...);
14 new ∼k_h;
15 new ∼k_sk;
16 lock 'device';
17 let k_pk = pk(∼k_sk) in
18 insert 〈'authPolicy', ∼k_h〉, authPolicy;
19 insert 〈'privatePart' , ∼k_h〉, ∼k_sk;
20 event SecretKey('AK', ∼k_sk);
21 insert 〈'publicPart' , ∼k_h〉, k_pk;
22 out(〈∼k_h, k_pk〉);
23 unlock 'device'
24) ||
25 //TPM2_StartAuthSession
26 (
27 let pat_tpm_command =
28 〈'TPM2_StartAuthSession'〉 in
29 in(pat_tpm_command);
30 event TPM_ReceiveCommand(...);
31 new ∼s_h;
32 lock 'device';
33 insert 〈'policyDigest' , ∼s_h〉, nil;
34 out(∼s_h);
35 unlock 'device'
36) ||

37 //TPM2_ActivateCredential
38 (
39 let pat_tpm_command =
40 〈'TPM2_ActivateCredential', a_h, a_sh,
41 k_h, credBlob〉 in
42 in(pat_tpm_command);
43 event TPM_ReceiveCommand(...);
44

45 lock 'device';
46

47 lookup 〈'policyDigest', a_sh〉 as a_sh_pd in
48 lookup 〈'authPolicy', a_h〉 as a_ap in
49

50 if a_ap = a_sh_pd then
51 lookup 〈'publicPart', a_h〉 as a_pk in
52 lookup 〈'privatePart', k_h〉 as k_sk in
53

54 if verifyCredential(a_pk, k_sk, credBlob) = true then
55 let challenge =
56 activateCredential(a_pk, k_sk, credBlob) in
57 event Receive(challenge);
58 []--[]-> [Tpm2ActivateOut(challenge)];
59 unlock 'device'
60 else
61 unlock 'device'
62 else
63 unlock 'device'
64)
65)

Figure 3.3: The TPM process for AK certification in SAPiC

specification [23, Section 24] (see also Deliverable D3.4 [11, Figure 2.2]), without involving a
TPM. For this reason, we exclude this function from our model.

Recall also from Deliverable D3.4 [11], that we do not need to model the command TPM2_Load,
since we can assume that the handle of the AK is returned by the TPM2_Create command.
Therefore, our model for the TPM process in the AK certification consists of three ideal function-
alities, namely: FTPM2_StartAuthSession, FTPM2_Create and FTPM2_ActivateCredential. The SAPiC code for
the TPM process is presented in Figure 3.3. At the beginning of the TPM process, we initialize
the authorization policy of the EK to zero, as well as its private and public parts. In addition, we
also initialize the PCR value to zero. The initialization of the TPM process is followed by the three
ideal functionalities, which are under replication and in parallel composition, in order to denote
the fact that multiple calls are allowed to each method.

FutureTPM D3.5 PU Page 21 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let Router =
2 (
3 new ∼fqdn_router;
4 out(∼fqdn_router);
5

6 new ∼tid;
7 out(∼tid);
8

9 let pat_cert_nms =
10 〈〈spk_ra, fqdn_nms〉, signature_cert_nms〉 in
11 in(pat_cert_nms);
12 if verify (signature_cert_nms, ...) = true then
13 event HasKey('NMS', ∼RouterID, spk_nms);
14

15 let pat_tpm_command1 =
16 〈 'TPM2_Create', nil〉 in
17 event TPM_SendCommand(...);
18 out(pat_tpm_command1);
19 in(〈ak_h, ak_spk〉);
20

21 out(〈'RA_enrollrequest', ∼fqdn_router,
22 ek_pk, ak_spk〉);
23 in(〈'RA_enrollrequest_resp', credentialBlob〉);
24

25 let pat_tpm_command2 =
26 〈 'TPM2_StartAuthSession'〉 in
27 event TPM_SendCommand(...);
28 out(pat_tpm_command2);
29 in(ak_sh);

30 event GenerateAK(∼tid, ak_spk);
31 event HasKey('EK', ∼RouterID, ek_pk);
32

33 let pat_tpm_command3 =
34 〈'TPM2_ActivateCredential', ak_h, ak_sh,
35 ∼ek_h, credBlob〉 in
36 event TPM_SendCommand(pat_tpm_command3);
37 out(pat_tpm_command3);
38 [Tpm2ActivateOut(challenge)]--[]-〉 [];
39

40 event RouterRunning(∼RouterID, ∼ServerID, challenge);
41

42 out(〈'RA_enrollcert', challenge〉) ;
43

44 let cert_ak =
45 〈〈ak_spk, ∼fqdn_router〉, signature_cert_ak〉 in
46 in(〈'RA_enrollcert_resp', cert_ak〉);
47

48 if verify (signature_cert_ak, ...) = true then
49 event RouterCommit(∼RouterID, ∼ServerID, cert_ak);
50 event ReceiveCertAK(∼RouterID, cert_ak);
51 event HasKey('RA', ∼RouterID, spk_ra);
52 event HasKey('AK', ∼RouterID, ak_spk);
53 event RouterFinish()
54)

Figure 3.4: The Router process for AK certification in SAPiC

3.2.2 The Router Process

Figure 3.4 describes the Router process model in SAPiC. This process is not under replication,
as we are proving the security for a single Router, and we assume that each Router executes the
enrollment phase only once. Each Router is associated to a unique (fresh) Fully Qualified Domain
Name (FQDN) represented by the value ∼fqdn_router at the beginning of the Router process,
and a Router identifier, represented by the value ∼RouterID, which is defined in the main pro-
cess. The reason for defining the Router identifier is merely for convenience in expressing some
of the security properties in a standard way, according to [17].

In lines 9–12, the Router receives the RA Server public key certificate and verifies it using the cor-
responding public key spk_ra. In lines 15–17, the Router calls the ideal functionality FTPM2_Create

in order to create the AK, and receives the AK handle ak_h and its public part ak_spk from the
TPM. Then, the Router outputs the message:

〈`RA_enrollrequest', ∼fqdn_router, ek_pk, ak_spk〉,

in order to initiate the enrollment process through the PCA protocol. The response to this request
is received from the RA Server, which is described by the message

〈`RA_enrollrequest_resp', credentialBlob〉.

The credentialBlob value is essentially the output of TPM2_MakeCredential, executed at the
RA/NMS Server side. The Router calls the ideal functionality FTPM2_StartAuthSession in order to

FutureTPM D3.5 PU Page 22 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let RANMSServer =
2 !(
3 new ∼fqdn_nms;
4 out(∼fqdn_nms);
5 let cert_ra = 〈〈spk_ra, ∼fqdn_nms〉, sign(〈spk_ra, ∼fqdn_nms〉, ∼ssk_nms)〉 in
6 out(cert_ra);
7

8 in(〈'RA_enrollrequest', fqdn_router, ek_pk, ak_spk〉);
9

10 new ∼challenge;
11 event Source(∼challenge);
12 let credentialBlob = makeCredential(ek_pk, ∼challenge, ak_spk) in
13 out(〈'RA_enrollrequest_resp', credentialBlob〉);
14

15 in(〈'RA_enrollcert', ∼challenge〉);
16

17 let cert_ak = 〈〈ak_spk, fqdn_router〉, sign(〈ak_spk, fqdn_router〉, ∼ssk_ra)〉 in
18

19 event GenerateCertAK(∼ServerID, cert_ak);
20 event ServerRunning(∼ServerID, ∼RouterID, cert_ak);
21 event ServerCommit(∼ServerID, ∼RouterID, ∼challenge);
22 out(〈'RA_enrollcert_resp', cert_ak〉);
23

24 event HasKey('AK', ∼ServerID, ak_spk);
25 event HasKey('NMS', ∼ServerID, spk_nms);
26 event HasKey('RA', ∼ServerID, spk_ra);
27 event HasKey('EK', ∼ServerID, ek_pk);
28 event ServerFinish()
29)

Figure 3.5: The RA/NMS Server process for AK certification in SAPiC

create a session handle ak_sh for the AK (lines 33–37) and then calls the ideal functionality
FTPM2_ActivateCredential, with input the the AK session handle ak_sh, the EK handle ∼ek_h, the
AK handle ak_h and the credentialBlob that was received from the Server. According to the
description of FTPM2_ActivateCredential in Figure 3.3, the TPM will output the value challenge that
was initially generated by the RA/NMS Server. The Router outputs this value in the message
< `RA_enrollcert', challenge >, providing evidence of the authenticity of the Router to the
RA/NMS Server, which will create the AK certificate. Finally, the Router receives the AK certificate
cert_ak and verifies its correctness using the RA Server public key spk_ra (lines 44–48).

3.2.3 The RA/NMS Server Process

Our model for the aggregated RA/NMS Server in SAPiC is presented in Figure 3.5. We also
declare a public ∼ServerID in the main process for the same convenience reason as we did in
the Router process above. The RA/NMS Server receives the following request from the Router

〈`RA_enrollrequest', fqdn_router, ek_pk, ak_spk〉,

which initiates the enrollment process.

We note that in this statement, ek_pk is pattern-matched with the value that the Server expects,
i.e., the registered EK. This models the fact that the RA/NMS Server will only proceed in the next

FutureTPM D3.5 PU Page 23 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

steps of the protocol, if ek_pk matches with the value in its trusted, local database. Next, the
RA/NMS Server creates a fresh challenge and executes the function symbol

makeCredential(ek_pk,∼challenge, ak_spk),

which emulates the execution of the TPM2_MakeCredential call of a local TPM. The output is the
credentialBlob, which is cryptographically bound to the AK and EK, and it is sent to the Router
in line 13 through the message:

〈`RA_enrollrequest_resp', credentialBlob〉.

The Router will receive the credentialBlob value and will proceed by executing the ideal func-
tionality FTPM2_ActivateCredential, in order to obtain and verify the challenge value.

