

D4.5

Runtime Risk Assessment, Resilience and Mitigation Planning

Project number: 779391

Project acronym: FutureTPM

Project title:
Future Proofing the Connected World: A Quantum-

Resistant Trusted Platform Module

Start date of the project: 1st January, 2018

Duration: 36 months

Programme: H2020-DS-LEIT-2017

Deliverable type: Other

Deliverable reference number: DS-06-779391 / D4.5/ 1.0

Work package contributing to the

deliverable:
WP 4

Due date: December 2020

Actual submission date: 8th February, 2021

Responsible organisation: UPRC

Editor: Koutroumpouchos Nikolaos

Dissemination level: PU

Revision: 1.0

The project FutureTPM has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779391.

Abstract:

The aim of this deliverable is to firstly present and analyse

the FutureTPM dynamic and multi-level tracing solution

that it provides for the monitoring of a device’s

configuration and execution behavioural properties.

Secondly, there is a detailed documentation of the design,

implementation and performance evaluation of the two

underlying technologies used; namely eBPF and IntelPT

tracing capabilities. The final aim of this deliverable is to

offer a constructive critique of the FutureTPM proposed

optimization and set some open questions for further

optimizations of real-time device data and execution

stream processing and monitoring functionalities.

Keywords: Multi-Level Tracing, eBPF, Intel PT

D4.5 - Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page I

Editor

Koutroumpouchos Nikolaos (UPRC)

Thanassis Giannetsos (DTU)

Contributors (ordered according to beneficiary numbers)

Koutroumpouchos Nikolaos, Xenakis Christos, Veroni Eleni (UPRC)

Sofianna Menesidou, Dimitris Papamartzivanos (UBITECH)

Roberto Saschu (HWDU)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

D4.5 - Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page II

Executive Summary

As described in Deliverables D4.2 and D4.4, attacks that try to compromise the configuration
integrity of remote systems or subvert the control-flow of legitimate computer programs,
are a large concern towards the vision of trustworthy “Systems-of-Systems”. Compounding this
issue, the FutureTPM security enablers (Control-Flow Property-based Attestation and Zero-Touch
Configuration Integrity Verification) demonstrate the practice of validating the configuration
correctness and execution path that a program takes during run-time. Such validation needs to
take place in real-time in order to be an effective countermeasure. This is, however, a difficult task
to achieve, as it requires the extraction and analysis of information about the behaviour of a service
during run-time. Many solutions have been proposed to address this issue but they tend to make
compromises between performance, security and usability. Clear and precise data on the
effectiveness and performance of available tools is required in order to produce more
effective and efficient real-time CFA solutions.

In this direction, the FutureTPM Risk Assessment framework (in its first release) provided a
dynamic multi-level detailed tracing solution with a varying granularity for the amount and
the type of data gathered. This is achieved by leveraging a two-tier granularity tracing technique
that initially monitors the targeted binary with an efficient and highly scalable tracing technology
named “extended Berkeley Packet Filter” (eBPF); which allows for the tracing of the configurational
integrity of the executing binary without posing any significant overhead (around 6% additional time
on the traced functions).

In the second and final version of the FutureTPM RA engine, these eBPF hooks are enhanced with
more thorough tracing capabilities based on the use of the emerging IntelPT tracing
mechanism. This programmable component provides near real-time low-level code inspection,
thus, capturing the strict constraints of SoS-enabled ecosystems, as envisioned in FutureTPM.
More specifically, it allows for much more detailed tracing of the binary up to a per-assembly-
command monitoring that ultimately enables the efficient extraction of the respective control flow
graphs. The results from both developed tracers are always compared against stored reference
values through a device attestation scheme and are essentially used to ensure that the security-
critical operations of a device are doing what they are supposed to and are not deviating from the
expected behaviour. The dynamicity of the tracer usage is enforced through policies that define
exactly which tracer and how the two tracers are deployed; in a “normal operational mode” only the
eBPF tracer is running. However, if an attestation fails, then new policies are deployed which will
attach new Intel PT agents and more advanced eBPF hooks allowing for a better understanding of
why the initial attestation failed; i.e., identify new vulnerabilities or points of intrusion.

The aforementioned tracing capabilities are used in the remote attestation protocols that are
described in D4.4 (Attestation-by-Quote and Attestation-by-Proof). All in all, in this deliverable,
there is a thorough presentation and analysis of the dynamic tracing capabilities of
FutureTPM. This includes a design, implementation, and performance analysis of each of the
tracers used with insights on their interworking and assessment of their correct and efficient
functionality. Additionally, there is a critique of the FutureTPM used tracing solution and an
investigation of how the tracing procedure could be further optimized to allow for even more
advanced tracing schemes.

D4.5 - Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page III

Contents

Chapter 1 Introduction .. 8

1.1 Scope and Purpose ... 9

1.2 Relation to other WPs and Deliverables .. 9

1.3 Deliverable Structure ... 10

Chapter 2 FutureTPM Dynamic Multi-Level Detailed Tracing 11

2.1 Multi-Level Detailed Tracing based on eBPFs and Intel PT Programmable
Components ... 14

2.2 Formal Definition of Property Tracing .. 16

2.2.1 Control-Flow Graph Structure .. 17

Chapter 3 High-Level Tracing Leveraging eBPF Execution Hooks 20

3.1 Implementation Path Report ... 20

3.2 eBPF Tracer Timings .. 29

Chapter 4 Low-Level Detailed Tracing Leveraging Intel PT Introspection Agents 33

4.1 Intel® Processor Tracing Building Blocks .. 34

4.1.1 Overview ... 34

4.1.2 Packets ... 34

4.1.3 Intel libipt ... 35

4.1.4 Linux perf... 35

4.2 Technical Building Blocks of the FutureTPM Intel PT Tracing 36

4.2.1 Intel PT Components ... 36

4.3 Architecture of the FutureTPM Intel PT Tracing Solution .. 40

4.4 Notable Design Choices .. 43

4.4.1 Intel PT Setup and Compatibility .. 43

Chapter 5 FutureTPM Intel PT Tracing Evaluation .. 45

5.1 Evaluation Plan ... 45

5.1.1 Test Case t0 – Control ... 45

5.1.2 Test Case t1 - Single Conditional Branch ... 46

5.1.3 Test Case t2 – Loop ... 47

5.1.4 Test Case t3 - Function Call ... 48

5.1.5 Test Case t4 - Conditional Branch Within Loop .. 49

5.1.6 Test Case t5 - Function Call Within Loop ... 50

5.1.7 Test Case t6 - Function Call and Conditional Branch Within Loop 51

5.2 Performance Evaluation .. 52

D4.5 - Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page IV

5.2.1 Memory Usage .. 52

5.2.2 High Complexity Scenario ... 53

5.2.3 Low Complexity Scenario .. 55

5.3 FutureTPM Intel PT Tracing Timings and Additional Test Cases 58

5.3.1 Compiler Optimizations .. 59

5.3.2 Nondeterministic Examples ... 59

5.3.3 Vulnerable Binary .. 61

Chapter 6 Critique and Open Questions .. 64

6.1 Open Questions and Challenges .. 65

6.1.1 Concurrency issues ... 65

6.1.2 Populating the image cache .. 66

6.1.3 Inconsistent block boundaries .. 67

6.1.4 Migrate to purely software-based tracing capabilities. .. 67

6.2 Other optimizations ... 67

Chapter 7 Summary and Conclusion ... 69

Chapter 8 List of Abbreviations .. 71

Chapter 9 Bibliography ... 73

D4.5 - Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page V

List of Figures

Figure 1-1: FutureTPM Device Data and Execution Stream Tracer ... 8

Figure 1-2: Relation to other deliverables and other work packages ... 9

Figure 2-1: Risk Assessment Conceptual Flow ... 12

Figure 2-2: FutureTPM Methodology and Advancement to Remote Attestation 14

Figure 2-3: Conceptual Workflow of Multi-level Detailed Tracing & Trust Evidence Collection 16

Figure 2-4: Control-Flow Example Program P ... 17

Figure 2-5: Visual Representation of CFG(P) .. 18

Figure 3-1: FutureTPM eBPF Runtime Tracer – Instantiation, Initialization and Tracing Phases ... 21

Figure 3-2: eBPF Initialisation ... 21

Figure 3-3: eBPF Hook Attachment .. 21

Figure 3-4: Tracer Connect Event Handler .. 22

Figure 3-5: TCP Set State Handler ... 23

Figure 3-6: TCP Socket Attachment .. 24

Figure 3-7: TCP Packet Extract ... 24

Figure 3-8: TPM Command Parse .. 25

Figure 3-9: eBPF Initial Information Collection (pid, process name) .. 25

Figure 3-10: TPM Search Terms to Identify the Start and the End of a Sequence......................... 25

Figure 3-11: Packet Parsing .. 26

Figure 3-12: QR Command Parsing with Workaround for the Large Size of the Packet 26

Figure 3-13: Handling of Fragmented Packet .. 27

Figure 3-14: Storing of the Final Write Payload ... 27

Figure 3-15: Storing of the Final Read Payload ... 27

Figure 3-16: Send all Data to the Parser with Auxiliary Information ... 28

Figure 3-17: FutureTPM eBPF Runtime Tracer – Workflow of Actions .. 28

Figure 3-18: Output of the PCR Extend Function Invocation ... 30

Figure 3-19: Storage of TSS Marshal Timing .. 30

Figure 3-20: Measurement of eBPF Overhead .. 31

Figure 4-1: FutureTPM Intel PT Tracing Workflow .. 41

Figure 4-2: Intel-PT traces translated to human readable form with perf report command (a) 42

Figure 4-3: Intel-PT traces translated to human readable form with perf report command (b) 42

Figure 4-4: CFG Generation from Intel PT traces .. 43

Figure 5-1: Test case t0 target program ... 45

Figure 5-2: Test case t0 control-flow graph .. 46

Figure 5-3: Test case t0 trace output ... 46

Figure 5-4: Test case t1 target program ... 46

Figure 5-5: Test case t1 control-flow graph .. 47

D4.5 - Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page VI

Figure 5-6: Test case t1 trace output ... 47

Figure 5-7: Test case t2 target program ... 47

Figure 5-8: Test case t2 control-flow graph .. 48

Figure 5-9: Test case t2 trace output ... 48

Figure 5-10: Test case t3 target program ... 48

Figure 5-11: Test case t3 control-flow graph .. 49

Figure 5-12: Test case t3 trace output ... 49

Figure 5-13: Test case t4 target program ... 49

Figure 5-14: Test case t4 control-flow graph .. 50

Figure 5-15: Test case t4 trace output ... 50

Figure 5-16: Test case t5 target program ... 50

Figure 5-17: Test case t5 control-flow graph .. 51

Figure 5-18: Test case t5 trace output ... 51

Figure 5-19: Test case t6 target program ... 51

Figure 5-20: Test case t6 control-flow graph .. 52

Figure 5-21: Test case t6 trace output ... 52

Figure 5-22: Test case t7 target program .. 53

Figure 5-23: 1 iteration out-of-context Figure 5-24: 10 iterations out-of-context 54

Figure 5-25: 100 iteration out-of-context ... 55

Figure 5-26: 1,000 iterations out-of-context ... 55

Figure 5-27: 10,000 iterations out-of-context ... 55

Figure 5-28: Test case t8 target program ... 56

Figure 5-29: 1 instruction per loop ... 57

Figure 5-30: 10 instructions per loop ... 57

Figure 5-31: 100 instructions per loop ... 57

Figure 5-32: 1,000 instructions per loop .. 57

Figure 5-33: 10,000 instructions per loop .. 57

Figure 5-34: Source Code for the Integer Overflow Binary .. 60

Figure 5-35: Disassembly of the Integer Overflow Binary .. 60

Figure 5-36: Generated CFG Data for the Integer Overflow Binary ... 60

Figure 5-37: Source Code of the Non-Deterministic Binary ... 61

Figure 5-38: Disassembled Non-Deterministic Binary ... 62

Figure 5-39: Various CFG Data Generated for the Non-Deterministic Binary 62

Figure 5-40: Control Flow of the Vulnerable Binary in Normal Execution 63

Figure 5-41: Control Flow of the Vulnerable Binary when Exploited. ... 63

Figure 6-1: Usage of a Ring Buffer for Parallel Tracing Data Parsing .. 65

Figure 6-2: Performance Benefits of Parallel Tracing vs. Serial Tracing .. 65

D4.5 - Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page VII

List of Tables

Table 1: Example of traces published to trace topic in JSON format. .. 29

Table 2: eBPF Tracer Timings .. 31

Table 3: OVF Packet ... 36

Table 4: PSB Packet .. 37

Table 5: PSBEND Packet ... 37

Table 6: Short TNT Packet .. 37

Table 7: Long TNT Packet .. 37

Table 8: TIP Packet .. 38

Table 9: TIP.PGE Packet .. 38

Table 10: TIP.PGD Packet .. 38

Table 11: FUP Packet ... 39

Table 12: MODE.Exec Packet... 39

Table 13: MODE.TSX Packet.. 39

Table 14: Intel PT tracer - Perf commands .. 41

Table 15: Trace buffer size model ... 53

Table 16: Timings of the Intel PT Tracer for Various Granularity Scenarios (Full Decoding, All
Branches and All Main Branches) ... 58

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 8 of 74

Chapter 1 Introduction

The main goal of this deliverable is to present the final release of the FutureTPM tracing
solution as part of the overall Runtime Risk Assessment, Resilience and Mitigation planning.

More specifically, it provides the details and underpinnings of the FutureTPM Device Data and
Execution Stream Tracer (Figure 1-1) for tracing the control- and information-flow execution
paths (CFG and DFG) needed by the runtime attestation enablers presented in D4.2 [2] and
D4.4 [3]. Such techniques are used to collect statistical information, performance analysis,
dynamic kernel or application debug information and in general system audit traces and
evidence that can be used by the attestation enablers for identifying any integrity or execution
correctness violations. In FutureTPM, dynamic tracing functionalities are provided, as
programmable components, enabling the continuous monitoring of kernel shared libraries, low-
level code, system calls, shared data and memory address space, etc., and the in-depth
investigation of the systems’ behaviour and execution flow for detecting any cheating attempts
or if any type of (non-previously identified) exploits are resident to the program and data
memory. This provides the trusted anchor (i.e., TPM) with the compiled control- and information-
flow graphs (CFGs & DFGs) that represent the runtime state of a remote device, against the
configuration and execution properties of only those safety-critical components, as identified
and modelled in the deployed attestation policies, extracted from the FutureTPM RA Engine.

Figure 1-1: FutureTPM Device Data and Execution Stream Tracer

FutureTPM advanced tracing techniques are based on the novel use of: (i) lightweight eBPF
[23] execution hooks capable of providing near real-time low-level code inspection, thus,
capturing the strict constraints of SoS-enabled ecosystems, and (ii) Intel PT introspection
agents [13] capable of traversing the entire physical memory of a CPS, via Direct Memory
Access, for known execution signatures which can then be used to navigate to the relevant
information to be traced – this allows for fast tracing to take place without affecting the normal
system execution. These tracing functionalities are fully programmable, thus, enabling
another priority of the FutureTPM Risk Assessment framework towards dynamic
adaptation of tracing and introspection tasks based on new attestation policies that may
be identified and enforced during runtime.

Therefore, the high-level overview of this deliverable is focusing on this dynamic tracing
capabilities coupled also with a (first to the best of our knowledge) detailed evaluation of the two

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 9 of 74

aforementioned approaches. We: (i) first, analyse how the tracing process can escalate
depending on the security level conformance that need to be achieved (i.e., properties to be
attested and whether the focus is on configuration or executional behaviour integrity), (ii) then
proceed to elaborate on the initial eBPF (extended Berkeley Packet Filter) tracing and
monitoring with a detailed analysis of its performance and deployment details, and (iii) finally,
present and analyse the usage of the low-level detailed tracing capabilities based on the Intel
PT technology. The utilization and granularity of this tracing process depends on the
behavioural and attestation of the device; that is, if the initial attestation (based on the
instantiation of the eBPF tracing) fails to meet some pre-specified requirements, then new
policies are enforced which will automatically deploy the Intel PT tracer which will in turn gather
more detailed data on how, why and which executable was behaving as potential point of
intrusion. On the other hand, if no alarms are triggered, then the lightweight eBPF tracer will
continue to monitor the device and send the gathered data through attestation reports as
verifiable evidence of a device’s trustworthiness.