In the abstract description of the TPM command TPM2_MakeCredential [11, Section 2.1], we
see that this command involves a symmetric encryption operation (for encrypting the challenge)
and an HMAC computation (for ensuring the challenge authenticity). In turn, the command
TPM2_ActivateCredential involves the decryption and the HMAC verification. As we discussed
in the Introduction, the ideal functionalities for both commands should exclude these crypto-
graphic operations. We can do this by defining three function symbols makeCredential/3,
activateCredential/3 and verifyCredential/3, satisfying the equational theories:

activateCredential(n, k, makeCredential(pk(k), m, n)) = m

verifyCredential(n, k, makeCredential(pk(k), m, n)) = true

The RA/NMS Server receives the challenge from the Router and it pattern matches with the pre-
viously created value at line 15. If the expected value is received, the RA/NMS Server proceeds
by creating the AK certificate cert_ak. This is done in line 17:

cert_ak = 〈〈ak_spk, fqdn_router〉, sign(〈ak_spk, fqdn_router〉, ∼ssk_ra)〉,

where the first part, namely 〈ak_spk, fqdn_router〉 is provided for clarity, and the second part
is the signature on that message. This is output to the public channel, and forwarded (by the
adversary) to the Router via the message 〈`RA_enrollcert_resp', cert_ak〉 (line 22).

3.3 Modelling of TLS Certification

We now proceed with the second part of the device management modelling, which is the creation
of a TLS signing key pair by the Router using the TPM, and its certification by the RA/NMS
Server. As in the AK certification process, we are interested in the interactions between the three
processes: the Router, the TPM and the RA/NMS Server. The main process description is fairly
similar to the case of the AK certification process, except for the fact that we also regard the AK
as available to the honest parties, and we omit it from the discussion for brevity.

3.3.1 The TPM Process

Recall from Section 2.2 that the TPM commands that are needed for the creation of the TLS key
are TPM2_StartAuthSession, TPM2_Create, and TPM2_Load, where the modelling of the latter
command is not required in our ideal-functionality framework. The ideal functionalities for the first

FutureTPM D3.5 PU Page 24 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let TPM =
2 insert 〈 'authPolicy', ∼ak_h〉, nil;
3 insert 〈 'privatePart' , ∼ak_h〉, ∼ak_sk;
4 insert 〈 'publicPart' , ∼ak_h〉, ak_pk;
5 insert 'PCR', nil;
6

7 !(
8 //TPM2_PCR_Extend
9 (

10 let pat_tpm_command =
11 〈'TPM2_PCR_Extend', value〉 in
12 in(pat_tpm_command);
13 event TPM_ReceiveCommand(...);
14

15 lock 'device';
16 lookup 'PCR' as pcr in
17 insert 'PCR', 〈value, pcr〉;
18 unlock 'device'
19) ||
20 //TPM2_StartAuthSession
21 (
22 let pat_tpm_command =
23 〈'TPM2_StartAuthSession'〉 in
24 in(pat_tpm_command);
25 event TPM_ReceiveCommand(...);
26 new ∼s_h;
27 lock 'device';
28 insert 〈'policyDigest' , ∼s_h〉, nil;
29 event CreateHandle(∼s_h);
30 out(∼s_h);
31 unlock 'device';
32 0
33) ||
34 //TPM2_PolicyPCR
35 (
36 let pat_tpm_command =
37 〈 'TPM2_PolicyPCR', s_h〉 in
38 in(pat_tpm_command);
39 event TPM_ReceiveCommand(...);
40

41 lock 'device';
42 lookup 'PCR' as pcrL in
43 lookup 〈'policyDigest', s_h〉 as pL in
44 event PolicyPCR(s_h, pL);
45 insert 〈'policyDigest' , s_h〉,
46 〈pcrL, 'TPM_CC_PolicyPCR', pL〉;
47 unlock 'device'
48) ||

49 //TPM2_Create
50 (
51 let pat_tpm_command =
52 〈'TPM2_Create', authPolicy〉 in
53 in(pat_tpm_command);
54 event TPM_ReceiveCommand(...);
55 new ∼k_h;
56 new ∼k_sk;
57 event SecretKey('TLS', ∼k_sk);
58 lock 'device';
59 let k_pk = pk(∼k_sk) in
60 insert 〈'authPolicy', ∼k_h〉, authPolicy;
61 insert 〈'privatePart' , ∼k_h〉, ∼k_sk;
62 insert 〈'publicPart' , ∼k_h〉, k_pk;
63 []--[]-> [Tpm2CreateOut(〈∼k_h, k_pk〉)];
64 unlock 'device'
65) ||
66 //TPM2_Certify
67 (
68 let pat_tpm_command =
69 〈'TPM2_Certify', obj_sh, obj_h, a_h〉 in
70 in(pat_tpm_command);
71 event TPM_ReceiveCommand(...);
72 lock 'device';
73

74 lookup 〈'policyDigest', obj_sh〉 as obj_pd in
75 lookup 〈'authPolicy', obj_h〉 as obj_ap in
76

77 if obj_pd = obj_ap then
78 lookup 〈'publicPart', obj_h〉 as obj_pk in
79 lookup 〈'privatePart', a_h〉 as a_sk in
80 out(sign(〈obj_pk, obj_ap〉, a_sk));
81 unlock 'device'
82 else
83 unlock 'device'
84) ||
85 //TPM2_Sign
86 (
87 let pat_tpm_command = 〈'TPM2_Sign', k_sh, k_h, m〉 in
88 in(pat_tpm_command);
89 event TPM_ReceiveCommand(...);
90 lock 'device';
91

92 lookup 〈'policyDigest', k_sh〉 as k_pd in
93 lookup 〈'authPolicy', k_h〉 as k_ap in
94

95 if k_pd = k_ap then
96 lookup 〈'privatePart', k_h〉 as k_sk in
97 []--[]-> [Tpm2SignOut(sign(m, k_sk))];
98 unlock 'device'
99 else

100 unlock 'device'
101)
102)

Figure 3.6: The TPM process for TLS certification in SAPiC

FutureTPM D3.5 PU Page 25 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

two commands have already been presented in the previous section. Since the TLS key is linked
to a PCR policy, we also need to model the commands TPM2_PCRExtend and TPM2_PolicyPCR.
The ideal functionalities FTPM2_PCRExtend and FTPM2_PolicyPCR were presented in detail in Deliverable
D3.3 [10] and they are also described in the model for the TPM in this phase, in Figure 3.6.

The main operation of the command TPM2_PCRExtend is to extend a value provided by the
caller to specific PCRs. As described in the TPM specification, the command extends value by
updating the pcrDigest value of a PCR as:

pcrDigest← H(pcrDigest||value).

In other words, this means that each value of the PCR corresponds to a chain of hash values.
Since the intention of the ideal functionalities is to replace the cryptography used internally by the
TPM with non-cryptographic approaches, in our ideal functionality FTPM2_PCRExtend, we represent
this chain of hash values by simply appending each value to a PCR list pcr. More concretely,
we write:

pcr← 〈value, pcr〉,
to denote that value has been appended (equivalently, extended) to the PCR list pcr. This can
be seen in line 17 in Figure 3.6.

The same approach is also applied in the case of the ideal functionality FTPM2_PolicyPCR. That is,
the policy digest of a session is considered as a list pL and in order to update this policy digest
with a PCR value, we simply append pcrL and the constant `TPM_CC_PolicyPCR' to the policy
digest list pL. The constant value `TPM_CC_PolicyPCR' is added as an indication, showing which
policy type was used for updating the policy digest of the session. This is described as

pL← 〈pcrL, `TPM_CC_PolicyPCR', pL〉,

and is implemented at lines 42–46 in Figure 3.6.

According to the description of the TLS certification process in Section 2.2, once the TLS key
has been created, it needs to be certified using TPM2_Certify command, in order to create the
SKAE signature that will be included in the CSR. The idealization of this command was presented
in Deliverable D3.4 [11, Figure 3.1] and it is also described in Figure 3.6. Furthermore, we
have also modelled the command TPM2_Sign, which is used by the Router in order to create the
signature of the CSR. This is also described in Deliverable D3.4 [11, Figure 3.4] and in Figure 3.6.
Note that both commands generate a signature, therefore we use the Tamarin builtin theory
for signing sign/2 and for verifying the output verify/3, related by the well-known equation
verify(sign(m, sk), m, pk(sk)) = true.