1.1 Scope and Purpose

As aforementioned, the main purpose of this document is to consolidate, formally define and
evaluate the FutureTPM dynamic tracing solution. The goal is to create a coherent analysis of
the two levels of tracing mechanisms produced (eBPF and Intel PT) while also defining how the
dynamicity of the solution will function in the context of FutureTPM; escalated tracing will be
triggered and enforced alongside the standard tracing and monitoring.

Figure 1-2: Relation to other deliverables and other work packages

1.2 Relation to other WPs and Deliverables

Figure 1-2 reflects on the relationship of this deliverable to the other activities conducted in the
context of Work Package (WP4) as well as the other project work packages. More specifically,
D4.5 is an extended version of D4.3 [1] and represents the final version of the FutureTPM RA
Engine presented in D4.2 [2]. More specifically, the interactions as described in Figure 1-2 are:

 The connection with D4.4 is a hand-in-hand relationship due to the fact that the
attestation and configuration integrity verification enablers, described in that deliverable,
are based on the correct instantiation and execution of the compiled device data and
execution stream tracer components presented here;

 This deliverable is the second and final version of D4.3 where we initially described the
concept behind the multi-level detailed tracing approach of FutureTPM based on which

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 10 of 74

we now elaborate on the integral components, APIs, interfaces coupled with technical,
implementation and performance documentation;

 The connection with WP5, on the implementation of the QR Future TPM platform, is the
fact that all presented attestation and tracing functionalities leverage the quantum
resistant trusted platform module as the underlying trust anchor;

 The connection with WP6 is the implementation and evaluation of the attestation and
tracing capabilities in the context of the three envisioned use cases.

Our goal is to enhance run-time software integrity and trustworthiness with a scalable and
decentralized solution eliminating the need for federated infrastructure trust. Based on
our findings, we also posit open issues and challenges, and discuss possible ways to address
them, so that the challenge of efficient tracing does not hinder the deployment of intelligent
edge (trust) computing systems.

1.3 Deliverable Structure

The structure of this deliverable is as follows: Chapter 1 gives an overview of the focus of this
documents coupled with a high-level overview of the core properties achieved by the
FutureTPM tracing solution produced. Chapter 2 summarizes the dynamic tracing approach
adopted by the FutureTPM RA Engine alongside with background information on its mode of
operation. Chapter 3 and Chapter 4 constitute the core of this work by presenting the
underpinnings of the two leveraged tracing mechanisms, eBPF execution hook and Intel PT
introspection agents, respectively. They put forth a detailed analysis of their workflow of actions
as well as an evaluation of their performance and any overhead posed on the underlying device
for extracting the target control- and data-flow graphs. To the best of our knowledge, this is the
first complete evaluation and comparison performed in the literature between such two different
“tracing directions” in an attempt to propose a hybrid solution taking advantage of the benefits of
both worlds. Finally, in Chapter 5 there is a discussion and critique of these tracing performance
optimization techniques and future directions. Closing in Chapter 6 there is the conclusion of the
deliverable where key takeaway messages are presented with a coherent overall
summarization of the deliverable.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 11 of 74

Chapter 2 FutureTPM Dynamic Multi-Level Detailed
Tracing

Towards our vision in future proofing the connected world by having a QR TPM as the trust
anchor, the FutureTPM consortium investigated on complementary building blocks that can
work in synergy with the QR TPM for enabling security and trust in the envisioned decentralised
architectures.

Towards this direction, the FutureTPM overall framework provides advanced risk assessment
functionalities for extracting security policies that reflect attestation specifications for properties
that are verified on the devices with the usage of the attached QR TPMs. Additionally,
FutureTPM investigates how to perform real time risk assessment updated by zero-day and
newly identified vulnerabilities.

The main goal is to specify models capturing all those safety-critical components, that need to
coexist and be securely executed in a platform with shared hardware and software resources
(such as caches and central memory bus), and their connection to the overall system
behaviour. This will allow for the identification of only those functions (such as algorithms,
control and device operational logic elements) with the highest criticality level, that need to be
continuously verified in real-time, thus, enabling the better specification of core device
properties, accessed by these functions, to be attested.

The adoption of the risk assessment process aims to deliver a well-rounded framework that can
be used to protect future decentralized system architectures using as a solid base the well-
established methodologies of the field, but by enhancing them accordingly to meet the needs of
the assessment of TPM-enabled architectures. More specifically, the use of TPMs enables a
wide range of protective mechanisms of the trusted computing realm than can be used as
possible countermeasures and extend the arsenals of defenders, in their effort to ensure that
risk levels are kept under acceptable threshold. In this direction, our developments in the
context of WP4 led to the definition a risk assessment conceptual flow shown in Figure 2-1 that
can steer the assessment conduction during the whole life cycle of a system, starting from the
design phase of the system and through its runtime phase.

In what follows, we first present an overview of the methodology adopted towards the
implementation of the FutureTPM Risk Assessment Framework. Deliverables D1.2 [4] and D4.1
[5] presented the guidelines for the FutureTPM Risk Management phase, while D4.2 [2] and
D4.3 [1] highlighted the various design aspects and specifications. The FutureTPM project has
developed a generic model to identify all possible threats and vulnerabilities, and a risk
assessment methodology that transparently augments the security, of not only the QR TPM, but
also of the whole ecosystem of deployed devices through the quantification of the overall risk
and threat vector that, in turn, enables the identification of the optimal defence strategy tailored
to calculated cyber-risks. The risk assessment methodology is comprised of a design-time
phase, where an initial risk graph is created, and a run-time phase described in D4.3 [1],
where the risk graph is updated (taking into consideration newly identified threats and
vulnerabilities based on the output of the Control-Flow Property-based Attestation (CFPA))
toolkit in order to achieve the desired security and privacy properties. These properties are
instantiated as policies that have to be enforced during the life cycle of the CPS. Overall,
FutureTPM Risk Assessment Framework is used to:

 identify and measure all relevant cyber threats including TPM threats.

 predict all possible attacks/threats paths and patterns.

 evaluate the individual, cumulative, and propagated vulnerabilities.

 estimate the existence of zero-day exploitable vulnerabilities.

 assess the possible impacts.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 12 of 74

 derive and prioritize the corresponding risks.

 formulate a proper mitigation strategy.

The whole framework is based on UBITECH’s OLISTIC risk management suite [6], which is in
position to maintain a digital reflection of the cyber-physical ecosystem in the form of
interdependency graphs that hold together all the interrelated assets of the assessed
environment. Based on this, the risk assessor is engaged in a semi-automated process where
attestation policies are enforced to the deployment in order to attest its operational integrity
using the TPM as the trust anchor in this process. Given the attestation outcome, the assessor
can be sure for the operational correctness of the attested components of the deployment and
in cases where the operational correctness is not verified, the assessor can proceed to the
deployment of additional policies and checks to further investigate the security status during
runtime.

Figure 2-1 depicts the high-level overview of the Risk Assessment execution workflow. High-
level security and trust policies, based on the produced risks, are created and interpreted
to low-level behavioural attestation policies. In this way, fine-grained trust assumptions are
defined and are refined iteratively. Such fine-grained trust assumptions can be used to precisely
delimit the contextual interactions under which the TPM’s security guarantees are proved to
hold, and can be monitored, or even partially enforced, through the Control-Flow Attestation
Toolkit. These low-level policies are received by the Policy Decision Point, and through the
Policy Enforcement Point are deployed and enforced to the host devices ecosystem. Finally, the
low-level properties will be attested by the CFPA and the Attestation Report will contain the final
verdict. For more information regarding the Continuous Cyber-Risk Assessment, one can refer
to D4.2 [2], D4.3 [1] and D6.1 [7].

Figure 2-1: Risk Assessment Conceptual Flow

In order to support real time risk assessment and to have a continuous up to date attestation,
the FutureTPM project (in the context of D4.2) described the workflow of control-flow
attestation trust extensions and, in the context of D4.4, presented a newly designed set of
configuration integrity verification enablers. These two are extreme variants of remote
attestation covering different aspects of the operational lifecycle of the device. The goal was to
design secure remote attestation and execution services, targeting both the software and
hardware layers and covering all phases of a device’s execution; from the trusted boot and
integrity measurement of a CPS, enabling the generation of static, boot-time or load-time
evidence of the system’s components correct configuration (Configuration Integrity Verification

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 13 of 74

(CIV)), to the runtime behavioural attestation of those safety-critical components of a system
providing strong guarantees on the correctness of the control- and information-flow properties
(as modelled in T1.4), thus, enhancing the performance and scalability when composing secure
systems from potentially insecure components.

 Software Attestation: Novel attestation mechanisms providing unforgeable evidence
about the state of software executing on a CPS. Emphasis is placed on attestation
based upon the configuration and execution properties of the target device that were
identified in D3.2. More specifically, the focus is on enforcing the remote attestation
requirements that were specified as part of the attestation policies, extracted from the
FutureTPM EA Engine, through the precise attestation of the execution path of the
application running on the target CPS. The goal is to enhance the currently existing
environments (with standalone or single devices) with well-known static attestation
methods and extend them to a dynamic attestation of “Systems-of-Systems” by
measuring a program’s execution path. More concretely, the developed attestation
mechanisms will incrementally authenticate (via a keyed hash) specific execution paths
(i.e., branch commands), that are efficiently and continuously monitored by the deployed
tracing programmable components.

 Hardware Attestation: This is one important building block for truly secure attestation,
especially when considering attacks or processes that may alter or replace the trusted
component. We therefore also want to investigate by what means authenticity of
hardware can be attested. This is done via the developed QR TPM.

In the context of secure remote attestation, a basic component is to be able to monitor and trace
the measurements of the state of the device (configurational or behavioural states) and
compare and verify them against pre-recorded safe reference values and states. When it comes
to such advanced tracing mechanisms, the FutureTPM project (in D4.3) has described the
workflow of multi-level detailed tracing which solves the literature-defined challenge of efficient
and lightweight monitoring, and tracing of processes. Therefore, the FutureTPM Device Data
and Execution Stream Tracer provides a “hybrid” approach, by leveraging two of the most
prominent tracing mechanisms currently been proposed enabling the continuous monitoring of
kernel shared libraries, system calls, shared data and memory address space, etc., and the in-
depth investigation of the systems’ behaviour for detecting cheating attempts or if any type of
exploits to the program and data memory

As a first step, in the overall workflow of actions, we trace the order of execution of commands
especially in the TSS that essentially provides the aspects for the correct configuration of the
underlying TPM. This is achieved by leveraging the very scalable and lightweight eBPFs. If the
attestation enablers fail to properly verify some aspects of the defined policies (based on the
eBPF-based extracted graphs), in order to be able to have a more detailed and low-level tracing
so as to understand what went wrong (such as the point of intrusion that potentially was
exposed by an attacker), we trigger the deployment of more detailed introspection agents
leveraging the new generation of Intel PT tracing functionalities which can actually provide the
low-level control-flow graphs of the system’s execution. To summarize, we propose the usage
of lightweight eBPFs for integrity verification of the configuration (D4.4) and of the more
advanced Intel PT tracers to monitor the control flow attestation (D4.2).

FutureTPM performs the risk assessment process that identifies the attestation policies for the
integrity verification (correct device state) which is divided in the verification of configurational
properties integrity and the verification of the correct behavioural aspects of the device. To
perform this type of attestation, we need to have access to the current state of the device
which ultimately is provided through tracing techniques. The main challenge here is to
have the efficient near-real-time tracing, during runtime, without having a large overhead
(completely depleting the device resources). In this context, we have to consider what we are
aiming to trace; that is in integrity verification we need to trace a static property (easy to
monitor) while in the behavioural tracing we need to trace something dynamic (hard to monitor).
With this in mind, we need to identify a hybrid tracing model that can accommodate both of

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 14 of 74

these two peculiarities. This exactly is what is proposed and implemented by FutureTPM which
is presented in the following Chapter 2.1.

2.1 Multi-Level Detailed Tracing based on eBPFs and Intel PT
Programmable Components

As described in the previous chapter and also depicted in Figure 2-2, there does not yet exist a
comprehensive design nor an effective as well as efficient implementation for enabling dynamic
tracing. Moreover, existing tracing-based attestation approaches are limited to single device
attestation, whereas in FutureTPM we target attestation of systems-of-systems to address the
emerging class of interconnected embedded devices in the Internet-of-Things. To provide
strong security assurance in this context, we bridge this gap within FutureTPM and developed
novel dynamic attestation mechanisms, particularly focusing on behavioral-based attestation
dynamic properties of software and hardware for systems-of-systems, through the deployment
of eBPF execution hooks and Intel PT based system call tracing.

Figure 2-2: FutureTPM Methodology and Advancement to Remote Attestation

These kernel hooks, initially, are identified as low-level behavioral properties and are deployed
to trace system calls. The goal of this initial tracing is to monitor system calls, produce the
necessary CFGs and finally acquire the attestation report. In the case of a failed attestation
report, FutureTPM has defined a methodology for increasing the level of monitoring in order to
collect additional evidence and information on the incident for the assistance in finding the
province of the attack as well as in the development of new enforceable policies that should be
able to catch this newly identified threat that caused the attack in the first place. This escalated
tracing will be based on Intel PT, a technology that is capable of decoding execution codes on-
the-fly during runtime and allow for a detailed introspection of what is done by the binary. More
details on the Intel PT utilization in the context of FutureTPM will be analyzed in Chapter 3.
Effectively, we propose a novel solution for multi-level detailed tracing that, depending
on the situation, monitors the security-critical components of each system in different
levels in order to upkeep the desired assurance while also providing the required details
for post-attack investigation.

This multi-level detailed tracing is implemented in a semi-automatic manner. Towards this
direction, there are two possibilities explored within FutureTPM. The first is the automatic
deployment of new, richer, programmable eBPF hooks after the reception of a failed attestation
report. In this case, the security analyst(s) (performing the offline investigation) assess the
attestation report and determines whether more information is needed for identifying the cause
and type of attack - in which case she also defines the set of policies describing the type of
information/evidence to be collected. After this process, new programmable eBPF kernel hooks
are seamlessly and automatically deployed to the target device for fulfilling these policies. As
previously noted, the eBPF is implemented in the kernel, thus, needs a userland control agent
for remote control and exportation of the data. Such agents are implemented as part of the
FutureTPM RA framework. Overall, this approach enables us to get the necessary evidence
without affecting the performance of the target system since these rich eBPF hooks in
cooperation with the Intel PT tracing (that will incur a higher penalty in the system execution as
more system calls need to be monitored in near real-time) will be deployed. However, there is

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 15 of 74

the inherent limitation of a large attack time window: Since the detailed tracing commences after
the attestation process has failed, this means that the attack is already in place which in turn
results to the additional requirement of “letting” the attack to run further (for a larger amount of
time) in the device until the detailed tracing has finished. Depending on the application in hand,
such an approach (which will of course require the isolation of the attacked device during the
evidence collection so as other adjacent assets are not affected) might not be feasible.

Compounding this issue, another approach is the deployment, during design-time, of eBPF
hooks already capable of enhanced monitoring and tracing of most of the operational system
calls. In this case, only those execution hooks that are necessary for tracing the CFGs to be
attested will be active during the run-time risk assessment phase (i.e., including the execution of
the CFPA mechanism) and the enriched eBPFs will be activated only if the evidence collection
is triggered; thus, resulting to the transmission of the necessary information about the device
that got compromised, vulnerabilities found in any of the internal system components or their
configurations, configuration changes, etc. This approach while less efficient, as the penalty of
increased tracing is incurred from the beginning, does not necessitate a large attack time
window. Further investigation on the feasibility and usability of these two mechanisms were
done during the first testing phase of the FutureTPM demonstrators and are documented in this
deliverable (D4.5).

Summarizing the process of the FutureTPM tracing hooks deployment, multi-level detailed
tracing and trust evidence collection mechanisms, the conceptual workflow is depicted in Figure
2-3.The process of this deployment is as follows:

1. An attack or malfunction occurs causing an enforced policy to fail as detected by the
output of the Control-Flow Property-based Attestation mechanism.

2. The security analyst(s) assess if she needs additional information related to the attack
incident. If she can directly deduce what was the cause of the attack, then the process
ends here.

3. The security analyst(s) defines the required information (through adequate policies) and
directly deploys (Case 1 in Figure 2-3) or activates (Case 2 in Figure 2-3) the enriched
eBPF execution hooks for collecting the necessary additional information.

4. All the information collected is fed to the FutureTPM Run-time Risk Assessment
framework for performing a re-calculation of the overall risk and threat vector
(considering Backwards Chaining and Cascading Effect Analysis). Compilation and
enforcement of new attestation policies that should be able to cover it in the future.