3.3.2 The Router Process

The model for the Router in the TLS certification phase is described in Figure 3.7. We model
the fact that the PCR is first extended with an publicly known software state. The next step is to
create the TLS key by calling the ideal functionality FTPM2_Create, with input the authorization policy
for the key tls_authPolicy, namely:

tls_authPolicy = 〈〈swstate, nil〉︸ ︷︷ ︸
expected PCR value

, `TPM_CC_PolicyPCR', nil〉,

where 〈swstate, nil〉 corresponds to the current PCR list and swstate represents the current
(trusted) state of the Router. The TPM returns the handle tls_h of the TLS key and its public

FutureTPM D3.5 PU Page 26 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let Router =
2 (
3 new ∼tid;
4

5 let pat_tpm_command0 =
6 〈'TPM2_PCR_Extend', swstate〉 in
7 event TPM_SendCommand(...);
8 out(pat_tpm_command0);
9

10 let tls_authPolicy =
11 〈〈swstate, nil〉, 'TPM_CC_PolicyPCR', nil〉 in
12 let pat_tpm_command1 =
13 〈 'TPM2_Create', tls_authPolicy〉 in
14 event TPM_SendCommand(...);
15 out(pat_tpm_command1);
16

17 [Tpm2CreateOut(〈tls_h, tls_spk〉)]--[]-〉 [];
18

19 event HasKey('TLS', ∼RouterID, tls_spk);
20

21 let pat_tpm_command2 =
22 〈'TPM2_StartAuthSession'〉 in
23 event TPM_SendCommand(...);
24 out(pat_tpm_command2);
25 in(tls_sh);
26

27 event GenerateTLS(∼tid, tls_spk);
28

29 let pat_tpm_command3 =
30 〈'TPM2_PolicyPCR', tls_sh〉 in
31 event TPM_SendCommand(...);
32 out(pat_tpm_command3);

33 let pat_tpm_command4 =
34 〈'TPM2_Certify', tls_sh, tls_h, ∼ak_h〉 in
35 event TPM_SendCommand(...);
36 out(pat_tpm_command4);
37 in(skae);
38

39 event RouterUseTLS(tls_spk);
40

41 event HasKey('AK', ∼RouterID, ak_pk);
42

43 if verify (skae, ...) = true then
44 let pat_tpm_command5 =
45 〈 'TPM2_Sign', tls_sh, tls_h,
46 〈tls_spk, skae〉〉 in
47 event TPM_SendCommand(...);
48 out(pat_tpm_command5);
49 [Tpm2SignOut(csr)]--[]-〉 [];
50

51 event GenerateValue('CSR', ∼RouterID, csr);
52 event RouterRunning(∼RouterID, ∼ServerID, ...);
53 out(〈〈tls_spk, skae〉, csr〉) ;
54

55 event HasKey('NMS', ∼RouterID, spk_nms);
56

57 in(〈tls_spk, signature_cert_tls〉);
58 if verify(signature_cert_tls, ...) = true then
59 event RouterCommit(∼RouterID, ∼ServerID, ...);
60 event RouterFinish()
61)

Figure 3.7: The Router process for TLS certification in SAPiC

part tls_spk to the Router. Then, the Router calls the ideal functionality FTPM2_StartAuthSession in
order to create a new policy session with handle tls_sh, and then calls the ideal functionality
FTPM2_PolicyPCR in order to update the policy digest in that policy session. Note that according to
the description of FTPM2_PolicyPCR, this policy digest should be updated to

〈pcrL, `TPM_CC_PolicyPCR', nil〉,

hence it should coincide with the authPolicy of the created TLS key.

Next, the Router calls the ideal functionality FTPM2_Certify, in order to create the SKAE for the TLS
key at line 34. According to Figure 3.6, this SKAE is the signature on the public part of the TLS
key and its authorization policy with the private part of the AK, that is,

skae = sign(〈tls_spk, tls_authPolicy〉, ak_ssk).

For convenience, we assume that the Router process verifies this value at line 43.

The Router creates the CSR, calling the command TPM2_Sign, which in our model is the signature
on the message 〈tls_spk, skae〉, using the private part of the TLS key:

signature_csr = sign(〈tls_spk, skae〉, tls_ssk),

FutureTPM D3.5 PU Page 27 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let RANMSServer =
2 !(
3 let tls_authPolicy = 〈〈swstate, nil 〉 , 'TPM_CC_PolicyPCR', nil〉 in
4

5 in(〈〈tls_spk, skae〉 , signature_csr〉);
6

7 if verify (skae, 〈tls_spk, tls_authPolicy〉, ak_pk) = true then
8 if verify (signature_csr, 〈tls_spk, skae〉 , tls_spk) = true then
9 event ReceiveValue('CSR', ∼ServerID, csr);

10 event HasKey('TLS', ∼ServerID, tls_spk);
11 event HasKey('AK', ∼ServerID, ak_pk);
12 event HasKey('NMS', ∼ServerID, spk_nms);
13

14 event ServerCommit(∼ServerID, ∼RouterID, 〈tls_spk, swstate, ak_pk〉);
15

16 let pat_cert_tls = 〈tls_spk, sign(tls_spk, ∼ssk_nms)〉 in
17 event ServerRunning(∼ServerID, ∼RouterID, pat_cert_tls);
18 out(pat_cert_tls);
19 event ServerFinish()
20)

Figure 3.8: The RA/NMS Server process for TLS certification in SAPiC

which is sent to the RA/NMS Server for verification. The last action of the Router in the TLS
certification process is to receive the TLS certificate <tls_spk, signature_cert_tls> by the
RA/NMS Server, and verify its correctness:

verify(signature_cert_tls, tls_spk, spk_nms) = true.

3.3.3 The RA/NMS Server Process

The modelling for the RA/NMS Server process in the case of the TLS certification phase is pre-
sented in Figure 3.8. The main actions of the RA/NMS Server in the TLS certification process
are to verify the SKAE and CSR received from the Router, and the creation of the TLS certificate.
Since we are modelling the NMS and the RA Servers as a single process, we ignore the commu-
nication between these two entities and any interaction with local databases. Consequently, we
consider the creation of the TLS certificate in the same process.

The RA/NMS Server receives the message

〈〈tls_spk, skae〉, signature_csr〉

from the Router and verifies the signature_csr and skae values, using the public part of the
TLS and AK keys, respectively (lines 7–8):

if verify(skae, 〈tls_spk, tls_authPolicy〉, ak_spk) = true then

if verify(signature_csr, 〈tls_spk, skae〉, tls_spk) = true then

Finally, the RA/NMS Server creates the TLS certificate by signing the public part of the TLS key
tls_spk with its secret signing key ∼ssk_nms, and outputs the TLS certificate:

out(〈tls_spk, sign(tls_spk,∼ssk_nms)〉).

FutureTPM D3.5 PU Page 28 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

3.4 Modelling of TLS Communication and Attestation

The last phase in the device management use case that we model is the establishment of the
secure communication channel between the Router and the NMS in order to provide attestation
reports. Recall from our description in Section 2.3 that, in this phase, both the TLS key and the
AK are used for different purposes. The TLS key is used between the Router and the NMS, in
order to establish a session key. This session key is a symmetric encryption key that allows the
Router and the NMS to exchange messages in an encrypted manner. Modelling this step in the
TLS communication is out of the scope in our objectives, where we mainly focus on the usage
of the AK. In particular, we model the ability of the Router to sign quotes using the command
TPM2_Quote and transmitting these quotes to the Server process. The NMS verifies these quotes,
using the public part of the AK, proving that the Router software is in correct, expected state. For
the encrypted TLS communication between the Router and the NMS, we assume that a secret
session key is established for symmetric encryption and it is available to the Router and the NMS.
We emulate this TLS session key establishment through the usage of a shared session key via
persistent state in SAPiC.

For our modelling purposes, we model two types of Routers, a “corrupted” and an “honest” one,
so that in each execution of the protocol, Tamarin will non-deterministically choose one of the two
versions. The “corrupted” Router is assumed to have access to the TPM and the session key,
and hence it can sign quotes and transmit them to the NMS, but we assume that it is not in a
correct integrity state. The purpose in this case is to prove that the NMS will not accept quotes
from a Router whose integrity values do not match the expected ones.

3.4.1 The TPM Process

As we already described in Section 2.3 above, there one additional TPM command that needs
to be modelled, the TPM2_Quote. The ideal functionality FTPM2_Quote is presented in Figure 3.9.
As described in Figure 2.3, the main action of the ideal functionality FTPM2_Quote is to create a
signature on certain externally provided data and selected PCRs, using a signing key. This key
in our model is the AK that is previously generated by the Router and is certified by the Server.
However, since we consider this phase independent from the AK certification, we assume that
the AK is a global key and its public part is available to the corresponding parties.

FutureTPM D3.5 PU Page 29 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let TPM =
2 insert 〈 'authPolicy', ∼ak_h〉, nil;
3 insert 〈 'privatePart' , ∼ak_h〉, ∼ak_sk;
4 insert 〈 'publicPart' , ∼ak_h〉, ak_pk;
5

6 insert 〈 'policyDigest' , ∼ak_sh〉, nil;
7

8 insert 〈 'authPolicy', ∼tls_h〉, 〈〈swstate, nil 〉 , 'TPM_CC_PolicyPCR', nil〉;
9 insert 〈 'privatePart' , ∼tls_h〉, ∼tls_sk;

10 insert 〈 'publicPart' , ∼tls_h〉, tls_pk;
11

12 //TPM2_Quote
13 !(
14 let pat_tpm_command = 〈'TPM2_Quote', k_h, k_sh, data〉 in
15 [Tpm2QuoteIn(tid, pat_tpm_command)]--[]-〉 [];
16 event TPM_ReceiveCommand(pat_tpm_command);
17

18 lock 'device' ;
19 lookup 'PCR' as pcr in
20 lookup 〈'authPolicy', k_h〉 as aP in
21 lookup 〈'policyDigest', k_sh〉 as pD in
22

23 if pD = aP then
24 lookup 〈'privatePart', k_h〉 as k_privatePart in
25 []--[]-> [Tpm2QuoteOut(tid, sign(〈data, pcr〉, k_privatePart))];
26 unlock 'device'
27 else
28 unlock 'device'
29)

Figure 3.9: The TPM process for TLS connection in SAPiC

FutureTPM D3.5 PU Page 30 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let Router =
2 (
3 (
4 insert 'PCR', 〈'x', swstate, nil 〉 ;
5 insert 〈 'policyDigest' , ∼tls_sh〉,
6 〈〈'x', swstate, nil 〉 , 'TPM_CC_PolicyPCR', nil〉;
7

8 event Corrupted();
9

10 !(
11 new ∼tid;
12

13 event HasKey('AK', ∼RouterID, ak_pk);
14

15 lookup 'session_key' as sess_key in
16 in(encrypted_qData);
17 let qData =
18 sdec(encrypted_qData, sess_key) in
19 event Receive(qData);
20

21 let pat_tpm_comm1 =
22 〈'TPM2_Quote', ∼ak_h, ∼ak_sh, qData〉 in
23 event TPM_SendCommand(...);
24 []--[]-> [Tpm2QuoteIn(∼tid, pat_tpm_comm1)];
25 [Tpm2QuoteOut(∼tid, quote)]--[]-〉 [];
26