The two main key points of this method is that the security analyst will either require or not any
additional tracing. The standard tracing kit will be running on the end device (prover) generating
attestations of its control-flow graphs and sending them to the verifier. When a policy fails, then
the security analyst will read the attestations generated by the prover and will assess if she
needs additional tracing to identify the source of the event. Depending on her choice she will
either end the evidence collection process or deploy/activate any additional tracing required to
gather the required data. For example, when a buffer overflow attack occurs that will alter the
control flow graph (and thus, failing the corresponding behavioral property policy) of the
monitored application, then there might be the need for additional information such as what
memory regions where overwritten, what memory regions where over-read, or which entity
started the malfunction. On the other hand, when an unidentified application is found to run on a
restricted device (thus failing the corresponding configuration property policy), then from the
already existing attestation the security analyst can black-list this application without any
additional information. In both cases, new policies will be compiled that will be able to catch this
attack before it happens and prevent it from breaching the security of the end device.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 16 of 74

Figure 2-3: Conceptual Workflow of Multi-level Detailed Tracing & Trust Evidence Collection

In order to support periodic or on-demand attestation actions, it is necessary to collect and
analyse low-level code information during run-time. This type of monitoring is based on the
integration of advanced tracing techniques. The CFPA Runtime Tracer performs a set of traces,
including the eBPF-based tracing for QR-TPM sequence of commands and the binaries
hashing for Configuration Integrity Verification (CIV), and Intel-PT-based tracing for low-level
mission-critical processes. The outcome of the tracing process is in all cases the extraction of
the corresponding CFGs (in the context of CFPA) and/or binary hashes (in the context of CIV).
Note that, these two tracing mechanisms are deployed in order to provide execution traces from
multiple perspectives. In fact, eBPF-based tracing can provide deep insights to the execution of
TSS commands and infer the configuration integrity of critical software components, while Intel-
PT-based tracing captures low-level functionalities in an efficient way.

To achieve auto configuration on the necessary deployed trace agents during runtime, the
CFPA Runtime Tracer communicates with the Attestation Agent, which receives the attestation
specifications, including the tracing configurations, from the Attestation Engine. Overall, both the
eBPF and Intel-PT Tracers have the following inputs and outputs.

Input: Trace Configurations (included in an attestation policy)
Output: Traces, Extracted CFGs

2.2 Formal Definition of Property Tracing

Consider a program P, defined as a sequence of N code blocks B0, ..., BN−1, such that each
block is a memory address offset at the beginning of a sequence of 0 or more non-branching
instructions, followed by 1 branching instruction in the source binary of P. Let B0 → B1 denote a

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 17 of 74

control-flow transition between two states; more specifically, from the last instruction of B0 to the
first instruction of B1. Unless otherwise specified, it is assumed that a block identifier on the left-
hand side of → refers to the last instruction of the identified block, and an identifier on the right-
hand side refers to the first instruction of that block.

To specify a different instruction within a block, the following notation can be used: Given blocks
B0 = 0x1000, B1 = 0x1005 and B2 = 0x100a, each consisting only of single-byte instructions for
the purpose of demonstration, it can be said that B0 → B1 (+x). Here, x is a non-negative integer
and less than the size of code block B1 in bytes. This denotes a transition from 0x1004, the last
instruction of B0, to the instruction at offset x in B1.

Let CFG(P) be the complete and correct control-flow graph of P, the set of all legitimate control-
flow transition in P, and E(P) be the control-flow graph of a single execution of P. For such
graphs, it is helpful to think of code blocks as states in a state-machine and branches as
transitions between them. S denotes the start state of an execution and E denotes the end
state. In order to perform real-time CFA, E(P) must be extracted and each control-flow transition
verified as a member of CFG(P) during runtime of P. E(P) is valid if and only if E(P) ⊆ CFG(P).

This can also be written ∀x ∈ E(P)(x ∈ CFG(P)), indicating that all elements of E(P) are also
elements of CFG(P).

2.2.1 Control-Flow Graph Structure

Consider the following example: Figure 2-4 shows a simple C program which loops 10 times,
calling a function foo in every other iteration of the loop. It is the program P in this example,
consisting of 6 blocks, B0,.., B5. Each of these blocks represents a list of linear instructions
followed by a branching instruction. For simplicity, the focus will be entirely on user defined
code and any additional code generated by the compiler will be ignored.

Figure 2-4: Control-Flow Example Program P

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 18 of 74

First, CFG(P) is generated. P should always start executing at the beginning of the main
function at address offset 0x1138. This can be written formally as S → B1. Since B1 ends with
an unconditional branch to offset 0x1177, belonging to B4, B1 → B4 (+8) is written to CFG(P).
The process has now entered the for-loop and is about to check whether its condition is met. If i
< 10, it will jump to offset 0x115b. Since this is a conditional branch, both B4 → B5 and B4 → B2
are written. In B2, the condition a mod 2 = 0 is evaluated, and a conditional jump back to B4
follows. Therefore, B2 → B4 and B2 → B3 are written. Since B4 has already been covered, only
B3 needs to be examined, which ends with a call to the foo function at offset 0x1129. B3 → B0 is
written. For B0, the locations of corresponding call instructions must be considered. In this case,
there is only one call to that function. From this, B0 → B4 is written, denoting the transition from
the called function to the instruction at 0x116f since it immediately follows the corresponding call
at 0x116a. Finally, the process enters B5, which ends with a return instruction which marks the
end of P. This is simply written as B5 → E. It has now been determined that CFG(P) = {S → B1,
B1 → B4 (+8), B4 → B5, B4 → B2, B2 → B4, B2 → B3, B3 → B0, B0 → B4, B5 → E}. This CFG is
illustrated in Figure 2-5.

Figure 2-5: Visual Representation of CFG(P)

Now, E(P) can be generated and validated against CFG(P). Execution starts at 0x1138, at the

start of B1, so S → B1 is written to E(P). This can be validated: (S → B1) ∈ CFG(P), so the
execution continues, combining the extraction and validation steps. From there, the process

unconditionally jumps to 0x1177 in B4, so (B1 → B4 (+8)) ∈ CFG(P) is written. Now, the states of
the integer variables i and a must be tracked. At this point, they both equal 0, so the condition i

< 10 evaluates to true. The conditional branch is therefore taken and (B4 → B2) ∈ CFG(P) is
written. The next condition is a mod 2 = 0, and the value of a has not changed, so it also
evaluates to true. So (B2 → B3) ∈ CFG(P) is written. Next, the function call can simply be written

as (B3 → B0) ∈ CFG(P), followed by (B0 → B4) ∈ CFG(P). a and i are incremented by 1 and the
loop repeats. This time, a mod 2 = 0 evaluates to false, so the process jumps from B2 to B4. (B2

→ B4) ∈ CFG(P) is verified. These two iterations are repeated until the loop exits, so there is
nothing more to write, assuming the program runs correctly. The final evaluations, (B4 → B5) ∈

CFG(P) and (B5 → E) ∈ CFG(P) hold, so it can be said that E(P) = {S → B1, B1 → B4(+8), B4 →
B2, B2 → B3, B3 → B0, B0 → B4, B2 → B4, B4 → B5, B5 → E}, and E(P) ⊆ CFG(P). Therefore,
E(P) is valid.

Suppose that, during this process, E(P) = {S → B1, B1 → B4(+8), B4 → B2, B2 → B3, B3 → B0, B0
→ B4, B2 → B4} has been written. The function foo is currently executing at B0. This time, a
malicious actor has found some way to corrupt the stack, and when foo returns, the process
does not transition to B4. Instead, P starts executing some function in libc or another external
library. This can have serious consequences and cause P to behave in unexpected ways. For
the purposes of this example, the target block shall be called Bx, and, thus, B0 → Bx is written. It
is immediately apparent that (B0 → Bx) /∈ CFG(P), and E(P) becomes invalid. The fault has
been detected and can be dealt with.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 19 of 74

Such a control flow graph will be generated for the behavioural monitoring of the use cases of
FutureTPM, namely Secure Mobile Wallet and Payment, Activity Tracking and Device
Management. For example, in the use case of the mobile device e-Payment of FutureTPM, we
want to attest the correct behaviour of the mobile phone when it connects to the POS
application in order to execute a financial transaction. We want the steps taken within this
functionality to be verified before allowing the execution of the transaction. These steps are
essentially translated to the branches that the internal binary will take towards achieving this
functionality. More specifically, in the e-payment use case, these steps as defined in D6.5 that
include the correct functionality of the FIDO registration, the FIDO authentication, and the
management of bearer and financial tokens; these are the functionalities that we want to be
able to trace and attest for their operational correctness.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 20 of 74

Chapter 3 High-Level Tracing Leveraging eBPF
Execution Hooks

As we have already described the (multi-level) dynamic tracing and attestation mechanisms of
FutureTPM, in the remaining part of this deliverable we focus on the implementation and
evaluation details of the two types of tracers that we leverage: the eBPF execution hooks
and the Intel PT introspection agents. The aim is to give the details of how these two
techniques operate in tandem when it comes to the underlying models and algorithms but also
their detailed evaluation. In this chapter we start with the more scalable and efficient eBPF
tracer. In what follows, we evaluate the hardware FPGA-based TPM provided to us by Infineon
since we have already presented the tracing of the SW-based TPM in D4.3 [1]. Since the TPM
is FPGA-based, the connection to it is made through a network interface with the usage of the
TCP/IP stack. This fact forces us to make an adjustment to the traditional tracing and add
another layer that is able to capture and analyse the TCP/IP protocol packets. This will
unquestionably add some latency to our measurements but as we will see, even with the
network overhead, the eBPF tracing is very efficient and able to provide static and very fast
timings even for the worst-case scenarios (when tracing quantum resistant algorithms).

The eBPF runtime tracer was introduced in D4.1 [5] and D4.2 [2] with a further elaboration on
the dynamic multi-level tracing of FutureTPM in D4.3 [1]. In the context of the final release of the
runtime risk assessment, resilience, and mitigation planning, we provide more implementation
details, while we also elaborate on the integration points and its usage. Furthermore, we also
present the timing results we measured from the execution of core QR algorithms as they are
implemented in the HW-based QR TPM. The designed tracer is built on top of BPF Compiler
Collection (BCC), which is a toolkit for creating efficient kernel tracing and manipulation
programs. The tracer is logically divided into two parts. The BPF code for tracing the kernel is
written in C language, and the user-space tool is written in Python. In order to develop a
dynamic tracing tool, one needs to be aware of the kernel or application internals. That is, in the
context of FutureTPM, the eBPF tracing focuses on the internal commands used for interacting
with the TPM.

3.1 Implementation Path Report

The designed tracer takes advantage of the Virtual File System (VFS) layer, which provides an
interface for accessing files and directories from different devices and file systems. The tracer
focuses on the vfs_open, vfs_read and vfs_write functions of the VFS interface [8] in order to
intercept (hook) the TPM function invocations and resource accesses. More specifically, the C-
based BPF interceptor traces the input and returned parameters generated by the invocation of
the aforementioned functions. This process reveals the exact instructions and the
corresponding parameters launched by the TPM Software Stack (TSS) to the TPM. Once these
parameters are traced in the kernel space, they are parsed by the Python-based
implementation, which undertakes their transition to the user-space and their matching with the
exact TPM commands. To do so, the Runtime tracer is aware of the structure of the TPM
Library and is able to manipulate all the TPM commands. A detailed documentation of the TPM
command structures is given in [9]. The TPM structure included in the Python-based
implementation has been extended in order to include the new QR TPM commands.

The pseudocode snippet given in Figure 3-1, gives an overview of the execution flow of the
eBPF Runtime Tracer. The tracer takes as inputs the kernel functions to be intercepted, a
process ID and a character device corresponding to the application of interest and the BPF
program to be executed. The workflow consists of three discrete phases which are described
below.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 21 of 74

Figure 3-1: FutureTPM eBPF Runtime Tracer – Instantiation, Initialization and Tracing Phases

Initialization phase:

 eBPF initialisation: The BPF Compiler Collection (BCC) is used for compiling the BPF
program. After the compilation, the bytecode is pushed to the kernel and is executed by
an in-kernel sandboxed virtual machine and uses its own instruction set (line 1 Figure
3-1). The initialisation function provides a reference (b) to the user space code which
can be used for interacting with the BPD program in the kernel and attach on-demand
tracing functions. (Figure 3-2)

Figure 3-2: eBPF Initialisation

 Code verification and JIT-compilation: Silently, and in the background, the kernel
runs a verifier on the bytecode to make sure the program is safe to run. The kernel JIT-
compiles the bytecode to native code and attaches it in the in-kernel sandboxed virtual
machine for execution (line 2 Figure 3-1).

eBPF instantiation phase:

 Kernel probes creation: To enable dynamic tracing of a kernel function call, kprobes
and kretprobes are created for the kernel function provided as input to the tracer. The
former is used for the interception upon the function invocation, while the latter is used
for the interception the function return (lines 3-4 Figure 3-1).

 Attaching hooks: By attaching kprobes and kretprobes to the BPF running program
instance dynamically, we instrument the interception of events when the kernel function
is called (line 5 Figure 3-1). After, this step the eBPF program has been instantiated
including the necessary hooks and every function invocation will be traced and logged.
(Figure 3-3)

Figure 3-3: eBPF Hook Attachment

 Event Handlers: Each attached probe has a corresponding handler function; namely
trace_connect_v4_entry, trace_connect_v4_return and trace_tcp_set_state_entry. Every

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 22 of 74

time that a TCP connection is taking place in the kernel, we are fetching the pid (process
ID) of the process that initialized that connection with the help of a predefined eBPF
helper function. The pid is then pushed to the hash table map “connectsock”.
Accordingly, on the return of the TCP connection kernel routine, we are making a look
up at the hash table map to verify that we have hooked the right process (the one that
triggered the TCP connection). Afterwards, we store the name of the process and the
IPv4 addresses of the receiver (FPGA) and the sender (our local system), as a tuple in
another hash table map “tupleid_ipv4” for later use. These two processes are
implemented through the trace_connect_v4_entry and trace_connect_v4_return handler
functions and are depicted in Figure 3-4.

Figure 3-4: Tracer Connect Event Handler

When the TCP connection stabilizes, meaning that it is at a certain state, then another
kernel routine takes place and the function displayed below (Figure 3-5) handles the
breakpoint. We are fetching the saved data from the hash table based on the struct sock
that was used for the specified kernel routine and then we store the desired fields in a
struct (evt4) that is “pushed” inside an eBPF table (tcp_ipv4_event) which is used for
pushing out custom event data to user-space via the perf ring buffer (perf_submit()).

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 23 of 74

Figure 3-5: TCP Set State Handler

 Socket Attachment: Hooking the FutureTPM tracer to the TCP connection that every
TSS command creates is not enough. The packets transferred through each connection
need to be further analyzed as these packets will contain the payload that needs to be
extracted in order to acquire a structured information of the TPM commands. To
accomplish that, another function is attached (which is going to be used for filtering of
incoming packets) to a socket which in turn is attached to the interface which is used for
the communication with the hardware based TPM. (Figure 3-6)
The shown commands are responsible for assigning a file descriptor (socket_fd) to the
eBPF function and then attaching it to the socket. Creating such a socket, we specify the
domain (AF_PACKET), socket type (SOCK_RAW which translates to attaching to a raw
socket) and protocol (IPPROTO_IP due to the fact that the packets we are interested are
encapsulated inside IPv4 packets).

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 24 of 74

Figure 3-6: TCP Socket Attachment

Every time a packets arrives at the specified interface; it is available for processing through the
extract_packets function which is shown in Figure 3-7. With the cursor_advance() function we
gain access to a pointer inside the payload of the packet. We first check that it is of “Ethernet“
type and that it has the proper header length. If the conditions are not met, we drop the current
packet as it is not of interest. Afterwards, through the cursor_advance() function we move inside
the TCP payload and we check whether the source or destination port of the packet is the
specified by Infineon port which handles external connections (2321) on the FPGA TPM. When
this requirement in not met, we once again drop the packet as we are certain that is not a
packet of interest.