27 event GenerateValue('QUOTE', ∼RouterID, quote);
28

29 let encrypted_quote = senc(quote, sess_key) in
30 event RouterRunning(∼RouterID, ∼ServerID, ...);
31 out(encrypted_quote);
32 event RouterFinish1()
33)
34) +

35 (
36 insert 'PCR', 〈swstate, nil 〉 ;
37 insert 〈 'policyDigest' , ∼tls_sh〉,
38 〈〈swstate, nil〉, 'TPM_CC_PolicyPCR', nil〉;
39

40 event Trusted();
41

42 !(
43 new ∼tid;
44

45 event HasKey('AK', ∼RouterID, ak_pk);
46

47 lookup 'session_key' as sess_key in
48 in(encrypted_qData);
49

50 let qData =
51 sdec(encrypted_qData, sess_key) in
52 event Receive(qData);
53

54 let pat_tpm_comm1 =
55 〈'TPM2_Quote', ∼ak_h, ∼ak_sh, qData〉 in
56 event TPM_SendCommand(...);
57 []--[]-> [Tpm2QuoteIn(∼tid, pat_tpm_comm1)];
58 [Tpm2QuoteOut(∼tid, quote)]--[]-〉 [];
59

60 event GenerateValue('QUOTE', ∼RouterID, quote);
61

62 let encrypted_quote = senc(quote, sess_key) in
63 event RouterRunning(∼RouterID, ∼ServerID, ...);
64 out(encrypted_quote);
65 event RouterFinish2()
66)
67)
68)

Figure 3.10: The Router process for TLS connection in SAPiC

3.4.2 The Router Process

As discussed above, we consider two integrity states of the Routers, depending on whether the
Router is in correct state (“trusted”) or not (“corrupted”). SAPiC has the non-deterministic choice
consctuct “+” that allows the tool to branch in one of these two cases. Our model for the Router
in this phase of the use case is presented in Figure 3.10.

We assume that the “trusted” Router has been extended the PCR with the expected software
hash measurements, and the PCR should be in the state <swstate, nil>. The “corrupted”
Router, on the other hand, has been extended with an additional measurement that reflects un-
expected software, and thus, the PCR is in the incorrect state <`x', swstate, nil>. This is the
only difference in the model of the two versions of the Router. All other actions follow in the same
way in both versions of the process.

In particular, the Router first establishes a shared TLS session key, which is emulated in lines
12 and 42. Then, it receives the encrypted_qData from the Server and decrypts it in order
to obtain the qualifying data qData, using the common session key session_key. It calls the
ideal functionality FTPM2_Quote, with input the handle ∼ak_h of the AK, the handle ∼ak_sh of the

FutureTPM D3.5 PU Page 31 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

1 let RANMSServer =
2 !(
3 new ∼tid;
4 new ∼session_key;
5 new ∼qData;
6

7 event GenerateKey(∼tid, ∼session_key);
8 event GenerateQData(∼tid, ∼qData);
9 event Source(∼qData);

10 event SecretKey('SessionKey', ∼session_key);
11

12 insert 'session_key', ∼session_key;
13

14 event HasKey('AK', ∼ServerID, ak_pk);
15

16 let encrypted_qData = senc(∼qData, ∼session_key) in
17 event NMSUseKey(∼session_key);
18 out(encrypted_qData);
19

20 in(encrypted_quote);
21 let quote = sdec(encrypted_quote, ∼session_key) in
22

23 if verify (sdec(encrypted_quote, ∼session_key), 〈∼qData, 〈swstate, nil〉〉, ak_pk) = true then
24 event ReceiveValue('QUOTE', ∼ServerID, quote);
25 event ServerCommit(∼ServerID, ∼RouterID, 〈∼qData, ∼session_key〉);
26 event ServerFinish()
27)

Figure 3.11: The RA/NMS Server process for TLS connection in SAPiC

corresponding policy session that is associated to the AK, and the received qualifying data qData.
We note here that in the input to the TPM, we have also considered an identifier ∼tid, in order
to distinguish the different executions of the protocol, as this will be required to prove adequately
the security properties. The TPM outputs the quote value which is the signature on the message
<qData, pcr> using the private part of the AK. This quote is then encrypted by the Router with
the session_key and the resulting ciphertext encrypted_quote is sent to the Server.

3.4.3 The RA/NMS Server Process

The RA/NMS Server initiates the establishment of the secure communication channel. It first em-
ulates the creation of a TLS session key, and then it creates a new value∼qData that corresponds
to the qualifying data and encrypts it with the session key. The ciphertext encrypted_qData is
then sent to the Router.

After receiving the encrypted_quote from the Router, the Server decrypts it using the common
session key session_key and obtains the quote value. Recall that this is a signature on the
message <qData, pcr> signed with the AK, and hence the Server can verify its validity using
the public part ak_pk of the AK.

FutureTPM D3.5 PU Page 32 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Chapter 4

Formalization and Verification of Security
Properties

In this chapter, we start by providing an intuitive description of the security properties that the
remote attestation scheme is designed to provide, in the context of integrity, confidentiality,
and secure measurement. Then we proceed with the description of these security properties
in the form of lemmas and their formal verification using the Tamarin prover. In particular, we will
consider a set of six main security properties:

Sanity-check lemmas: Such lemmas are necessary in order to ensure the correctness of the
model. More precisely, sanity-check lemmas are often used to show that the model exe-
cutes (reaches) all possible branches, and therefore, that the components reach the end
of the protocol. The remaining properties depend on satisfying this reachability property,
otherwise they might be trivially satisfied.

Availability of keys at honest processes: Such lemmas show that all honest parties have ini-
tial access to the trusted key material required, so that they can build the chain of trust.

Key freshness and secrecy: These lemmas ensure that the keys created during the protocol
execution are fresh and not available to the adversary. In Tamarin, we use the special
action fact K(m) to denote that the term m is known by the adversary.

Authentication: We consider the agreement property from Lowe’s hierarchy [17] in the param-
eters exchanged in the protocol. Whenever it is possible (e.g., for a session key), we also
require injective and mutual agreement. As depicted in Figure 4.1, this property is usually
encoded through the usage of the events “Running” and “Commit”. The placement of these
events has some flexibility, but not all placements are correct. The “Running” event must
be placed before the party A that is being authenticated sends its last message, and the
“Commit” event must be placed after the party B, to whom the authentication is being made,
receives the last message from A.

Transfer of information as generated: Such lemmas ensure that cryptographic material, such
as certificates or the TPM quotes, are received at the destination process as generated by
the process of origin.

No reuse of key: We make sure that a specific key is used only once (mainly used for session
keys).

FutureTPM D3.5 PU Page 33 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

A B

BCommit()

- Protocol starts -

.

.

.

Last message from A to B
ARunning()

Figure 4.1: Placement of Running and Commit events for the authentication (agreement) property

In what follows, we discuss these properties for the AK certification part in Section 4.1, for the
TLS certification in Section 4.2, and for the establishment of the secure communication channel
and attestation reporting in Section 4.3.

4.1 Security Properties for AK Certification

Sources lemma. Before delving into the security properties for this part, we discuss a required
sources lemma in order to remove partial deconstructions in this model. Recall from Chapter 3
that in the PCA-based IBM protocol the server generates a random value challenge and sends
it to the Router in protected form, namely inside the credentialBlob, which is the output of the
ideal functionality FTPM2_MakeCredential. The Router receives the credentialBlob, and retrieves the
challenge by using the ideal functionality FTPM2_ActivateCredential. As we discussed in Deliverable
D3.4 [11, Section 4.2], this caused partial deconstructions (open chains) left, which in turn made
the proof far more complicated, and even impossible to terminate. We tackled this problem using
a sources lemma.

More concretely, we introduce two events Source(challenge) and Receive(challenge). The
first is placed in the RA/NMS Server process, since this is the entity that initially generates the
challenge, while the second is placed in the TPM process, which is the entity that retrieves the
challenge from the credentialBlob. Then we define the following lemma:

lemma SourcesLemma [sources]:

"All m #t1. Receive(m)@t1 ==>

((Ex #t2. KU(m)@t2 & (t2 < t1)) | (Ex #t3. Source(m)@t3))"

This lemma states that whenever an honest process (Router) is able to retrieve a secret m, then
this m was either known beforehand by the adversary, or it was freshly created by another honest
process (RA/NMS Server). Since honest processes in our model do not leak keys, the lemma
helps Tamarin to realize that the output of the protocol can not be used by the adversary to gain
any additional information.

Sanity check. We introduce two events RouterFinish() and ServerFinish(). The first is
placed at the end of the Router process (Figure 3.4), right after the Router verifies the certificate

FutureTPM D3.5 PU Page 34 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

cert_ak received from the RA/NMS Server. The second is placed at the end of the RA/NMS
Server process, as shown in Figure 3.5, right after the Server outputs the AK certificate. We
define the sanity check lemmas for these events as

lemma RouterFinishes:

exists-trace

"Ex #t1. RouterFinish()@t1"

lemma ServerFinishes:

exists-trace

"Ex #t1. ServerFinish()@t1"

which ensure that the model has reached the events RouterFinish() and ServerFinish(), at
least once (exists-trace). Sanity lemmas are important as they ensure that the model executes
correctly. They must be proved before any other security property.

Availability of keys at honest processes. We need to prove that all honest processes, in this
case the Router and RA/NMS Server, have access to the keys required in order to successfully
and securely complete the AK certification process. For this purpose we define the event:

HasKey(label, process_id, k)

where label refers to the key identifier (e.g., AK key), process_id refers a unique identifier of
the process, and k to the actual key value. In the AK certification process we have four key pairs
that are created and for which we wish to verify that their public parts are available to the Router
and the Server. These are the EK ek_pk with label `EK', the RA signing key spk_ra with label
`RAK', the NMS signing key spk_nms with label `NMS', and the AK ak_spk with label `AK'.

Each of those events appears twice in the model, one time in each process. Then we define the
lemma:

lemma AvailabilityKey:

"All label id1 id2 k1 k2 #t1 #t2. not(id1 = id2) &

HasKey(label, id1, k1)@t1 & HasKey(label, id2, k2)@t2 ==> (k1 = k2)"

Note that the above is an “all-traces” lemma, meaning that we require the proof to hold for all
possible executions of the protocol, i.e., for all AK certification instances. The above lemma
states that whenever two events HasKey with the same label are launched at different processes,
then it must be the case that the associated key is the same in both processes.

Key freshness. We prove this property only for the public part of the AK, which is the only key
in our model that is created by the TPM. We define the event

GenerateAK(thread_id, k),

at the Router side, where thread_id is the thread identifier. Then we model the following lemma:

lemma FreshnessAK:

"All tid1 tid2 k #t1 #t2. GenerateAK(tid1, k)@t1 &

GenerateAK(tid2, k)@t2 ==> (tid1 = tid2)"

This lemma states that whenever an AK with public part k is created in two different thread
executions with identifiers tid1 and tid2 respectively, then these two thread executions are
actually the same, i.e., tid1 = tid2. Note that we want this property to hold for all thread
executions, hence this is also an “all-traces” lemma.

FutureTPM D3.5 PU Page 35 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Secrecy. We prove this property for the private parts of all keys that are used in the AK certi-
fication process. These are the RA Server’s key ssk_ra with label `RA', the NMS key ssk_nms

with label `NMS', the EK ek_sk with label `EK' and the AK ak_sk with label `AK'. We define the
event:

SecretKey(label, k_priv)

and we model the following lemma:

lemma SecretKey:

"All label k #t1. SecretKey(label, k)@t1 ==> (not (Ex #t2. K(k)@t2))"

where the special action fact K(k) denotes knowledge of the key k by the adversary. The above
lemma states that once the key k is referred by the event then the adversary has no knowledge
of it at any time point.

Correct transfer. We prove this property for the AK certificate cert_ak. In particular, we con-
sider the following two events:

GenerateCertAK(∼ServerID, cert_ak)

ReceiveCertAK(∼RouterID, cert_ak)

The first will be placed on the RA/NMS Server side, after the creation of the AK certificate, while
the second on the Router side, after the verification of the AK certificate. We require that the
following lemma hold:

lemma CorrectTransfer:

"All id1 m #t1. ReceiveCertAK(id1, m)@t1 ==>

(Ex id2 #t2. GenerateCertAK(id2, m)@t2 & (t2 < t1))"

The lemma states that whenever a Router with identifier RouterID receives a value m at a time-
point t1, then there exists a timepoint t2, in which a Server with identifier ServerID has sent this
value m.

Authentication. For authentication, as we discussed in Deliverable D3.4 [11, Section 4.5], we
consider the strongest possible version of the authentication property from Lowe’s hierarchy [17].
In this particular case, and since the Router executes the AK certification once at the beginning,
we model mutual, injective agreement. Some templates for authentication lemmas are provided
in the Tamarin manual [3], and we adopt them according to our requirements. We declare the
following events:

ServerRunning(∼ServerID, ∼RouterID, cert_ak)

RouterCommit(∼RouterID, ∼ServerID, cert_ak)

RouterRunning(∼RouterID, ∼ServerID, challenge)

ServerCommit(∼ServerID, ∼RouterID, ∼challenge)

That is, for each of the two processes, we introduce a “Commit” and a “Running” event. These
events must be appropriately placed: the “Running” event must be placed before the referenced
party sends its last message, and the corresponding “Commit” must be placed at the other party
after receiving that message. Thus, we define the following lemma:

FutureTPM D3.5 PU Page 36 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Lemma: SourcesLemma RouterFinishes ServerFinishes AvailabilityKey
Type: sources exists-trace exists-trace all-traces
Verified: yes yes yes yes
Steps: 70 37 29 1378

Lemma: FreshnessAK CorrectTransfer Authentication SecretKey
Type: all-traces all-traces all-traces all-traces
Verified: yes yes yes yes
Steps: 4 383 403 12

Table 4.1: Results for AK certification

lemma Authentication:

"(All X Y param #t1. RouterCommit(X, Y, param)@t1 ==>

((Ex #t2. ServerRunning(Y, X, param)@t2 & (t2 < t1))

& not(Ex X2 Y2 #t3. RouterCommit(X2, Y2, param)@t3 & not(#t3 = #t1))

)

) &

(All X Y param #t1. ServerCommit(X, Y, param)@t1 ==>

((Ex #t2. RouterRunning(Y, X, param)@t2 & (t2 < t1))

& not(Ex X2 Y2 #t3. ServerCommit(X2, Y2, param)@t3 & not(#t3 = #t1))

)

)"

The above lemma states that for each RouterCommit event executed by the Router X, then the
Server Y, executed the corresponding ServerRunning event earlier and for each run of the pro-
tocol there is a unique RouterCommit event executed by the Router. The converse occurs for the
events ServerCommit and RouterRunning.

Automated analysis results. The model for the AK certification, as well as all the above lem-
mas are contained in the file AK_model.sapic. We can run the verification of the lemmas through
the command:

tamarin-prover --prove AK_model.sapic

and it takes Tamarin around 1h (VM 3 cores, 4GB RAM on Intel(R) Core(TM) i5-4570 @ 3.20GHz)
to successfully verify all the above lemmas. Table 4.1 summarizes the results of this section.

4.2 Security Properties for TLS Certification

Sanity check. Similarly as in the case of the AK certification process, we define the events
RouterFinish() and ServerFinish() (see Figures 3.8 and 3.7), which signal the end of the
two processes. The last action of the RA/NMS Server is to output the TLS certificate it has
signed, with the private key of the NMS. On the other hand, the last action on the Router side is
to verify the TLS certificate it received. The sanity check lemmas are identical as the ones we
have for the AK certification, and we omit them here. The rest of the lemmas are verified using
replication for the TPM and RA/NMS Server processes.

FutureTPM D3.5 PU Page 37 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Availability of keys at honest processes. We prove that all honest processes, the Router and
RA/NMS Server, have access to the keys that are used in the TLS certification process. There
are three keys that are required here, the AK, the TLS key and the NMS singing key. Thus, we
define the event

HasKey(label, process_id, k),

as we did above in the case of the AK certification, and instantiate it with the labels `NMS', `AK' or
`TLS' accordingly. The template of the AvailabilityKey, therefore mimics the case discussed
above for the AK certification:

lemma AvailabilityKey:

"All label id1 id2 k1 k2 #t1 #t2. not(id1 = id2) &

HasKey(label, id1, k1)@t1 & HasKey(label, id2, k2)@t2 ==> (k1 = k2)"

Key freshness. We check this property for the TLS key, since this is created by the Router
using the TPM. More concretely, we define the event

GenerateTLS(thread_id, k)

where thread_id refers to the Router thread identifier. We model a similar lemma as we did for
the AK:

lemma FreshnessTLS:

"All tid1 tid2 k #t1 #t2. GenerateTLS(tid1, k)@t1 &

GenerateTLS(tid2, k)@t2 ==> (tid1 = tid2)"

In other words, there do not exist two different threads, for which the same TLS key is created.

Secrecy. Again, we verify that the secrecy property is satisfied for the private parts of all keys
that are used in the TLS certification phase. These are the TLS key tls_ssk with label `TLS',
the NMS private signing key ssk_nms with label `NMS', and the private part of the AK, ak_sk with
label `AK'. Following the modelling of the secrecy property in the AK phase, we define the event
SecretKey(label, k_priv) and the lemma SecretKey in a similar way.

Correct transfer. We model this property for the CSR that is generated by the Router and is
transferred to the RA/NMS Server. We create two events:

GenerateValue('CSR', ∼RouterID, csr)

ReceiveValue('CSR', ∼ServerID, csr)

and define the lemma:

lemma CorrectTransfer:

"All label id1 m #t1. ReceiveValue(label, id1, m)@t1 ==>

(Ex id2 #t2. GenerateValue(label, id2, m)@t2 & (t2 < t1))"

The lemma proves that whenever a Server with identifier ServerID receives a CSR at timepoint
t1, then there exists a timepoint t2, in which a Router with identifier RouterID has sent this
unmodified CSR.

FutureTPM D3.5 PU Page 38 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Lemma: RouterFinishes ServerFinishes AvailabilityKey FreshnessTLS
Type: exists-trace exists-trace all-traces all-traces
Verified: yes yes yes yes
Steps: 103 92 537 4

Lemma: CorrectTransfer Authentication SecretKey
Type: all-traces all-traces all-traces
Verified: yes yes yes
Steps: 406 2987 10

Table 4.2: Results for TLS certification

Authentication. In the authentication direction from Router to Server, we prove a non-injective
agreement for the parameters <tls_spk, swstate, ak_pk>. These parameters correspond to
the public parts of the TLS and AK keys and the expected software state swstate of the Router,
which is extended to the PCR. In the direction from Server to Router, we use the TLS certifi-
cate <tls_spk, signature_cert_tls> as the agreement parameter. Therefore, we require the
events

ServerRunning(∼ServerID, ∼RouterID, <tls_spk, signature_cert_tls>)

RouterCommit(∼RouterID, ∼ServerID, <tls_spk, signature_cert_tls>)

RouterRunning(∼RouterID, ∼ServerID, <tls_spk, swstate, ak_pk>)

ServerCommit(∼ServerID, ∼RouterID, <tls_spk, swstate, ak_pk>)

placed appropriately at the Router and at the RA/NMS Server processs. Then we model the
lemma

lemma Authentication:

"(All X Y param #t1. RouterCommit(X, Y, param)@t1 ==>

(Ex #t2. ServerRunning(Y, X, param)@t2 & (t2 < t1))

) &

(All X Y param #t1. ServerCommit(X, Y, param)@t1 ==>

(Ex #t2. RouterRunning(Y, X, param)@t2 & (t2 < t1))

)"

This lemma states that for each ServerCommit event executed by the Server X, then Router Y,
executed the corresponding RouterRunning event earlier. In other words, the Server will commit
to a set of parameters, in particular to the values <tls_spk, swstate, ak_pk>, if there is a
Router that was previously using these parameters. Similarly, it also states the agreement in the
other direction for the parameters <tls_spk, signature_cert_tls>.