Figure 3-7: TCP Packet Extract

Tracing phase:

 Fetching traced events: The tracing process pushes evens into a buffer
(open_perf_buffer()). The tracer, after gaining access to that buffer (line 6), is constantly
pulling traced events out of it (lines 7-8). However, as mentioned previously, one needs
to be aware of the kernel or application internals in order to “translate” the traced event
and extract a structured representation of the executed commands. Furthermore, we

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 25 of 74

also initialize the TpmParser() class that includes all the subclasses of the TPM
commands, in order for each of those classes to be ready for initialisation. (Figure 3-8)

Figure 3-8: TPM Command Parse

 Unmask TPM commands: In order to unmask the traced events and acquire a
structured information of the TPM commands sequence, the tracer parses the events by
utilising a library that contains the TPM structure [9] and produces a structured
information of the TPM command header and the command’s details (line 9). Once the
tracing even is parsed, the tracer logs the executed TPM command in the user space
(line 10).

Every time a TCP connection between our system and the FPGA is made (and the
corresponding event takes place), the print_ipv4_event is called. Now our task is to
extract the correct payload which is the one that is given to the hardware based TPM in
order to process the specified command (write command) and the one that the TPM
itself produces and sends back as a result (read command). This payload exists in
packets of the TPM protocol (the TPM protocol is encapsulated inside the TCP protocol).

The first information collected is the as pid and name of the process that triggered the
TCP connection in order to have a more complete output. This information is included in
the event structure of Figure 3-9.

Figure 3-9: eBPF Initial Information Collection (pid, process name)

In order to find the packets with the aforementioned payloads, we need to recognize the
packets which are sent for every TPM command. This is achieved by searching for
certain patterns that exist within the TPM SEND_COMMAND or the SESSION_END
packets. (Figure 3-10)

Figure 3-10: TPM Search Terms to Identify the Start and the End of a Sequence

The TPM packet that consists of the first sequence of bytes shown in Figure 3-10 in the
TPM segment, is sent from the TPM Software Stack (TSS) and is the first TPM packet
that will be sent to the FPGA hardware TPM, meaning that a sequence of other TPM
packets is going to be sent in order to complete the TPM command. Respectively, the
second sequence of bytes is included in the last TPM packet, in the TPM segment and it
signifies that the TPM command has been executed and the TCP connection is about to
close. With the help of these 2 packets, we are able to intercept the sequence of the
TPM packets and to find the correct payloads.

At this point, the socket attached to the appropriate interface is read and interpreted.
The packets that arrive at the socket are those who have been kept after the filtering that
was done in the eBPF function extract_packets. By setting the maximum size of bytes
that will be reading for every packet to 4096, we make sure that we will not have any
data loss due to the fact that the maximum packet size is 1514 bytes by default. After
conducting some processing, we are left with the “payload_for_print” string which
consists of the bytes in the TPM segment. (Figure 3-11)

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 26 of 74

Figure 3-11: Packet Parsing

 Interpreting Quantum Resistant Commands: Normally the write and read payload can
be transferred through one TPM packet. That is not the case though when the TPM
command interpreted is using quantum resistance algorithms. The processing then is
altered, and we are going to explain exactly the steps for handling such cases.
Every time we come across a SEND_COMMAND packet, we set a Boolean flag to True
so that we know that a sequence of packets following a TPM packet is taking place. On
the contrary, when we come across a SESSION_END packet, we set this flag to false so
that we know that the TCP session is about to end. The packet_count variable
increments only when we are inside a TCP session and when the desired payloads that
we want to extract are not fragmented (when we are not using quantum resistant
algorithms in a command). This process is depicted in Figure 3-12.

Figure 3-12: QR Command Parsing with Workaround for the Large Size of the Packet

When we execute a TPM command using quantum resistance algorithms the write and
read payloads in the TPM segments of the packets are exceeding the maximum packet
size and the network layer has to fragment the total payload in more packets than one.
In this scenario, we have to accumulate the payload to a buffer until the packet that we

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 27 of 74

come across is less than the maximum packet size. Also, we have to increment the
packet number that the packet with the read payload. For every maximum size TPM
packet (containing the write payload), a TCP re-transmission packet has to be sent, so
the TPM packet with the read payload is going to be delayed by two packets. The code
for implementing the aforementioned process is shown below in Figure 3-13.

Figure 3-13: Handling of Fragmented Packet

At this point we have to store the final payload to the buffer that is going to be sent to the
Tpm_Parser() in order for the command to be parsed at the network layer. (Figure 3-14)

Figure 3-14: Storing of the Final Write Payload

Accordingly, we are handling the case for the read payload based on the resulting
variable packet_of_read_payload. (Figure 3-15)

Figure 3-15: Storing of the Final Read Payload

For the last step, after we have made some modification to the data (payload) we send
them to our parser, with the necessary information provided. We also, print the result
with a help message. (Figure 3-16)

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 28 of 74

Figure 3-16: Send all Data to the Parser with Auxiliary Information

The aforementioned workflow of the eBPF Runtime Tracer execution is also depicted in the
sequence diagram of Figure 3-17. The diagram provides an abstract representation of the
interactions between the user land environment of the tracer with the subcomponents of the
system’s kernel and the BPF program.

Figure 3-17: FutureTPM eBPF Runtime Tracer – Workflow of Actions

Apart from intercepting the TPM commands, the eBPF Runtime Tracer proceeds to the
generation of the CFGs based on the captured sequences of traces, where the CFG nodes
represent command executions and the edges the control-flow transitions. That is, this
representation can be used both for generating the measurements database, i.e., the points of
reference for the legitimate behaviour of an application running on the QR TPM-enabled
systems, and for attesting the execution behaviour of an application at runtime. The process

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 29 of 74

and the properties of the CFG generation have been discussed in D6.2, while further details will
be given in Chapter 4.2.

Overall, the eBPF Runtime Tracer has the following inputs and outputs.

Input: Trace Configurations

Output: Traces, Extracted CFG

An indicative example of a traced TPM command which is published in the trace topic of Kafka
is given in Table 1.

Table 1: Example of traces published to trace topic in JSON format.

Trace topic

{
 "tpmcomand":"tpm_create",
 "algorithm":"SHA256",
 "lenght":"256",
 "parameters":"t",
 "digest": "ebcf86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08",
 "timestamp": "2020-03-28 24:23 12 904",
 "executestatues": "success"
}

3.2 eBPF Tracer Timings

In this chapter, we put forth the implementation path that we followed for architecting the
evaluation of the eBPF tracer based on extracted timings that we measured in the context of
TPM command execution and eBPF tracing with the usage of the network connected physical
TPM. More specifically, we measured various command execution times on an actual hardware
TPM which was connected through a network interface, and we measured the time that the
command required to execute, the time that was required for the data to travel through the
network interface and the time that our eBPF tracer required to decompile the captured data
into human-readable assembly code. It is note-worthy that the TPM is connected through a
higher-than-normal latency network interface whereas a normal TPM would be connected with a
much faster and responsive bus (LPC or SPI). The fact that the entire TPM has to go through
the TCP/IP stack increases the timings and we expect that the presented timings would be
decreased in a scenario where the TPM is properly connected to the device. Additionally, we
use an external tool to capture the network data (Wireshark) which further adds to the added
delay that we expect that will be absent from a more common setup.

Next, we provide a more detailed presentation of the workflow of the executed commands
throughout the entire process of the execution and tracing. When a TPM command is executed,
the TSS takes on the task of marshalling the data. That is when our eBPF tracer starts its
execution by intercepting the commands at the network layer of our system. It handles the
packets so as to extract the proper payload in order to unmask the traced events and acquire
structured information of the TPM commands sequence. Afterwards, the executed TPM
command is processed and the resulting data are transferred by sending the TPM packets
through the network interface and the socket that was created by the TSS. Once again, our
eBPF tracer intercepts and unmasks the payload of the TPM command. Then the data are
fetched by the TSS, which in turn un-marshals the payload in order for the tracing process to
terminate.

For demonstration reasons, we are going to execute a TPM command within the TSS with the “-
v” parameter enabled (for producing a verbose output). The resulting output is depicted in
Figure 3-18.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 30 of 74

Figure 3-18: Output of the PCR Extend Function Invocation

Based on the above figure, the workflow of the command is demonstrated, but only at the
application layer, omitting the tracing steps and the process on the FPGA. The executed binary
essentially runs an authorization transaction with various steps that include HMAC calculation,
encryption/decryption, and signature/verification with the quantum resistant algorithms BLISS
and NewHope. To measure both the execution time of the TPM commands as well as the
tracing time we did the time measurements in the following stages.

Stages of timings:

 Stage 1: INITIATE – TSS Data Marshal

At this stage, we measure the time it takes for the command from the start of its
execution until right after the TSS marshals the data. For this to happen, we have
inserted a patch inside the TSS source code in order to extract the desired timing. On
the tss.c file and in more particular the TSS_Execute function we declare our variables
which will store the time. Then we execute the command which stores the time in our
variable right after the marshalling of the data was made. (Figure 3-19)

Figure 3-19: Storage of TSS Marshal Timing

 Stage 2: TSS Data Marshal – eBPF Write Packet Interception

At this stage we measure the time it takes for the command right after the marshalling of
the data until we intercept the packet with the write payload at the network layer.

 Stage 3: eBPF Read Packet Interception – Command Unmask

At this stage we measure the time from the interception of the read payload (after the
processing was done at the TPM) at the network layer, until our command had been
unmasked and parsed with the help of our TPM structure.

Before we present the measured timings, it is important that we define the properties of interest;
that is the actual timing of a function to be executed, the time required by the tracer to monitor
the executed function and how these two timings compare so as to find any possible overhead
(if the tracer timing is significantly larger than the function execution time). The timing results
can be found in Table 2 where the performance of tracing various TPM commands is depicted.
We measured the timings of basic TPM commands such as “TPM_CC_Startup” and advanced
commands that include the FutureTPM-used quantum resistant algorithms NewHope and
BLISS. The overall timings of Stage 1 are in the order of milliseconds; a reasonable result since
data marshalling and TSS command preparations are quick although some of the operations
are more complicated given the added requirements of quantum resistant algorithms. It is of

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 31 of 74

note here that the PCR extend command took more time in Stage 1 than any other quantum
resistant algorithm, an indication that the new algorithms do not take any additional toll on this
part of the process. In Stage 2, the time required from the data marshalling to the interception of
the outbound write packet (from the TSS to the TPM) is around 0.24 seconds and, finally, the
Stage 3 timings which are rather fast, thus, validating the efficiency of this part of the
FutureTPM Tracing Component (sub 0.005 seconds) with the only exception being that of the
creation process of a NewHope key. The Stage 3 measurements provide a strong evidence that
the eBPF tracer that we implemented is capable of unmasking TPM commands rapidly and
efficiently without substantial overheads.

We evaluate the measured timings by using the properties of interest we defined. The actual
execution time of the function is the one found in Stage 1 plus the one identified in Stage 2 that
essentially begins right after the function commences its execution and terminates before the
command is sent to the TPM; thus, it measures the execution time within the TSS. On the other
hand, in Stage 3 we measure the time right after we receive the response from the TPM until we
decode the parsed and traced executed functions. With these facts in mind, we see that on
average, Stage 1 takes 0.006865 seconds, Stage 2 (on average) takes 0.236163 seconds and
the Stage 3 takes (on average) 0.014625 seconds. Following the methodology depicted in
Figure 3-20, we conclude that the eBPF solution has an average overhead of 6.017825%
which proves the fact that eBPFs execution hooks are very efficient and lightweight.

𝑆𝑡𝑎𝑔𝑒 1 + 𝑆𝑡𝑎𝑔𝑒 2 = 0.243028 𝑠𝑒𝑐

𝑆𝑡𝑎𝑔𝑒 3

𝑆𝑡𝑎𝑔𝑒 1 + 𝑆𝑡𝑎𝑔𝑒 2
 × 100 = 6.017825% 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑

Figure 3-20: Measurement of eBPF Overhead

Additionally, we would once again like to notice that the entire setup is based on a network-
attached TPM, something that would further decrease the measured time of both Stage 2 but
also Stage 3 since all of these measurements are affected by the added delays that occur from
the TCP/IP stack and the usage of the Wireshark program to capture the network packets (the
reading and writing commands have to go through the network between the FPGA hardware
TPM and our host device). Furthermore, the measured timings are mostly static, something that
stems from the fact that we have not added any new commands as part of the TPM algorithm
portfolio since the overall goal of FutureTPM is to enable the migration to a QR TPM ecosystem
with the trusted component being able to act as a ”plug-and-play” replacement of the current
TPM 2.0. This shows that the eBPF tracer has the same operational timings irrespective
of the complexity of the traced function; something that would provide even smaller
overheads in more complicated functions. All in all, we argue that the eBPF tracer is a very
efficient solution and ideal for our use case where we continuously monitor the function
execution, and we required a low overhead approach.

Table 2: eBPF Tracer Timings

TPM Command Stage 1 Stage 2 Stage 3

TPM_CC_Startup 0.007531 sec 0.256136 sec 0.000118 sec

TPM_CC_CreatePrimary (NewHope) 0.007523 sec 0.246996 sec 0.137073 sec

TPM_CC_Create (NewHope) 0.008129 sec 0.246298 sec 0.003777 sec

TPM_CC_Create (Bliss) 0.008110 sec 0.240702 sec 0.006160 sec

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 32 of 74

TPM Command Stage 1 Stage 2 Stage 3

TPM_CC_Load 0.003019 sec 0.245251 sec 0.004703 sec

TPM_CC_NewHope_Enc 0.007668 sec 0.229365 sec 0.001704 sec

TPM_CC_PCR_Extend 0.008806 sec 0.226297 sec 0.003735 sec

TPM_CC_NewHope_Dec 0.007701 sec 0.238259 sec 0.000154 sec

TPM_CC_Quote (Bliss) 0.002381 sec 0.219403 sec 0.002293 sec

TPM_CC_VerifySignature (Bliss) 0.008388 sec 0.233758 sec 0.001026 sec

TPM_CC_Shutdown 0.006260 sec 0.215326 sec 0.000140 sec

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 33 of 74

Chapter 4 Low-Level Detailed Tracing Leveraging
Intel PT Introspection Agents

After covering the initial tracing technique using the very lightweight and scalable eBPF tracing
hooks, we will now focus on the enhanced tracing solution of FutureTPM leveraging the Intel PT
introspection agents. The main difference in the mode of operation between the Intel PT and the
previously used eBPFs, is that the former will trace the behavioural aspects of the traced
binary and create the exact control flow graphs followed while the eBPF provided a static
configurational integrity tracing. Intel PT tracing provides a deep and low-level assembly
monitoring and tracing while it is also able to create the exact control flow graph of the binary
traced. This is achieved by monitoring in real-time the binary and capturing low-level
executional and behavioral information. This information is then loaded into the decoder that is
responsible for translating this information to actual assembly structures from which the control-
flow graph is generated. The basic aspect that we are investigating by leveraging Intel PTs is
how fast we can generate these control-flow graphs from the start of the tracing to the actual
CFG generation in order to assess how effectively the control flow attestation will work. This is
the intuition behind the FutureTPM Control-Flow Property-based Attestation. Where property is
a safety-critical-function that needs to be attested, based on the security attestation policies
extracted by the FutureTPM RA Engine. The idea is to minimize the code base that we attest
and extract its control flow graph. What affects the execution timing of extracting the control flow
graph, as will be described in the later sections, is dependent on the order of complexity of
the function of the property that we want to be able to trace and extract its control flow
graph. One important aspect that we are evaluating here is how Intel PT behaves under such
different orders of complexity. To the best of our knowledge this is one of the first
comprehensive evaluations that try to investigate the core aspects that affect the
execution of the Intel PT.

As already aforementioned, if the calculated risk (based on the output of the Risk Quantification
Engine) is not acceptable or the result of an attestation report has failed (based on the output of
the CFPA), then a new configuration and security policy needs to be enforced. More
specifically, the configuration policy includes a high-level access control policy or new
interpreted low-level execution properties that needs to be attested. In the case there is a need
to enforce a new policy, there is also a possibility to update the tracer and deploy new eBPF
hooks and Intel PT tracing automatically (Case 1 of Figure 2-3). This chapter focuses on this
automatic deployment of such tracing techniques.

This process will work according to an Event-Condition-Action pattern, where deployment
events are triggered by the failure of an attestation report or a calculated risk with high impact,
being above a threshold, and actions entail the deployment and/or modification of the eBPF
execution hooks (monitored data, frequency, granularity, filtering, etc.), the deployment of Intel
PT tracing hooks, re-configuration of the control-flow attestation policies, etc. The description of
data to be monitored and collected and the automatic deployment of the kernel hooks are
expressed by policies, which also represent the “smartness” of the FutureTPM Secure Tracing
component and encompasses both reaction and prevention actions as well as defensive
policies.

This Secure Tracer instantiates and configures these programmable execution hooks to be
deployed to the envisioned ecosystem of devices. For instance, if the focus is mainly against
remote memory and data exploitation attacks, the tracer will instantiate the agents for
monitoring system calls that try to access the data variable of interest (in the device’s memory)
and also are capable of compiling in real-time the necessary Control-Flow and Data-Flow
Graphs (CFGs and DFGs, respectively) to be then attested by the CFPA. This controller is also
capable of reprogramming the execution environment of existing eBPF hooks, leveraging

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 34 of 74

various means of abstraction. The main technical challenge here is the translation of the
evidence-related policies (definition of evidence to be collected) into configurations and
code for the heterogeneous set of security hooks. In the current architecture, this is realized
by selecting pre-defined programs and configuration files from an internal library, but the long-
term ambition would be the definition of dynamic code generation and run-time compiling.

All these control elements and tracing components are part of the Security Policy Enforcement
mechanism that is highly interdependent with the FutureTPM RA framework. In the current
implementation, eBPF hooks that are instantiated during design-time to capture the
requirements of the extracted control-flow attestation policies can be deployed as part of the
defence strategies of the OLISTIC-based risk assessment toolkit.

The Security Policy Enforcement strategy [10], [11], [12] implements a policy-driven approach
for allowing proofs of a system’s integrity based on the attested properties. This architecture
specifies how composition of large scale “Systems-of-Systems” is to be controlled via layered
and cross-domain attestation decisions. The outputs of the FutureTPM RA framework dictate
the control-flow attestation policies required to mitigate the identified risks. Such policies are
expressive, deployable, and enforceable within the Security Policy Enforcement architecture
and may be dynamically updated if the attack graph (produced and maintained by the RA
framework) is amended with new types of vulnerabilities.

4.1 Intel® Processor Tracing Building Blocks

4.1.1 Overview

Intel PT is an architecture extension introduced and implemented by Intel processor
microarchitectures from Broadwell and Apollo Lake onward. Intel PT provides hardware
support for tracing code execution with minimal CPU overhead. It defines a set of model-
specific registers (MSRs) that the operating system can use to enable and configure tracing and
exposes a stream of packets (see Chapter 4.1.2) containing compressed execution information
of the traced binary. This packet stream can be captured and written into a memory buffer for
further analysis. The most common use case is recording the Intel PT trace stream to disk for
post-mortem decoding [13], though real-time control flow attestation implementation also exist
[14]. To supplement the Intel PT trace, the operating system can also provide sideband
information, such as linked binaries and context-switching when tracing multiple threads on the
same CPU. This information can be used to correlate the Intel PT trace with the linked binaries
to reconstruct the traced execution.

Intel PT generates very large amounts of data when tracing, so some filtering is necessary in
order to isolate the relevant information. For this reason, Intel PT supports multiple ways of
narrowing down the context of a trace. These include filtering by user- or kernel-space, process,
and instruction pointer (IP) addresses. Thus, it is possible to narrow the trace context down to a
single function, or even part of a function [15].

4.1.2 Packets

The packet stream generated by Intel PT consists of packets of various types, encoding
information about the processor’s behaviour. In this section, the relevant packet types are listed
and briefly explained below. Some packets types and sub-types, including ones denoting
software-defined PT events and CPU power state changes, have been omitted for brevity [15].

 PSB: Packet Stream Boundary These packets are generated at regular intervals and act
as markers for the decoder to synchronize with the packet stream.

 PIP: Paging Information Packet During tracing, if the CR3 register is modified, a PIP
packet is generated. This allows the decoder to differentiate between processes in a trace.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 35 of 74

 TSC: Time-Stamp Counter This encodes the lower 7 bytes of the software visible time-
stamp counter at the time of generation and can be used to correlate the Intel PT packet
stream with other timestamped events.

 CBR: Core Bus Ratio At the beginning of a trace, and every time the CPU frequency is
changed, a CBR packet is generated. It encodes the CPU’s core frequency relative to the
system bus frequency.

 OVF: Overflow When the processor drops packets due to an internal buffer overflow, it
generates an OVF packet to inform the decoder of this loss of data.

 TNT: Taken Not-Taken These packets contain information on whether conditional branches
were taken during execution, each branch represented as a single bit. They are instrumental
in reconstructing the control-flow of a program execution.

 TIP: Target Instruction Pointer For various branching events - including (but not limited to)
returns, interrupts and exceptions - a TIP packet is generated, containing the target
instruction pointer of that branch. Real-Time Execution Tracing with Intel PT 5.

 FUP: Flow Update Packet In the case of interrupts, exceptions, and other events for which
the source instruction pointer cannot be reliably determined, a FUP packet is generated,
containing that address.

 MODE These packets encode important information about the current execution context of
the trace, including execution mode (16-, 32- or 64-bit) and TSX transaction events.

4.1.3 Intel libipt

Intel provides an open-source reference Intel PT decoder library implementation called libipt.
The library includes sample implementations of several utilities: a packet dumper, trace
disassembler, trace test generator and several utility scripts for working with recorded traces.

Layers

When it comes to decoding Intel PT traces, libipt offers several different layers of abstraction for
interpreting the Intel PT packet stream:

 Packet On this layer, the output of the decoder will consist of raw Intel PT packets. This
will expose all of the information gathered by Intel PT and thus enables very detailed
analysis of the recorded execution.

 Event Also referred to as the query layer, the event layer encodes combinations of
packets into higher level CPU events for a slightly broader and more abstract overview
of CPU activity.

 Instruction This layer combines a trace with either sideband information or image
sections parts of the executable files the execution of which was recorded to reconstruct
the entire recorded execution in terms of CPU instructions. While more abstract than the
event and packet layers, the instruction layer provides a comparatively legible view of
the recorded execution.

 Block The block layer further abstracts the instruction layer into blocks of instructions.
These blocks encode continuous regions of executed instructions, making this layer
ideal for CFA. It operates faster than the instruction layer, though more post-processing
is required in order to analyse individual instructions within blocks.

4.1.4 Linux perf

Intel PT support in the Linux kernel was added in version 4.2 via perf, a set of tools for
performance monitoring and execution tracing. This allows Linux user-space applications to
gather and inspect Intel PT trace data. More importantly for this research, the underlying kernel
module allows a process with sufficient privileges to interact with Intel PT directly via a set of
system calls and IOCTL requests. This enables the development of a simple tracing program
which records only to system memory [16].

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 36 of 74

4.2 Technical Building Blocks of the FutureTPM Intel PT Tracing

This section covers the technical foundation on which the solution is built, such as the relevant
Intel PT components and key concept definitions.

4.2.1 Intel PT Components

As stated in Section 4.1, the trace output of Intel PT is highly compressed. To achieve this, Intel
PT relies on a well-defined set of principles and core design elements intended to minimize its
output while still guaranteeing full reproducibility of the traced execution. One core assumption
is that all binary code run during the trace is available when decoding, along with information on
how it was loaded. Based on this assumption, Intel PT can focus on encoding only the
information required to reconstruct the execution flow from the source binaries [15].

Trace Output

Intel PT supports several output schemes, including a contiguous region of physical memory, a
table of physical addresses and various platform-specific trace transport subsystems.
Whichever scheme is chosen, Intel PT bypasses the CPU cache and writes directly to memory
instead, which is a key factor in its low performance overhead.

The output of Intel PT is organized into packets, as introduced in Section 4.1.2. These packets
contain various information about the traced execution. Some are more relevant to this
endeavour than others, since only a few provide information about control-flow directly. For
example, PIP packets are of little interest in our case, since the solution is only meant to trace a
single process. TSC and CBR packets are similarly irrelevant for the operation of this solution,
since TSC is intended for correlation with timestamped data and we only deal with static
binaries, and CBR is primarily an indicator of system performance and does not yield any
information about control-flow.

Following is a detailed description of the data encoded in each of the packet types directly
relevant to single-process CFA:

 OVF Overflow packets are fixed, header-only packets, generated when Intel PT
encounters an internal buffer overflow. This indicates packet loss to the decoder. It is
immediately followed by either a FUP or a TIP packet, indicating the IP at which tracing
resumes after Intel PT recovers. The structure of OVF is shown in Table 3.

Table 3: OVF Packet

 PSB Packet Stream Boundary packets are fixed, header-only packets, designed to be
unambiguously recognizable in the trace stream. They are generated at fixed, configurable
intervals, and serve as synchronization points for the decoder. The PSB packet is followed
by zero or more status-only packets, also referred to as PSB+, which may include TSC,
TMA, PIP, VMCS, CBR, MODE and FUP packets. these status-only packets are not
ordered and do not signify a change of state or relate to a specific instruction. These can
be used by the decoder during synchronization to determine the state of the CPU at the
time the PSB was generated. The PSB and PSB+ packets are then followed by either a
PSBEND packet, another fixed, header-only packet, or an OVF packet in the case of an
overflow during PSB+ generation. The structure of PSB and PSBEND is shown in Table 4
and Table 5, respectively.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 37 of 74

Table 4: PSB Packet

Table 5: PSBEND Packet

 TNT Taken-Not-Taken packets come in two variants: short and long. Each encodes up to
a given number of conditional branches or compressed return instructions - 6 for short and
47 for long - as single bits each. The bit values indicate whether the corresponding
branches were taken. Table 6 and Table 7 show the structure of these packets. Bits in
grey comprise the packet header and the rest are the payload.

Table 6: Short TNT Packet

Table 7: Long TNT Packet

Due to the complex rules governing the generation and ordering of different packet
types, TNT packets are often generated before a TNT buffer can be filled during
execution tracing. The bits following the header denote the previous N conditional
branches or compressed return instructions on the form Bn = {0, 1}, BN being the
youngest branch and B1 being the oldest, followed by a 1-bit. The trailing 1-bit denotes
the end of the TNT packet.

 TIP Target IP packets are generated when control-flow transfers to an IP which is not
obtainable from the source binary. It encodes the target IP of the branch, the size of which
varies based on the mode of execution and IP compression. IPs may be compressed by
comparing their higher-order bytes to those of the previous IP and encoding only the
differing lower-order bytes of the address to save bandwidth. The structure of TIP is shown
in Table 8.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 38 of 74

Table 8: TIP Packet

Two additional variants of TIP exist. They are TIP.PGE and TIP.PGD. These are
identical to regular TIP in every way apart from the header bits. PGE stands for Packet
Generation Enabled, and TIP.PGE encodes the target IP of an instruction which brings
execution inside the trace context, enabling packet generation. Conversely, PGD stands
for Packet Generation Disabled, and TIP.PGD encodes the target IP of an instruction
which causes execution to leave the trace context, disabling packet generation. These
variants are shown in Table 9 and Table 10.

Table 9: TIP.PGE Packet

Table 10: TIP.PGD Packet

The IPBytes field indicates how the target IP is encoded. Values of 110 and 011 indicate
an uncompressed IP. A value of 000 indicates that the IP was suppressed. This may
appear in a TIP.PGD packet, when execution leaves the trace context via an indirect
branch, such as a system call instruction. The values 100, 010 and 001 signify different
levels of compression. 100 indicates the six lower-order bytes from the target IP, 010
indicates four target IP bytes and 001 indicates two.

 FUP Flow update packets can arguably be called another variant of TIP, being
distinguishable from TIP only by their header, but it can be useful to distinguish them
conceptually from the TIP variants. FUP encodes a source IP for some event or instruction
and is always generated as part of some larger context. They can be preceded
immediately by a MODE.TSX packet, in which case FUP indicates the IP to which the

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 39 of 74

MODE.TSX applies. Otherwise, they are generated at the beginning of some compound
event, followed by a series of other packets pertaining to the encoded IP, and finally a TIP
or TIP.PGD packet. Such a sequence indicates a branch from the FUP-encoded IP to the
TIP-encoded IP. The structure of FUP is shown in Table 11.

Table 11: FUP Packet

 MODE Mode packages indicate various information about the operating mode of the CPU
during tracing. They come in two variations: MODE.Exec and MODE.TSX. MODE.Exec
encodes the execution mode of the CPU (16-, 32-, or 64-bit), which is essential information
for the decoder. They always precede TIP or TIP.PGE packets and are generated when
the execution mode changes or when tracing resumes. MODE.TSX packets are specific to
Intel’s Transactional Synchronization Extensions and indicate changes of TSX state during
execution. The structure of these packets is shown in Table 12 and Table 13.

Table 12: MODE.Exec Packet

Table 13: MODE.TSX Packet

The mode field has different meanings for each variant. In both variants, the value 11 is
undefined. In MODE.Exec packets, each combination of bits signifies a different mode of
execution: 01 indicates 64-bit mode, 10 indicates 32-bit mode and 00 indicates 16-bit
mode. The same applies to MODE.TSX: 01 indicates execution within a transaction or
transaction start, 10 indicates an aborted transaction and 00 indicates execution outside
a transaction or transaction complete.

Change of Flow Instructions

Intel PT makes use of the concept of basic code blocks, contiguous regions of code executed in
order. These need not be traced. Certain instructions and events may change the control-flow of
a program. Collectively, these are known as Change of Flow Instructions (COFI) and form the
main focus of attention for Intel PT’s trace output. This term encompasses branch instructions
and events such as exceptions and interrupts. Different COFI require different handling when
generating the trace output. The three basic categories of COFI govern how they are handled
when encountered.

 Direct transfer COFI These include conditional branches and unconditional direct jumps.
The relative target addresses of direct transfers are embedded in the instructions
themselves and can therefore be obtained directly from the source binary. For conditional
branches, Intel PT only encodes a single bit in a TNT packet, indicating whether the
branch was taken. Unconditional direct jumps are not encoded in the trace unless they
cause a transfer into - or out of the trace IP filter region.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 40 of 74

 Indirect transfer COFI These include indirect jumps, calls, and returns, branches which
resolve their target addresses at runtime from memory or a register. Since the target
address cannot be obtained from the source binary, Intel PT encodes them in TIP packets.
In most cases, the target IP of a return instruction can be derived from the call stack and
source binary. In those cases, when a corresponding call instruction has been recorded
since the previous PSB packet, return instructions are compressed to a single 1-bit in a
TNT packet.

 Far transfer COFI These include exceptions, interrupts, traps, TSX aborts, system calls
and other instructions which are not covered by the other categories. Intel PT generates a
TIP packet for each far transfer encountered. Some far transfers are asynchronous events,
and thus their source IPs cannot be accurately derived from the source binary. For those
events, Intel PT generates FUP packets containing the IP at which the event occurred.

Trace Filtering

Intel PT supports three different methods of trace filtering. These filtering mechanisms control
the circumstances under which tracing is enabled. This is extremely useful as it can be used to
limit the scope of the trace. This can greatly reduce the performance overhead of the tracing
itself and, more importantly, the decoding. The following is a short description of each filtering
capability and how they are utilized in this solution.

 CPL filtering Current Privilege Level (CPL) filtering allows IPL to enable and disable
tracing based on the privilege level of the traced execution. This filter has three settings:
CP L > 0, CP L = 0 and regardless of CPL. In practice, this means that we can configure
Intel PT to trace only user-space code (CP L > 0), kernel-space code (CP L = 0) or all
code. For the purposes of this research, the focus shall be on user-space code (CPL
filter set to CP L > 0).

 CR3 filtering Control Register 3 (CR3) points to the page tables for the currently
executing process. It also contains a process-context identifier, which can be used to
uniquely identify a running process. Filtering by CR3 value therefore allows Intel PT to
enable and disable tracing based on which process is currently being executed.
Effectively, this means that we can limit the trace to a single process.

 IP filtering As mentioned in Chapter 4.1.1, Intel PT also allows us to filter by the
currently executing instruction pointer. This allows very fine-grained control over the
scope of the trace, down to the instruction level. It enables the isolation of a single
function, or even part of a function for tracing. This is particularly useful for this solution,
since it enables greater control over the control-flow complexity of the traced execution.