Automated analysis results. The model for the TLS certification process and the correspond-
ing lemmas discussed in this section are presented in the file TLS_model.sapic. We can run the
command

tamarin-prover --prove TLS_model.sapic

to verify the lemmas presented, and it will take Tamarin around 1h (VM 3 cores, 4GB RAM on
Intel(R) Core(TM) i5-4570 @ 3.20GHz), producing the results summarized in Table 4.2. We
remark that no sources lemma were required in this case.

FutureTPM D3.5 PU Page 39 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

4.3 Security Properties for TLS Communication & Attestation

Sanity check. We define the event ServerFinish() for the server, however, the Router re-
quires two events, namely RouterFinish1() and RouterFinish2(), since it may branch in two
different states (a trusted and a corrupted state). We place these events at the end of each
branch, and define the lemmas

lemma RouterFinishes1:

exists-trace

"Ex #t1. RouterFinish1()@t1"

lemma RouterFinishes2:

exists-trace

"Ex #t1. RouterFinish2()@t1"

lemma ServerFinishes:

exists-trace

"Ex #t1. ServerFinish()@t1"

which ensure reachability of all the possible branches.

Availability of keys at honest processes. In this case, we check the availability of the AK at
the Router and NMS on the RA Server side using the event

HasKey(label, process_id, k).

We omit the body of the AvailabilityKey lemma for brevity, as it follows the same approach as
for the AK and TLS phases.

Key freshness. We check this property for the session_key and the qualifying data qData as
well. We define the events

GenerateKey(thread_id, k)

GenerateQData(thread_id, data)

where thread_id refers to the Server thread identifier, and then we declare the lemmas:

lemma FreshnessQData:

"All tid1 tid2 k #t1 #t2. GenerateQData(tid1, k)@t1 &

GenerateQData(tid2, k)@t2 ==> (tid1 = tid2)"

lemma FreshnessKey:

"All tid1 tid2 k #t1 #t2. GenerateKey(tid1, k)@t1 &

GenerateKey(tid2, k)@t2 ==> (tid1 = tid2)"

These lemmas verify that there are no two different threads, for which the same session key and
qualifying data are created.

Secrecy. We verify that secrecy holds for the secret part of the AK ak_sk, with label `AK',
and for the session key session_key, with label `SessionKey'. Therefore we define the event
SecretKey(key_label, k) and the lemma SecretKey exactly as in the case of AK and TLS
certification.

FutureTPM D3.5 PU Page 40 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Correct transfer. We model this property for the quote that is generated by the Router and
verified by the RA/NMS Server. This requires the usual events:

GenerateValue('QUOTE', ∼RouterID, quote)

ReceiveValue('QUOTE', ∼ServerID, quote)

on the Router side and RA/NMS Server side respectively. The lemma:

lemma CorrectTransfer:

"All label id1 m #t1. ReceiveValue(label, id1, m)@t1 ==>

(Ex id2 #t2. GenerateValue(label, id2, m)@t2 & (t2 < t1))"

verifies that whenever a quote is received by the NMS, then this quote has been created by the
Router and it has been unmodified.

Authentication. We verify the injective agreement property for the qualifying data and the ses-
sion key, <qData, session_key>. We consider the usual template with “Commit” and “Running”
events, namely:

RouterRunning(∼RouterID, ∼ServerID, <qData, session_key>)

ServerCommit(∼ServerID, ∼RouterID, <∼qData, ∼session_key>)

and the lemma:

lemma Authentication:

"All X Y param #t1. ServerCommit(X, Y, param)@t1 ==>

((Ex #t2. RouterRunning(Y, X, param)@t2 & (t2 < t1))

& not(Ex X2 Y2 #t3. ServerCommit(X2, Y2, param)@t3 & not(#t3 = #t1))

)"

This lemma states that for each ServerCommit event executed by the Server X, then the Router Y
executed the corresponding RouterRunning event earlier. In other words, the Server will commit
(injectively) to the set of parameters <∼qData, ∼session_key>, if there is a Router that was
previously using these parameters and for each run of the protocol there is a unique “Commit”
event.

No reuse of session key. We ensure that the session key is not reused for this phase through
the event NMSUseKey(session_key) on the NMS side, and the lemma:

lemma NoReuse:

"All k #t1 #t2. NMSUseKey(k)@t1 & NMSUseKey(k)@t2 ==> (#t1 = #t2)"

This lemma states that whenever two events NMSUseKey are executed by the same NMS and for
the same session key, then these two events are actually the same event. In other word, there is
no execution trace where the session key is reused to encrypt the qualifying data.

Corrupted router. In this part of the device management model, we consider an additional
security property. Recall from Section 3.4, that for the Router process we have modelled two
different states. A “corrupted” state in which the PCR value is extended to an invalid software
state and the “trusted” state, in which the PCR has the correct software state. We intend to prove
that if the Router is in the “corrupted” state, the NMS will not accept the quote from this Router.
For this purpose, we define the event Corrupted() on the branch of the Router process that
models the “corrupted” Router and define the lemma:

FutureTPM D3.5 PU Page 41 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Lemma: RouterFinishes1,2 ServerFinishes AvailabilityKey FreshnessKey FreshnessQData
Type: exists-trace exists-trace all-traces all-traces all-traces
Verified: yes, yes yes yes yes yes
Steps: 18, 18 18 24 4 4

Lemma: SecretKey CorrectTransfer Authentication NoReuse Corrupted
Type: all-traces all-traces all-traces all-traces all-traces
Verified: yes yes yes yes yes
Steps: 6 9 2237 8 1699

Table 4.3: Results for TLS communication and attestation

"All #t1. Corrupted()@t1 ==>

not(Ex X Y param #t2. ServerCommit(X, Y, param)@t2 & (#t1 < #t2))"

where the event ServerCommit is the same as defined in the Authentication lemma. This
lemma states that for all executions of the protocol where the Router is in a “corrupted” state,
there does not exist a case in which the NMS commits to a set of parameters, which is exactly
what we want to prove.

Automated analysis results. The model for the establishment of a secure TLS communication
and attestation and the corresponding lemmas discussed in this section are presented in the file
Quote_model.sapic. We can run the command

tamarin-prover --prove Quote_model.sapic

to verify the lemmas presented, and it will take Tamarin around 0.5h (VM 3 cores, 4GB RAM
on Intel(R) Core(TM) i5-4570 @ 3.20GHz), producing the results summarized in Table 4.3. We
remark that, again, no sources lemma were required in this case.

FutureTPM D3.5 PU Page 42 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Chapter 5

Extending our Security Models Towards
Enhanced System Reliability

After having formalized and verified the notion of secure remote attestation, we now proceed
in showcasing how our models and verification methodology can be extended to also achieve
security, privacy, integrity and system reliability in the more generic context of “Systems-
of-Systems”; with the other two envisioned use cases in the domains of Fintech and Assistive
Healthcare providing the natural extensions to be considered.

In particular, we argue that the idealized functionalities, considered as part of the trusted platform
command abstraction model, are a common reference point in most TPM-based services. There-
fore, since the intuition behind such an abstraction is the definition of a generic model that can
serve as a specification of primitives for TPM operations, we believe that the decomposition of
additional features and functionalities—needed by other application domains and environments—
would require only minor refinements and the modelling of a small set of extra TPM commands.
This is mainly due to the fact that most of nowaday’s TPM-based applications are using the
already (FutureTPM) considered algorithms and protocols in an attempt to create trust aware
service graph chains: namely, the DAA protocol, EA mechanism, and PCR management. As
an example, Smart and Ritter [22] have presented a remote electronic protocol that uses trusted
computing and particularly a TPM for ensuring the trustworthiness of remote voters. In the de-
scription of this protocol, the commands that are needed belong in the set of core TPM commands
that we have identified and modelled. Therefore, a reasonable future step would be to extend our
models to other application domains as well.

The overall goal is to set the scene of a refinement-based methodology for proving security,
privacy, and integrity guarantees of trusted platform modules and machine-checked proofs of re-
finements for models in the Secure Mobile Wallet and Payments, and Activity Tracking use cases.
This can act as evidence on the generality and applicability of the produced models to
be considered as an extensible verification methodology for enabling rigorous reasoning
about the security properties of Future TPMs.1

Towards this direction, an important part in our modelling approach is to identify the parties that
are involved in each scenario, as well as the TPM commands to be executed. Then, we will
need to define the ideal functionality for each TPM command, as a refinement of our trusted
platform command abstraction model—following the same process as we did in the context of
the device management ecosystem. In what follows, we give a tentative description on how this

1All our models and proof scripts will be made open-source upon publication of the submitted papers. These
models are designed to be modular and amenable to extension by the community

FutureTPM D3.5 PU Page 43 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

modelling approach could be applied in the other two use cases of the project, namely: Secure
Mobile Wallet & Payments and Activity Tracking.

5.1 Secure Mobile Wallet and Payments Use Case

In the Secure Mobile Wallet use case, the core functionality that needs to be modelled is the
sealing process of the underlying financial and user authentication tokens. This is translated
to a series of interactions between a mobile device, running the FreePOS application installed,
and a TPM that is attached to the device acting as the Root-Of-Trust. The motivation behind
executing this type of sealing functionality is to protect the creation and usage of a TPM key to
be binded to another secret factor (e.g., password) that needs to be provided by the user, as
proof-of-possession, before allowing the further secure execution of a financial transaction (more
information can be found in Deliverable D6.5).

The sealing process works as follows. The FreePOS application creates a random password,
via the TPM, using the command TPM2_GetRandom. Then it creates an asymmetric encryption
TPM key, following the process that we have already described in this report for the AK cre-
ation, but also in Deliverable D3.3 [10, Chapter 2]. More specifically, it executes the command
TPM2_StartAuthSession in order to create a fresh trial session and then executes the command
TPM2_PolicyPCR in order to update the policy digest of the trial session with the digest value of a
PCR corresponding to the system configuration state. The command TPM2_PolicyGetDigest is
executed in order to get the policy digest value under which the TPM key is created and protected
using the command TPM2_Create. The authorization policy of the key is set as the policy digest
of the trial session and, in addition, the authorization value of the key is set as the password that
was previously generated. As we already described, such a TPM key can be loaded into the
TPM using he process of EA authorization. That is, the FreePOS application creates a policy
session using TPM2_StartAuthSession and calls the TPM2_PolicyPCR in order to update the
policy digest of the policy session using a specific PCR value. The TPM key can be loaded using
the command TPM2_Load, only if the policy digest of the policy session matches the authorization
value of the key.

The difference in this scenario compared to what has been modelled in the context of the Device
Management use case is that the sensitive area of the generated key contains valuable infor-
mation (i.e., password2) which represents the authorization value of the key. This password is
now sealed into a specified set of PCRs which, in turn, requires the successful execution of the
TPM2_Unseal command in order to verify the correct state of the device before allowing the usage
of the TPM key for further signing any financial transactions. This command requires the same
authorization process as in the case of the TPM2_Load. It checks whether the policy digest of
the policy session matches the authorization policy of the key and if this is true, it outputs the
sensitive area of the key, or equivalently the password.

Therefore, it is obvious that the modelling of this scenario requires the use of most idealized
functionalities already present in our trusted platform commands abstraction model (Deliverables
D3.3 [10] and D3.4 [11]). We would only need to formalize the additional TPM2_Unseal com-
mand (as the ideal functionality FTPM2_Unseal); however, this would be rather straightforward since
it would be very similar to the already existing FTPM2_Load functionality. The only difference would
correspond to the returned value which in the case of FTPM2_Unseal should be the authorization

2In the actual demonstrator described in D6.5, this password is represented by the key handle extracted from he
Yubiko hardware component

FutureTPM D3.5 PU Page 44 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

value of the key, hence, a randomly generated value referring to the password that was previ-
ously generated by the FreePOS app. This brief use case description, justifies our earlier claims
on the generality and applicability of the produced verification methodology while requiring mini-
mum refinements. Consequently the model we have presented in Chapter 3 covers the modelling
of the Secure Mobile Wallet wallet use case as well, meaning that it can be easily adjusted with
only minor modifications.

5.2 Activity Tracking Use Case

The main TPM functionality that needs to be modelled in the Activity Tracking use case, as de-
scribed in Deliverable D3.2 [6], is the DAA protocol. In summary, DAA can be thought as a set
of cryptographic primitives which are used in order to create anonymous digital signatures for
enhanced user-controlled privacy. The DAA scheme is one of the most important TPM function-
alities for supporting platform authentication while enabling the provision of privacy-preserving
and accountable services. DAA is based on group signatures that allow remote attestation of
a device associated to a Trusted Component (TC) while offering strong anonymity guarantees.
Standardised by the Trusted Computing Group (TCG), DAA retains user anonymity, provides
user-controlled unlinkability, and identifies signatures created by compromised devices.

In particular, DAA supports anonymous signing of a message, certification of TPM keys and
remote attestation of the platform’s state using records of the TPM’s PCRs. Chen (2010) et. al [5]
have identified the following properties of DAA schemes, which have been formally analyzed by
Wesemeyer et al. (2020) [25].

1. User-controlled anonymity : Signer’s identity cannot be revealed from a signature and sig-
natures cannot be linked without the signer’s consent.

2. User-controlled traceability : Signatures can be produced only by a TC and they can be
linked only with the signer’s consent.

3. Non-frameability : An adversary cannot produce a signature associated with an honest TC.

4. Correctness: Valid signatures cannot be forged and are verifiable, and linkable, where
needed.

HOST

TC

SIGNER

ISSUER VERIFIER

(TC Manufacturer)

(Platform)

Req
ues

ts	m
emb

ersh
ip	fo

r

a	co
mm

itted
	TC

	key

1

2 Grants	attestation	key

credential	C

3

skT
Third party

Anonymous signature
on attestation m

4 Verify
signature

Claim signer's trustworthiness
without discovering signer's identity

Figure 5.1: An overview of the entities involved in a DAA protocol

A typical DAA scheme consists of the following entities, as shown in Fig.5.1:

FutureTPM D3.5 PU Page 45 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

• Signer: A signer is a combination of a Host and a Trusted Component (TC). The host
is a computing platform (e.g., a laptop). The TC is a tamper-resistant hardware device
embedded on the host which provides integrity measurement of the host’s software state,
e.g., a Trusted Platform Module (TPM). A TC is uniquely identified by an endorsement key,
skT , which is defined during the manufacturing stage and it is known only by the TC.

• Issuer: This is a trusted-third party that is responsible for verifying the correctness of the
signer i.e., verifying that the key information derived by the TC is validated by the TC’s man-
ufacturer. Upon a successful verification, the Issuer grants the attestation key credential C
to the signer. The credential C enables the signer to use a zero-knowledge proof protocol
to anonymously sign the attestation message m obtained by TC.

• Verifier: Any other system entity or third-party that can verify a platforms’ credentials in
a privacy-preserving manner using DAA algorithms; without the need of knowing the plat-
form’s identity. Upon receiving an anonymous signature by the signer, it validates signer’s
integrity and authenticity, without discovering the signer’s identity.

A DAA scheme enables a signer to prove the possession of the issued credential C to a verifier
by providing a signature, which allows the verifier to authenticate the signer without revealing the
credential C and signer’s identity. In a nutshell, DAA is essentially a two-step process where,
firstly, the registration of a TC executes once and during this phase the TC chooses a secret key
(SETUP). This secret key is stored in secure storage so that the host cannot have access to
it. Next the TC talks to the issuer so that it can provide the necessary guarantees of its validity
(JOIN). The issuer then places a signature on the public key, producing the Attestation Identity
Credential (AIC) C. The second step is to use this C for anonymous attestations on the platform
(SIGN), using Zero-Knowledge Proofs. These proofs convince a verifier that a message is
signed by some key that was certified by the issuer, without knowledge of the TC’s DAA key or C
(V ERIFY). Of course, the verifier has to trust that the issuer only issues C to valid TCs.

In the Activity Tracking use case, there are four main entities participating in the protocol: a Per-
sonal Web Application (S5PersonalTracker or S5DataAnalysis) which is the Host device (e.g.,
users’ mobile device) containing a TPM, the TPM itself acting as the Root-Of-Trust, the Issuer,
and the Web Server & Analytics Engine (S5Tracker Analytics Engine). The S5Tracker Analyt-
ics Engine, acting as the Verifier, accepts connections from remote machines loaded with the
S5PersonalTracker or S5DataAnalysis binaries (i.e. which either belong to individuals or to ana-
lysts), without being able to distinguish and identify to whom they belong to, while the authenticity
of the Host machine is examined by the TPM. The instantiation of the DAA protocol in such an
environment is illustrated in Figure 5.2.

The security modelling is, therefore, equivalent to the targeted modelling of the DAA protocol
and particularly the three sub-phase, namely the JOIN, SIGN and VERIFY protocols. The TPM
commands that are used for these sub-protocols are listed in Deliverable D3.2 [6]. These are:

TPM2_StartAuthSession TPM2_PolicyPCR

TPM2_Create/TPM2_Load TPM2_Sign/TPM2_VerifySignature
TPM2_Certify TPM2_MakeCredential/TPM2_ActivateCredential

which have already been modelled and the corresponding ideal functionalities are presented in
Deliverables D3.3 [10] and D3.4 [11]. Two additional TPM commands are mentioned in De-
liverable D4.1 [8, Section 4.2], the TPM2_Hash and TPM2_Commit commands. The first can be
excluded from the modelling, since it is used for creating a hash value. The second is used in

FutureTPM D3.5 PU Page 46 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Figure 5.2: The DAA protocol in the case of activity tracking [8]

order to create certain values that will be used by the TPM2_Sign command and in particular for
creating an anonymous signature. By the description of the TPM2_Commit command, included in
the TPM specification manual [24, p.198], we can see that this also performs cryptographic oper-
ations based on the signing algorithm that is used; therefore, can be replaced with an equivalent
equational theory operation.

FutureTPM D3.5 PU Page 47 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Chapter 6

Conclusion

Recent proposals for trusted hardware platforms, such as TPMs and/or Intel SGX, offer com-
pelling security features but lack formal guarantees. In this deliverable, we presented our com-
plete work on the security modelling of the TPM—as a decentralized Root-Of-Trust—coupled
with the formalization and verification of its security properties. More specifically, by lever-
aging the “trusted platform command abstractions”, extracted in the previous versions of this de-
liverable, we compiled a: (i) newly introduced verification methodology, based on a “bottom-
up” approach, in which the focus is on modelling the core TPM functionalities towards building
chains of trust (instead of considering the TPM as a whole), and (ii) formalization of ideal-
ized TPM functionalities along with their security properties and a realistic adversarial model.
This break-down of TPM ideal functionalities and services allows for a more effective verifica-
tion process towards building a global picture of the entire TPM platform security modelling as
a Root-Of-Trust. These models are designed to be modular and amenable to extension by the
community.