4.3 Architecture of the FutureTPM Intel PT Tracing Solution

Intel Processor Trace (Intel-PT) is an extension of the Intel architecture that collects information
about software execution such as control flow, execution modes and timings, and formats it into
highly compressed binary packets. It is a relatively new kernel-based subsystem that provides,
among other functionalities, a framework for hardware level analysis and is available to the 7th
generation of Intel processors. In the context of FutureTPM tracing, Intel-PT is used in
conjunction with the perf Linux analysis tool [17] for better tracing capabilities. More precisely,
the tracing procedure is based on Intel-PT to collect the tracing packets and the “perf record,”
“perf report” and “perf script” commands to collect additional information. Since the “perf record”
command is very generic, filtering is required to remove unnecessary information. After the
creation of the trace output (perf.data), further processing to transform the data in a human
readable form is necessary by utilizing the “perf report” command. In addition, by combining the
“perf script” and the XED x86 Encoder/Decoder, the traces can be disassembled. This
disassembled output will be used to generate the control flow graph (CFG). Table 14,
summarizes the used tracing perf commands for the hardware intel_pt Performance Monitor
Unit (PMU) events. PMU hardware events are CPU specific and documented by the CPU

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 41 of 74

vendor (e.g., Intel). The overall flow of Intel PT Tracing as described previously is depicted in
the following Figure 4-1.

Figure 4-1: FutureTPM Intel PT Tracing Workflow

Overall, the design of the process is as follows:

1. The tracer executes the target program in a new process;
2. The tracer enables Intel PT, filtering down on the target process;
3. Intel PT starts populating the trace buffer with packets;
4. The tracer starts the decoder;
5. The decoder starts reading from the trace buffer;
6. The decoder starts reconstructing the target’s control-flow;
7. The target process finishes;
8. The decoder hits the end of the trace stream;
9. The tracer disables Intel PT and exits.

While the tracer and decoder processes belong to the same program, it is useful to manage
them as separate entities. The tracer is the component responsible for the setup and
configuration of other agents while the decoder is responsible for reading and decoding the Intel
PT packet stream.

Table 14: Intel PT tracer - Perf commands

Perf commands syntax Description

perf record -e intel_pt//u -b --filter ‘filter main @
example’ --pid=18066

Captures the Intel-PT PMU hardware events and saves
them to the perf.data file

perf report -D > raw_data
Translates the traces stored on perf.data to human
readable form (ASCII) and stores them to raw_data

perf script --ns --itrace=i1t -F +insn |
/path/to/xed/obj/wkit/examples/obj/xed -F insn: -I -
64 > decoded_insn.dump

Disassembles the events that Intel-PT captured and
stored on raw_data to hexadecimal commands using the
XED x86 Encoder Decoder

Figure 4-2 and Figure 4-3, depict the content of the perf report command output (human
readable traces). In the context of FutureTPM tracing, the main focus is on the MTC, TNT and
TIP.PGE packets. MTC packets are timing packets necessary for time reference of the trace
event. A TNT packet contains information of whether a conditional branch was taken or not, with
a byte of value “T” in the first case and “N” otherwise. The TIP.PGE packet is necessary to
locate the exact branch that each packet refers to, as it discloses the target (as a memory
address, e.g.: 0x8755) for the conditional branch we are examining each time. Moreover, in
order to exploit the return addresses that TIP.PGE packets provide, it is necessary to identify

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 42 of 74

the conditional branch that the address refers to, based on the gcc compiler. To do so, we know
that the “if” instruction set translated by the gcc compiler for x86_64 systems is mov dword ptr
[rbp-0xfc4], eax. Given this statement, we are in position to identify, for every TNT packet,
whether the condition of the statement was fulfilled, and which execution path was followed. An
example is given in Figure 4-3 where we visualize the output of tracing a simple application
which invokes two internal methods.

Figure 4-2: Intel-PT traces translated to human readable form with perf report command (a)

Figure 4-3: Intel-PT traces translated to human readable form with perf report command (b)

CFG Generation from Intel PT traces: The disassembled traces will be used to generate the
CFG. To this end, we need to identify the “leaders”, i.e., instructions that start a basic block
(e.g., the first instruction, the target of a conditional or unconditional goto/jump and the
instruction that immediately follows a condition of unconditional goto/jump). Finally, the nodes
and the edges of the CFG can be defined based on the identified “leaders” and the memory
addresses of the conditional branches.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 43 of 74

Figure 4-4: CFG Generation from Intel PT traces

Given the output of the “leaders”, it is easy to then generate the control flow graph of the binary
by disassembling the binary code in the addresses – as depicted in Figure 5-34 - and creating a
graph that showcases the flow of the branching commands. This graph is sufficient to
understand whether the binary has followed an acceptable and verifiable path or another
unpredictable and possibly malicious or malfunctioning execution branch. To present the
capabilities of our tracer we created a set of case studies of increasing control flow graph
complexity and traced their execution with the resulting graphs presented in Chapter 5.
Additionally, we also applied our tracer on a deterministic (static control flow graph) binary and
on a non-deterministic (non-static control flow graph) binary so as to show the different results
based on the different types of input which our tracer is able to catch. The final case study
follows a vulnerable application with a buffer overflow attack available and we show how our
tracer will present a binary under attack and what control flow graph will be generated.

4.4 Notable Design Choices

This section aims to detail and justify certain design choices that were made in the development
of this FutureTPM Secure Tracer component.

4.4.1 Intel PT Setup and Compatibility

Trace Buffer Type: When allocating the trace output buffer in memory, Intel PT provides two
options: a ring buffer and a linear buffer. These are distinguished during allocation by the
protection flags selected. A read-only buffer is treated as a ring buffer, meaning that when the
buffer is full, Intel PT will keep writing from the beginning of the buffer. A read-write buffer,
however, is treated as a linear buffer. When a linear buffer is full, all subsequent packets are
dropped. The ring buffer can be very useful as it effectively allows Intel PT to keep tracing
indefinitely. However special considerations need to be made when implementing a decoder
operating on a ring buffer to ensure that it keeps reading from the start of the ring buffer, like
Intel PT does, while tracing. Though this functionality was deemed unnecessary for the
achievement of the test plan, the ring buffer was used, only without the necessary decoder
customizations required to make full use of it.

Trace Buffer Size: The size of the trace buffer is a very important factor and depends heavily
on the amount of tracing data we expect to generate. Initially, when assessing the efficacy of
the solution, the buffer size was set to 4KB, the lowest possible value, which proved to be more
than necessary for accommodating all of the efficacy test cases (see Chapter 5.2). The
performance test cases, however, presented a more difficult decision. It was decided to leave
this up to trial and error during performance testing.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 44 of 74

Some compatibility limitations became apparent during the design phase and early
development of this solution. The decision was made, in accordance with the stated design
principles (see Section 4.3 and 4.4), to address such when necessary while executing the test
plan as laid out in Chapter 5.1. 64-bit support Both Intel PT and libipt have built-in support for
32-bit binaries. However, when customizing the binary loading functionality of libipt, several
issues with address extraction arose when attempting to port the changes made to the 64-bit
ELF loader to the 32-bit one. Since all tests would be run on 64-bit binaries on a 64-bit
processor, these efforts were quickly abandoned as unnecessary.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 45 of 74

Chapter 5 FutureTPM Intel PT Tracing Evaluation

5.1 Evaluation Plan

This chapter details an evaluation of the effectiveness and performance of the FutureTPM
Secure tracer component. Test cases are written as simple C programs to provide a minimal
codebase for covering each test’s requirements. All test cases were compiled with GCC’s
optimization level set to 0. This ensures fine-grained control over the control-flow of the test
case via source code.

The effectiveness and efficiency of the implemented solution was evaluated based on the
tracer’s ability to output the correct control-flow profile for the target test case. The performance
was measured against two scaling profiles: high-complexity and low-complexity. Complexity
refers here to the target test cases’ branch densities. The maximum complexity, in this context,
would be a program consisting exclusively of branching instructions while the minimum would
be one containing no branching instructions aside from the final return.

Each performance metric will relate to two scaling factors: the number of executed instructions
in the target program and a secondary scaling factor which will reduce the effective complexity
of the trace in different ways for the high-complexity and low-complexity tests. This secondary
scaling factor shall reduce the number of instructions executed outside the trace context in the
case of high-complexity, leaving a larger portion of the target’s runtime untraced, and the
number of non-branching instructions in the case of low-complexity codebase, effectively
lowering the target’s branch density.

Seven test cases were written - numbered t0 to t6 - to test the decoder’s ability to identify and
indicate different control-flow structures. The following section provides an overview of these
scenarios, along with a discussion on the extracted key performance indicators.

5.1.1 Test Case t0 – Control

This test case represents the minimum control-flow complexity within the main execution
function of a service. It simply enters and returns with no branching in between the start and
termination program commands. Figure 5-1 shows the source code of the target program.

Figure 5-1: Test case t0 target program

The CFG, as shown in Figure 5-2, is the simplest possible non-empty CFG: A single block of
code with uniquely defined entry and exit points.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 46 of 74

Figure 5-2: Test case t0 control-flow graph

As shown in Figure 5-3, there are only two control-flow events to report here:

1. Execution enters the trace context at the start of main.
2. Execution leaves the trace context via a return statement.

Figure 5-3: Test case t0 trace output

The output is exactly as expected. The > symbol indicates that execution has entered the trace
context, and the following ENTER is a placeholder for the branch instruction class, since
previous execution was not traced, and the decoder has no way of analysing the preceding
branch instruction. The address following the @ symbol is the virtual runtime address of the
main function. It consists of a base address at which the binary is loaded, determined at runtime
by address space layout randomization (ASLR) and the main function symbol offset. The <
symbol in the second event denotes a context exit and RET signifies the return instruction,
followed by the instruction pointer.

5.1.2 Test Case t1 - Single Conditional Branch

Test case t1 has a very simple branching structure: a single if-statement. The condition is
set such that it always evaluates to “false” and the conditional branch skipping the contents of
the statement is taken. Figure 5-4 shows the source code of the target program.

Figure 5-4: Test case t1 target program

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 47 of 74

The CFG, as shown in Figure 5-5, illustrates the single conditional branch in this program. Note
that the condition evaluated is the logical inverse of the if-condition in the source code. If the
inverse condition holds, we jump past the code within the if-statement.

Figure 5-5: Test case t1 control-flow graph

In addition to the output of t0, this case also produces a branch within the trace context, as
shown in Figure 5-6. Note that the instantiation of the variable a is not registered, as it produces
linear control-flow and is, thus, ignored in this context.

Figure 5-6: Test case t1 trace output

The focus here is on the second line of the output. The | symbol means that the branch occurs
completely within the trace context - i.e., both the branching instruction and its target are located
within the bounds of the context - and JUMP indicates a jump-class instruction. Further details
could be displayed here, as many different types of jump instructions exist, but differentiation
among instruction classes has been kept at a high level for simplicity.

5.1.3 Test Case t2 – Loop

This test case adds a loop in the underlying codebase. It is a very simple while-statement
that runs twice and contains no additional branching structures. It is important to note here
that the loop starts with an unconditional jump instruction to the set of instructions that evaluate
the loop condition and jump to the top of the loop’s contents based on that condition. The initial,
unconditional jump is ignored by the decoder as it is predictable with static analysis and is
therefore unnecessary to profile the runtime control-flow of the program. Figure 5-7 shows the
source code of the target program.

Figure 5-7: Test case t2 target program

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 48 of 74

The CFG, as shown in Figure 5-8, shows the basic control-flow structure of a while-loop: an
unconditional jump followed by the contents of the loop, the evaluation of the while condition
and a conditional jump. The unconditional jump branches to the comparison instruction, after
which the conditional branch evaluates the while-condition, branching to the top of the loop’s
contents on a true value.

Figure 5-8: Test case t2 control-flow graph

The loop can be seen in Figure 5-9 as two identical jump events. In the first case, a = 0, so the
condition a < 2 evaluates to true and the conditional jump branches to the top of the loop. The
second time, a = 1, and the loop repeats. The third time, however, the condition a < 2 evaluates
to “false” and the jump is not taken.

Figure 5-9: Test case t2 trace output

Conditional branches not taken are not displayed, for the same reason as unconditional
branches within the context: they do not add any information to the runtime control-flow profile
that could not be gained via static analysis. Therefore, the two jump events displayed each
represent a conditional jump taken to the front of the loop.

5.1.4 Test Case t3 - Function Call

Test case t3 adds a function call to the control-flow structure of the program. It is a
simple integer function that always returns 0. Note that the added function lies outside the
tracing context. Figure 5-10 shows the source code of the target program.

Figure 5-10: Test case t3 target program

The CFG, as shown in Figure 5-11, is very simple. There are no conditional branches, just a
single function call. When finished, the function returns to the instruction immediately following

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 49 of 74

the call to it. Note, however that the function is abstracted out of this diagram, because the
function lies outside the trace context and is as a black box by the tracer.

Figure 5-11: Test case t3 control-flow graph

This illustrates a call outside the trace context, which produces an interesting result. Now there
are effectively two entry - and exit points in the main function as shown in Figure 5-12.

Figure 5-12: Test case t3 trace output

As before, > and < denote entry into - and exit from the trace context, respectively. The second
and third lines of output (CALL and ENTER) denote the function call and return to the context of
the main function, immediately followed by the return out of the main function.

5.1.5 Test Case t4 - Conditional Branch Within Loop

Now that all the basic branch classes have been shown to display as expected, it is time to see
what happens when they are combined. This test case combines t1 and t2 with a single if-
statement inside a loop. Figure 5-13 shows the source code of the target program.

Figure 5-13: Test case t4 target program

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 50 of 74

The CFG, as shown in Figure 5-14, shows neatly how t1 and t2 are combined in terms of control-
flow. There are two conditional jumps following comparison instructions. The if statement from t1
can be seen nested within the while-loop from t2.

Figure 5-14: Test case t4 control-flow graph

The output shown in Figure 5-15 clearly indicates the combination of these control-flow
structures.

Figure 5-15: Test case t4 trace output

For each of the two iterations of the loop, two jump events are detected: one for the loop itself
and another for the inner conditional jump. These can be differentiated based on their
instruction - and target addresses.

5.1.6 Test Case t5 - Function Call Within Loop

This test case combines t2 and t3 with a function call inside a loop. This should cause
execution to repeatedly leave and re-enter the trace context. Figure 5-16 shows the source
code of the target program.

Figure 5-16: Test case t5 target program

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 51 of 74

The generated CFG is as shown in Figure 5-17.

Figure 5-17: Test case t5 control-flow graph

As shown in Figure 5-18, the output shows the expected combination of the control-flow
structures displayed in t2 and t3.

Figure 5-18: Test case t5 trace output

For each iteration of the loop, the decoder outputs a jump to the top of the loop contents,
followed by a context exit via CALL and re-entry following a return from the external function.

5.1.7 Test Case t6 - Function Call and Conditional Branch Within Loop

Now, the only thing left to test is the combination of all of these branch types. This test case
does just that, combining t4 and t5 to form a simple program with a loop containing a
conditional branching instruction and a function call. Figure 5-19 shows the source code of
the target program.

Figure 5-19: Test case t6 target program

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 52 of 74

Figure 5-20: Test case t6 control-flow graph

Again, the output - as shown in Figure 5-21 - displays the control-flow of the program as a
combination of its constituent structures.

Figure 5-21: Test case t6 trace output

Each iteration of the loop is displayed as before, with the addition of both the single conditional
branch and the function call and subsequent context re-entry.

5.2 Performance Evaluation

This chapter presents the results of the performance tests evaluating the additional overhead of
each test case. For both high- and low-complexity testing, the secondary scaling factor has
been set at five exponential increments: 1, 10, 100, 1000 and 10000. This will give a clear
picture of the overall effect the tracing process has on the scaling characteristics of this
approach. The primary scaling factor will range from 1000 to 1000000 in increments of 1000.
This strikes a balance between fine-grained test results and speed of testing.

5.2.1 Memory Usage

The primary factor in the solution’s memory requirements is the size of the trace buffer. The
trace buffer must be a power of two 4KB pages long, and the setup time for the tracer increases
drastically as the buffer size is increased, disproportionately affecting the performance overhead
of the lower scale factor test cases. The required buffer size was determined by trial-and-error
across the range of scaling factors tested. Table 15 shows threshold values for the primary
scaling factor coupled with the required buffer size.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 53 of 74

Table 15: Trace buffer size model

5.2.2 High Complexity Scenario

The target program t7 is designed to facilitate the two scaling factors selected. It contains two
loops, one in the main function and another inside a function outside the trace context,
which is called in every iteration of the main loop. The program expects two command line
arguments denoting the number of iterations for the main loop and the external loop,
respectively. These are the primary and secondary scaling factors. The source code of the
target program t7 is shown in Figure 5-22.

Figure 5-22: Test case t7 target program

Figure 5-23 to Figure 5-27 show graphs of the execution times of both the standalone target
program and the tracing process across the range of primary scaling values.

1 iteration out-of-context: This test case is close to the worst-case-scenario: maximum
control-flow complexity. Each iteration of the main loop consists of a jump and a call which
returns after a single iteration of the external loop, making for an extremely branch-dense

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 54 of 74

execution. A graph of the results is shown in Figure 5-23. These results show a deviation from
0.2 to 4.14 milliseconds for the target program, and 5.76 to 5397.76 milliseconds for the tracer.
The performance overhead, as expected, is rather ranging from 26.42x to 2184.38x.

10 iterations out-of-context: This test case showcases the effect of increasing the time it takes
for the out-of-context function to return on the performance overhead. As depicted in
Figure 5-24, the results show a promising trend when we look at the raw data. The target
program timings range from 0.22 to 15.8 milliseconds, while the tracing times remain relatively
static at 5.97 to 5480.87. This is to be expected, since as the runtime increases with the
secondary scaling factor, the amount of trace data to decode does not. The performance
overhead is still very large, but now an order of magnitude smaller, at 26.12x to 409.13x.

100 iterations out-of-context: This test case continues the same trend, but this time the
difference in the standalone target execution times is more pronounced, as can be seen in
Figure 5-25. Once again, the difference can be better appreciated by looking at the raw data.
Target program timings range from 0.34 to 148.07 milliseconds, while the tracing times again
remain about static at 6.22 to 5337.76. The performance overhead is now at 17.29x to 38.51x.

1,000 iterations out-of-context: As expected, the trend continues and the difference in
standalone execution times becomes even more pronounced in this test case, as shown in
Figure 5-26. Target program timings now range from 1.5 to 1342.46 milliseconds, while the
tracing times still remain about static at 6.03 to 5449.92 milliseconds. Performance overhead is
2.69x to 3.24x.

10,000 iterations out-of-context: In this test case, we seem to pass a threshold for the
secondary scaling factor. The time spent executing instructions outside the trace context is
allowing the decoder to catch up with the end of the trace buffer’s contents. This issue, and the
solution used here, are discussed in Chapter 6.1.1. Briefly put, when the decoder catches up
with the tracer, it must note its position in the buffer, re-synchronize to the previous PSB packet
and read until it reaches the same place again, at which time there will likely be more to read. A
graph of the results is shown in Figure 5-27. The prominent thing to note here is the greatly
increased variance in the tracing execution time. This is correlated with the number of bytes the
decoder must re-read after re-synchronizing. Target program timings now range from 14.2 to
13002.38 milliseconds, with tracing taking from 18.07 to 17060 milliseconds. The performance
overhead incurred ranges from 1.09% to 35.54%.

Figure 5-23: 1 iteration out-of-context Figure 5-24: 10 iterations out-of-context

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 55 of 74

Figure 5-25: 100 iteration out-of-context

Figure 5-26: 1,000 iterations out-of-context

Figure 5-27: 10,000 iterations out-of-context

5.2.3 Low Complexity Scenario

The target program t8 is designed to scale by the two selected factors. It contains a single loop
in the main function. As in the high-complexity testing, the primary scaling factor controls the
number of iterations in the main loop. On the other hand, the secondary scaling factor is the
number of non-branching instructions between branches inside the trace context. The
secondary factor must therefore be decided at compile-time and, thus, t8 accepts only one
parameter. The source code of the target program t8 is shown in Figure 5-28.

For legibility and conciseness in the source code, macros were added to allow multiple
repetitions of the same instruction. The ADD instruction on line 21 is equivalent to a++ in this
program. It was modified between test runs according to the secondary scaling factor. 1: ADD,
10: X(ADD), 100: C(ADD), 1000: M(ADD) and 10000: X(M(ADD)). Figure 5-29 to Figure 5-33
show graphs of the execution times of both the standalone target program and the tracing
process across the range of primary scaling values.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 56 of 74

Figure 5-28: Test case t8 target program

1 instruction per loop: Similarly, this test case shows very large performance overheads. In
every iteration of the loop, only one non-branching instruction separates the jump instructions,
in addition to the three instructions involved in incrementing the iterator and comparing it to the
scale factor. Figure 5-29 shows a graph of these test results. It is notable that these graphs
show much clearer thresholds in the execution times of the tracer where the trace buffer size is
increased. This is due to the low-complexity test cases taking less time to terminate than the
high-complexity ones, and the runtime increase caused by allocating a larger buffer is constant.
The execution time of the standalone target program ranges from 0.2 to 3.78 milliseconds, while
the tracer runtime ranges from 2.52 to 1722.46 milliseconds, incurring performance overheads
between 11.61x and 1189.63x.

10 instructions per loop: This test case, while similar to the previous one when it comes to the
produced graph, it shows a decrease in the performance overhead incurred by tracing in raw
numbers. A graph of these test results is shown in Figure 5-30. The target program execution
time ranges from 0.23 to 14.75 milliseconds and the tracer runtime is between 2.36 and
1748.74 milliseconds. These tests indicated still large performance overheads between 9.25x
and 130.1x.

100 instructions per loop: This test case shows visible growth in the standalone runtime of the
target program, as seen in Figure 5-31. The target program execution times ranged from 0.37 to
142.84 milliseconds, with tracing times from 2.67 to 1757.86 milliseconds, and performance
overheads between 3.2x and 12.35x.

1,000 instructions per loop: This test case showed some interesting results. As shown in
Figure 5-32, the tracer execution time appears to follow one of two clearly defined trends. This
is a result of the same effect we observed in the last test case of Chapter 5.2.2. At this
secondary scaling factor some executions result in the decoder catching up to the tracer and
requiring re-synchronization, increasing the performance overhead, while others do not. The
standalone execution times of the target program ranged from 1.71 to 1413.17 milliseconds,
with tracer execution times between 5.07 and 2761.13 milliseconds. This incurred performance
overheads between 11.76% and 196.62%.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 57 of 74

10,000 instructions per loop: This test case, unlike the previous ones, did not show a clear
decrease in the performance overhead. This appears to be related to the way the decoder re-
synchronizes to the trace stream. The effect appears to be more pronounced in the case of low-
complexity code, since the target process spends orders of magnitude more time executing
code within the trace context, and thus generates more trace data. This means that, on
average, the decoder will need to re-read a larger amount of trace data per re-synchronization.
(see Figure 5-33). The target execution times were on the range 14.44 to 13895.4 milliseconds,
while the tracing times ranged from 30.65 to 34583 milliseconds, resulting in performance
overheads between 24.63% and 175.59%.

Figure 5-29: 1 instruction per loop

Figure 5-30: 10 instructions per loop

Figure 5-31: 100 instructions per loop

Figure 5-32: 1,000 instructions per loop

Figure 5-33: 10,000 instructions per loop

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 58 of 74

5.3 FutureTPM Intel PT Tracing Timings and Additional Test Cases

The additional timing evaluation of this solution is intended to provide a more detailed view on
the practical viability and applicability of using Intel PT in the context of real-time CFA. Multiple
sample programs with varying control-flow complexity where written to test the efficacy and
efficiency of the solution. The sample programs are used to show whether it accurately detects
different types of branches and measure its scaling characteristics. The performance testing
process will focus on two primary metrics:

 Performance overhead: Measure the running times of the target applications with and
without the analysis tool. This will give an approximation of the performance overhead
incurred by tracing and decoding.

 Scalability: Determine how the control-flow complexity of the target program impacts
the performance overhead of the analysis. This shall be done by correlating the
performance overhead with a linear scaling factor for the target’s complexity.

The type and granularity of the initial decoding and preprocessing of the data pulled from the
FutureTPM Intel PT tracing greatly impacts the performance of the tracer. The basic distinction
between the types of decoding that we perform is whether we choose to decode the entire
execution flow, or just the branches of the binary and/or all the execution flow branches that can
go into the system and any other external libraries. By branches we mean any jump, return, or
call assembly operations that are present within the defined context. First, we examine the
execution time of a full decoding of the entire assembly codes executed (Full decoding), then
we chose to only filter and decode all the branches that the binary takes (All branches) and
finally we time the decoding of only all the branches within the main function (All main
branches). The timing results can be found in Table 16 with each row representing a different
binary (Binaries 1-4) and each column having a different decoding granularity; the table
contents show the timings in seconds.

The most common use case will just require the monitoring of the inner-binary branches so as
to ensure the proper operation of the security sensitive function since the malfunction of outer
binaries is considered secure and not necessarily in the scope of the tracing. Essentially, when
monitoring a specific binary, we want to know whether this binary is executing as expected. If
we want to have a more in-depth monitoring for some reason, the option to monitor all the
execution, then the FutureTPM solution allows for dynamically changing the level of decoding
based on new tracing policies that will be enforced on the device.

Table 16: Timings of the Intel PT Tracer for Various Granularity Scenarios (Full Decoding, All Branches
and All Main Branches)

 Full decoding All branches All main branches

Binary 1 5.2515 0.17496 0.03698

Binary 2 6.11039 0.20266 0.06549

Binary 3 72.03029 3.25014 0.04501

Binary 4 313.66655 8.32616 1.24342

The first observation we make is that the complexity and size of the executed code,
greatly impacts the performance of the tracing and decoding of our tracer: For instance,
the fourth binary with a full decoding requires 313.66655 seconds while the first and simplest
binary with full decoding takes only 5.2515 seconds. The second and most important
observation is that as we can see from the results in the above table, doing a full
instruction tracing on any command assembly executed and then decoding it takes a
large amount of time since it decodes the entire chain of execution of commands even in

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 59 of 74

the level of operating system, while if we specify that we only care about the branch
instructions, we have a reduction in time of around 96% while further narrowing down and only
selecting a specific function to trace for its branches (main), we get even lower results but not
as big as the previous comparison.

In general, we could apply the instruction decoding on any of those tracing methods, either
decoding only the branches or decoding only the branches in a specific function. Therefore, the
amount of extra time needed to decode the instructions depends on the amount of data the
tracing has captured. Here decoding the instructions is not necessary to see if any unwanted
paths have been taken by the binary, as the difference in the above outputs alone without the
decoding is sufficient enough to detect them. With this information in combination with the
timings for the tracing of just the branching operations of the binary, we conclude that the
detailed tracing with the Intel PT technology of FutureTPM is efficient and robust without any
considerable overheads.

5.3.1 Compiler Optimizations

Another possibility we tested was the effect of the usage of compiler optimizations that might
have on the Intel PT tracing performance. We compiled two of our case studies with the “-O3”
compiler option which will enable all possible compile-time optimizations and then run again our
tests. On the second binary the time taken to run the Intel PT trace on the main function
branches before the optimizations was 0.06549 and after the optimizations 0.04422 while doing
the same on the third binary, the timing before the optimizations was 1.24342 while after
1.30259. As we can see those results are small or even in the margin of statistical error, it
is obvious therefore that doing any compiler optimizations will not necessarily mean better
tracing performance, as this depends on the nature of the binary traced and how much it
can be optimized. This performance could create smaller differences if the code were more
complicated or unnecessarily complicated, where the compiler could create binaries that do not
follow the execution flow of the code and have created a more optimized execution flow.

5.3.2 Nondeterministic Examples

In this chapter we will show an example use case of generating adjacency list graphs by parsing
the data of our tracing output and creating a structure that will represent the execution flow. This
structure is essentially a machine-readable control flow graph that is used to identify
divergences in the execution of binaries. The examples shown below have either a deterministic
or a nondeterministic nature, meaning that all of them have conditional branches, but for some,
this condition is known at compile time, so it can be used directly in the assembly by the
compiler or the condition depends on an external factor that we cannot predict beforehand, such
as user input, system events or random data. The aim of this case study is to present how
different control flow are determined and identified by the FutureTPM tracer.

Case 1 – Deterministic Binary

The first case is identical to the second binary of the previous case studies, where an integer is
overflown by iteratively adding numbers to it. This iteration has a conditional branch that
continuously checks if the number added to the variable is larger than the max 16-bit unsigned
integer. For every execution of the binary, this branch will always take a predetermined path
and thus we expect that the generated control flow graph will be static. The source code can be
found in Figure 5-34 while the disassembled binary can be found in Figure 5-35.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 60 of 74

Figure 5-34: Source Code for the Integer Overflow Binary

Figure 5-35: Disassembly of the Integer Overflow Binary

01 $ python graph.py

02 >> {0: {53}, 53: {53, 30}, 30: {69}, 69: {86}, 86: {107}, 107: {118}}

Figure 5-36: Generated CFG Data for the Integer Overflow Binary

Above, in Figure 5-36, we have an example graph generated for the binary in hand. Our python
tool generates this dictionary in which every key is the index of a branch located inside the
function we are tracing, while our values are a set of those indexes effectively creating a linked
list. As we can see, every branch instruction has an index number represented in the form
“main+53” for example. The first key of the generated structure is 0, which is the start of the
function, has a value of 53 where a branch took place. This branch moved us at some location
in memory and after executing the instructions found there, we had another jump that happened
again at index 53 (first value of index 53 is 53, indicating a loop), and finally after this loop
finished we observed a jump at index 30 which moved us out of this assembly loop. Notice the
loop in the disassembler as denoted by the arrows on the left of each memory location. For
every execution of the binary, the generated structure will always stay the same as we expected
since it has no external inputs which change the control flow path.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 61 of 74

Case 2 – Non-Deterministic Binary

This example contains a simple switch case which reads a number from the command line
arguments and passes that to a switch statement with 4 branches (Figure 5-37). The generated
control-flow graphs are depicted in Figure 5-39 (based on the disassembled code of Figure 5-
38). By following the same procedure to determine the control flow path, we notice that even
though the graphs start by following a static pattern, we see around in the middle a small
deviation, specifically at index 126. So, we come to the conclusion that at the offset 126
(validated from the disassembled code of Figure 5-38) the binary essentially makes the decision
for which branch to take based on the input of the user; it is the switch case instruction.
Depending on which branch in the switch statement was executed we see that the program
executed a different branch each time with a varying control flow path. In a real-world scenario,
the security analyst should have added each of those control flow paths as acceptable so as to
prevent any false positives in the attack detection.

Figure 5-37: Source Code of the Non-Deterministic Binary

5.3.3 Vulnerable Binary

To further elaborate on how an attack is detected by the Intel PT tracer, we created a simple
vulnerable application in C, and we developed an exploit for it that uses code reuse techniques
(ROP) to take control of the execution flow and spawn a shell. The binary would normally read
something from stdin, then echo it back and finally it would read again something from stdin and
store it in a buffer. For the echoing part we used a format string vulnerability such that we can
have enough leaks to bypass all the modern binary protections such as ASLR, PIE and Stack
cookie and for the reading part we simply overflowed a buffer of 1024 characters. What this
vulnerability does essentially is that it alters the control flow path, and we expect that the
resulting traces will show this difference.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 62 of 74

Figure 5-38: Disassembled Non-Deterministic Binary

01 $ python graph.py

02 {0: {47}, 47: {77}, 77: {99}, 99: {114}, 114: {126}, 126: {135}, 135: {207}, 207: {212}, 212: {249}, 249:

{272}, 272: {466}}

03 $ python graph.py

04 {0: {47}, 47: {77}, 77: {99}, 99: {114}, 114: {126}, 126: {147}, 147: {169}, 169: {174}, 174: {249}, 249:

{272}, 272: {466}}

05 $ python graph.py

06 {0: {47}, 47: {77}, 77: {99}, 99: {114}, 114: {126}, 126: {141}, 141: {226}, 226: {249}, 249: {272}, 272:

{466}}

Figure 5-39: Various CFG Data Generated for the Non-Deterministic Binary

Running the binary normally and attaching to its process ID to run the trace, we got every time
the same output filtering only on the main function (

Figure 5-40). This is normal since no conditional branches are dependent on any input from the
user.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 63 of 74

0 [unknown]

55870306927d main+0x4a

0 [unknown]

558703069287 main+0x54

0 [unknown]

558703069293 main+0x60

0 [unknown]

55870306929e main+0x6b

Figure 5-40: Control Flow of the Vulnerable Binary in Normal Execution

When doing the same, but running our exploit, we received a different control flow path as
depicted in

Figure 5-41. The new control flow path is missing two instruction, which indicates that the binary
execution has ended prematurely, an indication of an attack or bug. This diverging control flow
graph will propagate an alarm throughout the FutureTPM risk analysis framework and will
trigger any set up rules.