The latter represents a formal model of a TPM command that captures the actions of the trusted
platform module, when the command is executed, in such a way that excludes the crypto-
graphic operations carried out internally and replaces them with non-cryptographic approaches.
We essentially developed a trusted abstract platform model consisting of a specific set of
formally-specified primitives sufficient to implement the core TPM functionalities beyond
the core crypto operations. Such an abstraction modelling can enable the reasoning about
and comparing different TPM services under various adversarial models and for different secu-
rity guarantees, excluding any possible implications from the leveraged cryptographic primitives.
For trusted platform module implementers, such a representation can be considered as a golden
model for the expected system behaviour. From the perspective of formally verifying trusted
hardware components, this model can provide a means of reasoning about security and privacy
(of offered services) without being bogged down by the intricacies of various crypto primitives
considered in the different platforms.

We also formalized the notion of secure remote attestation towards trust aware service
graph chains (in the context of the envisioned device management use case) and presented
Tamarin security proofs showing that our models satisfy the three key security properties that
entail secure remote attestation and execution: integrity, confidentiality, and secure measure-
ment. Furthermore, in order to model this service, we also considered additional TPM processes
such as the creation of TPM keys, the Enhanced Authorization (EA) mechanism, the management
of the Platform Configuration Registers (PCRs), and the creation and management of policy ses-
sions. In this context, we have successfully identified and modelled all relevant TPM commands,
used in these functionalities (as extracted in Deliverables D3.3 [10] and D3.4 [11]), and have also

FutureTPM D3.5 PU Page 48 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

extended our trusted abstract platform model with such idealized functionalities.

In order to simplify the modelling of the secure remote attestation and execution, in the context
of the device management use case, and to avoid any unexpected behaviour from our Tamarin
prover (e.g., non-termination), we have decomposed the overall service into three main phases:
(i) the certification of the AK, (ii) the certification of the TLS key, and (iii) the establishment of a se-
cure communication channel between the Router and the NMS. We proceeded with the security
modelling of all these three parts and continued with the verification of the achieved properties,
thus, enabling the evaluation of the overall soundness: A device, with a TPM attached, that
satisfies secure measurement, integrity, and confidentiality properly also satisfies secure
remote attestation.

In this context, we have modelled the relevant security properties in the form of lemmas. Such
security properties (aiming for integrity, confidentiality and secure measurements) include the
secrecy and freshness of keys, correct transfer of information between the involved parties, avail-
ability of keys at honest parties, authentication properties, as well as sanity check lemmas that
show the correct execution of the model.

Finally, we have also put forth number of challenges that were encountered during this modelling
and verification process and the actions taken in order to overcome them. We have also argued
that such a verification methodology, based on the use of trusted abstract platform models and
idealized functionalities, is more than just a set of proofs of correctness of specific services (e.g.,
secure remote attestation) but can also enable the security modelling of the TPM as a whole
merging various functionalities offered by the different abstraction layers. The trusted abstract
platform model can serve as a specification of primitives of TPM operation, and is designed to
be extensible towards additional features (as presented in Chapter 5) and additional guarantees
against sophisticated attackers. Overall, we believe that the produced models provide the
baseline for an extensible verification methodology that enables rigorous reasoning about
the security properties of Future TPMs.

FutureTPM D3.5 PU Page 49 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

Chapter 7

List of Abbreviations

Abbreviation Translation
AE Authenticated Encryption

AK Attestation Key

CA Certification Authority

CSR Certificate Signing Request

DAA Direct Anonymous Attestation

EA Enhanced Authorization

EK Endorsement Key

FQDN Fully Qualified Domain Name

MSR Multiset Rewriting Rule

NMS Network Management System

PCA Privacy Certification Authority

PCR Platform Configuration Register

RA Remote Attestation

SAPiC Stateful Applied Pi Calculus

SKAE Subject Key Attestation Evidence

TLS Transport Layer Security

TPM Trusted Platform Module

TTP Trusted Third Party

WP Work Package

ZTP Zero Touch Provisioning

FutureTPM D3.5 PU Page 50 of 52

D3.5 - Final Report on the Design and Security of the QR TPM

References

[1] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calculus: Mobile values,
new names, and secure communication. J. ACM, 65(1):1:1–1:41, 2018.

[2] Myrto Arapinis, Joshua Phillips, Eike Ritter, and Mark D Ryan. Statverif: Verification of
stateful processes. Journal of Computer Security, 22(5):743–821, 2014.

[3] David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, and Benedikt Schmidt.
Tamarin prover (v. 1.4.1), January 2019. https://tamarin-prover.github.io/.

[4] Bruno BLANchet, V Cheval, X Allamigeon, and B Smyth. Proverif: Cryptographic
protocol verifier in the formal model. URL http://prosecco. gforge. inria. fr/personal/b-
bLANche/proverif, 2010.

[5] Liqun Chen. A daa scheme requiring less tpm resources. In Feng Bao, Moti Yung, Dongdai
Lin, and Jiwu Jing, editors, Information Security and Cryptology, pages 350–365, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[6] The FutureTPM Consortium. First report on the security of the TPM. Deliverable D3.2,
FutureTPM, June 2019.

[7] The FutureTPM Consortium. Technical integration points and testing plan. Deliverable D6.1,
FutureTPM, July 2019.

[8] The FutureTPM Consortium. Threat modelling & risk assessment methodology. Deliverable
D4.1, FutureTPM, February 2019.

[9] The FutureTPM Consortium. Demonstrators implementation report – first release. Deliver-
able D6.3, FutureTPM, April 2020.

[10] The FutureTPM Consortium. Second report on security models for the TPM. Deliverable
D3.3, FutureTPM, February 2020.

[11] The FutureTPM Consortium. Second report on the security of the TPM. Deliverable D3.4,
FutureTPM, September 2020.

[12] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Transactions
on information theory, 29(2):198–208, 1983.

[13] Ken Goldman. Attestation Protocols. Technical report, IBM, December 2017. https://www.
ibm.com/developerworks/library/l-trusted-boot-openPOWER-trs/index.html.

[14] TCG Infrastructure Working Group et al. TCG Infrastructure Workgroup Subject Key Attes-
tation Evidence Extension. Specification Version, 1, 2005.

FutureTPM D3.5 PU Page 51 of 52

https://tamarin-prover.github.io/
https://www.ibm.com/developerworks/library/l-trusted-boot-openPOWER-trs/index.html
https://www.ibm.com/developerworks/library/l-trusted-boot-openPOWER-trs/index.html

D3.5 - Final Report on the Design and Security of the QR TPM

[15] Steve Kremer and Robert Kunnemann. Sapic - a stateful applied pi calculus. http://

sapic.gforge.inria.fr/.

[16] Steve Kremer and Robert Künnemann. Automated analysis of security protocols with global
state. Journal of Computer Security, 24(5):583–616, 2016.

[17] Gavin Lowe. A hierarchy of authentication specifications. In Proceedings 10th Computer
Security Foundations Workshop, pages 31–43. IEEE, 1997.

[18] Simon Meier. Advancing automated security protocol verification. PhD thesis, ETH Zurich,
2013.

[19] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin prover for the
symbolic analysis of security protocols. In International Conference on CAV, pages 696–
701. Springer, 2013.

[20] Jianxiong Shao, Yu Qin, and Dengguo Feng. Formal analysis of HMAC authorisation in the
TPM2.0 specification. IET Information Security, 12(2):133–140, March 2018.

[21] Jianxiong Shao, Yu Qin, Dengguo Feng, and Weijin Wang. Formal analysis of enhanced
authorization in the TPM 2.0. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, pages 273–284. ACM, 2015.

[22] Matt Smart and Eike Ritter. True trustworthy elections: remote electronic voting using trusted
computing. In International Conference on Autonomic and Trusted Computing, pages 187–
202. Springer, 2011.

[23] Trusted Computing Group (TCG). TPM 2.0 library specification - part 1: Architec-
ture. Available at: https://trustedcomputinggroup.org/wp-content/uploads/TCG_

TPM2_r1p59_Part1_Architecture_pub.pdf.

[24] Trusted Computing Group (TCG). TPM 2.0 library specification - part 3: Commands -
code. Available at: https://trustedcomputinggroup.org/wp-content/uploads/TCG_

TPM2_r1p59_Part3_Commands_code_pub.pdf.

[25] Stephan Wesemeyer, Christopher J. P. Newton, Helen Treharne, Liqun Chen, Ralf Sasse,
and Jorden Whitefield. Formal analysis and implementation of a TPM 2.0-based direct
anonymous attestation scheme. In Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu, and
Giuseppe Ateniese, editors, ASIA CCS ’20: The 15th ACM Asia Conference on Computer
and Communications Security, Taipei, Taiwan, October 5-9, 2020, pages 784–798. ACM,
2020.

FutureTPM D3.5 PU Page 52 of 52

http://sapic.gforge.inria.fr/
http://sapic.gforge.inria.fr/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_code_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_code_pub.pdf

	List of Figures
	List of Tables
	Introduction
	Methodology
	Structure of the Report

	FutureTPM Device Management Use Case
	Certification of the AK
	Certification of the TLS key
	Establishment of TLS Connection

	Security Modelling of Device Management Use Case
	Overview of Modelling Tools, Approach and Challenges
	Modelling Approach
	Modelling Tools
	Modelling Challenges

	Recap of the AK Certification Model
	The TPM Process
	The Router Process
	The RA/NMS Server Process

	Modelling of TLS Certification
	The TPM Process
	The Router Process
	The RA/NMS Server Process

	Modelling of TLS Communication and Attestation
	The TPM Process
	The Router Process
	The RA/NMS Server Process

	Formalization and Verification of Security Properties
	Security Properties for AK Certification
	Security Properties for TLS Certification
	Security Properties for TLS Communication & Attestation

	Extending our Security Models Towards Enhanced System Reliability
	Secure Mobile Wallet and Payments Use Case
	Activity Tracking Use Case

	Conclusion
	List of Abbreviations
	References