0 [unknown]

55870306927d main+0x4a

0 [unknown]

558703069287 main+0x54

558703069287 main+0x54

Figure 5-41: Control Flow of the Vulnerable Binary when Exploited.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 64 of 74

Chapter 6 Critique and Open Questions

In this final chapter of the deliverable, we would like to provide a discussion and critique of this
“hybrid” type of tracing solution used by the FutureTPM project while also posing some open
questions and challenges. Program tracing solutions can faithfully record runtime information about
a program’s execution and enable flexible and powerful offline analysis. Therefore, they have
become fundamental techniques extensively leveraged in software analysis applications. Most
tracing solutions provide an offline approach that first gathers data during the execution of
monitored functionalities and then decode the gathered data to infer possible violations or other
issues. This approach is more widely adopted but a consensus in the bibliography has
shown that tracing is still cumbersome, and we argue that it could be further optimized by
utilizing parallelism techniques in an online approach as it was proven by the FutureTPM
solution and its performance assessment.

Although the fact is that detailed tracing and attestation can be resource intensive, it is required for
proper and thorough attestation schemes (as the ones produced in the context of D4.4). In
FutureTPM we have shown a methodology that provides a feasible and relatively scalable solution
that advances in relation to the aforementioned offline tracing techniques. We argue that the way
forward is what is proposed by the FutureTPM project; to basically provide a multilevel detail
tracing mechanism that can actually integrate and incorporate different types of tracing
mechanisms with varying levels of granularity and detail in order to provide much higher
scalability. A further optimization also implemented within FutureTPM is to move away from the
one-off decoding and use the benefits of parallelization in a scheme that allow the start of the
decoding while the application is still running and not wait for it to finish.

Such an optimization allows for better security-performance of the end solution as it allows for a
timely response to security incidents or system misconfigurations. Essentially, what is proposed
and implemented, is an attempt to an online tracing and decoding configuration, where during
runtime, the tracer feeds the gathered data to the decoder so as to allow the control flow graph to
be generated spontaneously without having to wait for the finish of the traced program execution.
In the case of FutureTPM, this greatly decreased the decoding time of the Intel PT tracer especially
in the case of full decoding where the decoding starts during the execution time and it is ready
much quicker.

Furthermore, such a parallel tracer may also perform detailed or heavily instrumented analysis of
an application in parallel with a performance or lightly instrumented version of the application while
also in real time allows for the decongestion of the tracing throughput by sending all its data to the
decoder. Both versions of the application may operate on the same input stream, which would be
responsible for managing this data and flagging it appropriately for the decoder to manage. This
way, in the FutureTPM scenario of two-tier tracing, it would allow for a multi-tracing solution that
would be able to trace two versions of the application, one with the eBPF tracer and one with the
Intel PT tracer, in parallel while sending all the created trace data to the FutureTPM decoder for
processing.

The idea behind this architecture is based on the basic computing building block of a ring buffer
which is a well-suited solution for such a scenario. First of all, a ring buffer provides an ideal FIFO
buffer that allows the incoming data to be processed in the correct order and priority and secondly
given the fact that the expected buffer size is predictable, a ring buffer is an optimal solution. In the
input of this buffer, the tracer is be attached, and it feeds tracing data as soon as they are available
and on the output, the decoder digests data as fast as its capabilities allow and it proceeds with the
control flow graph creation (Figure 6-1). Of course, special measures should be taken for overflow
occurrences and other issues which is a matter to be further researched as they will be presented
in Chapter 6.1 with other open challenges.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 65 of 74

Figure 6-1: Usage of a Ring Buffer for Parallel Tracing Data Parsing

Tracing technologies such as the Intel PT tracer was designed for offline investigation of the data
gathered, and the exact implementation details should be closely examined. What we expect
generally and have observed in our measurements is that in the ideal scenario where the tracing
process creates the required data rate, the decoding process will be T1 seconds quicker where T1
is the execution time of the traced process. This fact is visually depicted in Figure 6-2 where we
show that if the data generated by the tracer in t0 is enough to start the decoding process, then the
decoder will be able to start its functionality also from t0 and finish at t3=T2 whereas in the current
solution, the decoder will have to wait T1 to start and finish at t3=T1+T2.

Figure 6-2: Performance Benefits of Parallel Tracing vs. Serial Tracing

6.1 Open Questions and Challenges

Several challenges and open questions were identified during the development of the FutureTPM
parallel tracing solution, the most prominent are described in this chapter.

6.1.1 Concurrency issues

The target child process to be traced must be spawned in order to obtain its process ID. This is a
prerequisite to the instantiation of the Intel PT file descriptor with the proper process filtering.
Further initialization is then required after the initial Intel PT setup. This, and the fact that the tracer
and target run in parallel, posed several challenges in the development of an Intel PT-based real-
time CFA tool.

Target process exiting before setup is finished. The most immediate issue encountered as a
result of this was that the target process tended to exit before the tracer finished reading the
mapping information required to populate the decoder’s image cache. This caused the tracer to

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 66 of 74

crash or hang. The solution of choice was to use ptrace to set the target process up such that it hit
a breakpoint immediately at the start of execution. This allowed the tracer to finish the required
setup before instructing the target process to continue.

Decoder running into empty buffer when filtering. Another concurrency issue was encountered
only when we started to include the IP filter. When filtering on a function, for example, the Intel PT
buffer remains empty until the process IP enters the filter region. This caused the decoder to
discover an empty buffer, immediately report the end of stream status and quit. Due to the way
ptxed is set up, this was easy to address. Rather than synchronizing once at the start of decoding,
we synchronize repeatedly until the status is not end of stream. This means that the decoder will
wait for input to appear in the buffer and start decoding as soon as it does.

Decoder catching up to tracer. One issue arose when experimenting with the runtime scaling of
a function outside the IP filter context. The observed function was set up to call an external function
from inside an observed loop. The called function took much longer to execute than the in-context
instructions between calls to it. The result of this was that the decoder progressed through the
trace output faster than new Intel PT packets could be generated from within the context.
Eventually, the decoder reached the end of the packet stream and exited, though the process was
still executing.

This issue was mitigated to some extent by detecting whether the target process was still
executing before processing pending events on the buffer. If an end of trace event was
encountered and the process was still running, the decoder goes through the following steps to re-
synchronize:

1. Determine the current decoder offset.
2. Determine the current block count within that offset.
3. Determine the previous synchronization point (PSB packet).
4. Set the decoder’s position to the previous synchronization point.
5. Resume decoding.
6. Skip processing blocks until the previous offset and block count have been reached.

This is expected to produce some additional overhead, since events still need to be reprocessed
and blocks re-fetched in order for the decoder to work its way back from the preceding
synchronization point to its previous position in the buffer, but only in cases when it would
otherwise have exited prematurely. An edge case remains; when the target program terminates
just before the decoder checks its status, but Intel PT is still writing to the buffer when the decoder
raises the end of trace event, causing packets to be dropped and the decoder to exit. This appears
to be rare enough, however, that testing may still proceed if the test script is made to detect the
edge case and retry the trace if necessary.

Tracer overwriting decoder’s position. The final issue of this type arose during performance
analysis, when scaling up the tracing workload and measuring the performance overhead. At some
point, the tracer is going to reach the end of its buffer. It does not stop tracing there, but continues
writing from the beginning of the buffer, overwriting the existing trace. Eventually, it will catch up
with the decoder and overwrite its current position. This causes the decoder to stop prematurely.
The solution to this was to increase the size of the buffer to support the workloads being tested.

6.1.2 Populating the image cache

Though little modification was required to read the trace buffer from memory, it appeared that
reading the sideband information from memory - in order to match packets to code - would require
much more extensive changes to ptxed. The alternative was to load image sections directly into
the decoder from the executable files. Since ptxed already supported this, the only required
addition was the automatic detection of linked code libraries and extraction of executable section
offsets.

The first step was to determine what to load. This is achieved using the ldd command in Linux to
determine the expected number of linked binaries during runtime. Then, the tracer allows the target

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 67 of 74

process to step through its initialization, block by block, monitoring the target’s maps file until the
expected number of files has been linked. Once all the required files have been identified, the
offsets of their executable sections must be determined. For this, the tracer uses a customized
version of the load_elf utility included with libipt, which reads this information directly from
Executable and Linkable Format (ELF) files. It then uses ptxed’s built-in functionality to load the
raw executable sections into the cache.

6.1.3 Inconsistent block boundaries

Two variations of this issue were observed during development:

1. Blocks ended on non-branching instructions, regardless of IP filter config.
2. Blocks failed to end on branching instructions, depending on IP filter config.

The former was easy to handle, as the decoder only needed to determine whether the last
instruction of the block was an indirect or conditional branch, and whether that branch was taken.

The latter, however, posed a bigger challenge. It seemed to be an issue with Intel PT’s handling of
IP filters, as it arose only when using certain filter configurations. Branches leading outside the filter
range were ignored in some cases, leading to blocks extending outside the filter range, containing
branching instructions that should have marked the end of that block and caused Intel PT to
temporarily disable tracing.

The first approach to this issue was to pass the IP filter range to the decoder and check whether
each block ended within the range. If it did not, the block was truncated at the last instruction within
the filter range. This was an expensive operation, since it required the decoding of every instruction
up to and including the branching instruction, in addition to the final instruction of the block. While
this was an effective workaround, it violated the design principle of minimizing post-processing, as
described in Chapters 4.3 and 4.4.

The problem turned out to be the result of a known bug in Intel PT itself. When tracing is disabled
via a direct, unconditional branch, the resulting TIP packet may not contain the target IP. This bug
was originally documented in erratum SKL014. Luckily, libipt has a workaround for this. If the IP
filter configuration used by Intel PT is provided in the decoder configuration, along with the correct
CPU details, the decoder can use this information to bind the TIP packet to the correct instruction
and determine the correct end of the block.

6.1.4 Migrate to purely software-based tracing capabilities.

Every tracing solution so far is hardware-based (like CFLAT). Our proposal with Intel PT is pseudo-
hardware-based because we assume the existence of an Intel processor. What we need is the
move towards a pure software-based tracing solution that will be generic and applicable in
a wide range of application domains.

6.2 Other optimizations

According to [18], few tracers have paid attention to the size of traces and corresponding
overheads introduced to offline analysis, as well as the Control Flow Graph support. This work
presents a solution called ATOS, an efficient tracing solution, to address these issues. It adaptively
adjusts the granularity of tracing while conservatively preserving the essential execution
information. They implemented a prototype of this solution and evaluated it on various
benchmarks. The results have shown that their solution can greatly reduce the size of a trace and
accelerate offline analysis, while preserving the execution states and supporting existing
applications seamlessly. For example, using ATOS, the trace produced by an application called
CryptoHunt is reduced by 46 times, while the analysis time is reduced by 34 times. This solution
resembles the one used by FutureTPM but instead of changing the tracing technology, it changes
the granularity of the existing tracing technique to scale depending on the needs of the system.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 68 of 74

One optimization that ATOS utilizes is loop identification and optimization. A loop, in general, is a
repeated sequence of instructions. Loops are one of the root causes of the oversized traces. To
reduce the size of a trace, ATOS performs loop-level tracing once the instruction list of a loop
iteration has been determined. The challenge here is identifying loops during runtime tracing.
ATOS first statically analyses the target program to identify candidate loops (including nested
loops) and then monitors runtime code modification and generation to recognize new loops.
Moreover, the authors have refined the loop-level tracing process to handle complicated loops, that
is, ones that have a very high cyclomatic complexity.

Another optimization is proposed by [19] in a solution called Fay which shows that modern
techniques for high-level querying and data-parallel processing of disaggregated data streams are
well suited to comprehensive monitoring of software execution in distributed systems. Fay also
demonstrates the efficiency and extensibility benefits of using safe, statically verified machine code
as the basis for low-level execution tracing. Finally, Fay establishes that, by automatically deriving
optimized query plans and code for safe extensions, the expressiveness and performance of high-
level tracing queries can equal or even surpass that of specialized monitoring tools.

C-FLAT is a remote runtime CFA tool for embedded systems. It requires modifications to the target
binaries, adding so-called trampolines at each branch instruction, so that they inform the tracer
each time a branch is encountered. An external, trusted device handles the actual attestation from
there. The attestation is stateful, i.e., it is able to match an entire execution path to its CFG. This
unloads a large portion of the performance overhead to external hardware. What remains on the
target machine is linear overhead correlated with the number of branch instructions in the target
program [20].

LiteHAX is a remote runtime CFA tool for low-end embedded systems. It attests not only the
control-flow of a program, but also its data flow, allowing for the detection of a very wide variety of
attacks. Like C-FLAT, it does require additional trusted hardware to function. In a case study, the
researchers measured a ≈ 15% performance overhead on the prover device [21].

CFIMon is a tool that leverages Intel Branch Trace Store (BTS) functionality - in combination with
performance counters - to validate branches locally at runtime with very little overhead. It operates
without special modifications to program binaries and requires only a compatible Intel processor to
function. However, it is limited in that it only validates branch targets without context, and cannot
detect high level semantic control-flow violations [22].

Finally, GRIFFIN by uses Intel hardware tracing functionality in execution monitoring and CFI
enforcement with a hybrid approach. Requiring a compatible Intel processor to function, it uses
specifically defined security policies for validation. These policies can be course-grained, providing
a lookup table of legitimate branch destination addresses, allowing for very fast validation of
branch destinations. To balance security and performance, GRIFFIN also supports fine-grained
policies. These denote legitimate branches in terms of both source and destination addresses.
Validating against this is much more secure, due to the fact that illegitimate control-flow may still
branch to legitimate destination addresses, but also much slower. In order to extract the source
address of the branch the control-flow must be reconstructed from the trace. GRIFFIN is capable of
switching between course- and fine-grained policies at runtime to minimize the performance
overhead and lag between the occurrence and detection of control-flow violations during
execution [14].

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 69 of 74

Chapter 7 Summary and Conclusion

Summarizing this deliverable, we underlined the need for efficient tracing and tracking of
mission critical applications on a detailed low-level so as to understand and timely detect
attack attempts or malfunctions of the executable. With this tracing approach we have created
a binary monitoring solution that not only catches known threats but is also capable of detecting
zero-day vulnerabilities that could affect the executable in hand.

This was produced in the context of the FutureTPM Risk Assessment framework towards
supporting a dynamic multi-level detailed tracing solution with a varying granularity for the
amount and the type of data gathered. This is achieved by leveraging a two-tier granularity
tracing technique that initially monitors the targeted binary with an efficient and highly scalable
tracing technology named “extended Berkeley Packet Filter” (eBPF); which allows for the tracing of
the configurational integrity of the executing binary without posing any significant overhead (around
6% additional time on the traced functions). These execution hooks were also enhanced with more
thorough tracing capabilities based on the use of the emerging IntelPT tracing mechanism.
This programmable component provides near real-time low-level code inspection, thus,
capturing the strict constraints of SoS-enabled ecosystems, as envisioned in FutureTPM.

These kernel hooks, initially, are identified as low-level behavioural properties and are deployed to
trace system calls. The goal of this initial tracing is to monitor system calls, produce the
necessary CFGs and finally acquire the attestation report. In the case of a failed attestation
report, FutureTPM has defined a methodology for increasing the level of monitoring in order to
collect additional evidence and information on the incident for the assistance in finding the province
of the attack as well as in the development of new enforceable policies that should be able to catch
this newly identified threat that caused the attack in the first place. This is what the integration of
Intel PT is currently offering. Effectively, we propose a novel solution for multi-level detailed tracing
that, depending on the situation, monitors the security-critical components of each system in
different levels in order to upkeep the desired assurance while also providing the required
details for post-attack investigation. This multi-level detailed tracing is implemented in a semi-
automatic manner. Towards this direction, there are two possibilities explored within FutureTPM.
The first is the automatic deployment of new, more rich, programmable eBPF hooks after the
reception of a failed attestation report. In this case, the security analyst(s) (performing the offline
investigation) assess the attestation report and determines whether more information is needed for
identifying the cause and type of attack - in which case she also defines the set of policies
describing the type of information/evidence to be collected. After this process, new programmable
ebPF kernel hooks are seamlessly and automatically deployed to the target device for fulfilling
these policies. As previously noted, the eBPF is implemented in the kernel, thus, needs a userland
control agent for remote control and exportation of the data. Such agents are implemented as part
of the FutureTPM RA framework. Overall, this approach enable us to get the necessary evidence
without affecting the performance of the target system since these rich eBPF hooks (that will incur
a higher penalty in the system execution as more system calls need to be monitored in near real-
time) will be deployed. However, there is the inherent limitation of a large attack time window:
Since the detailed tracing commences after the attestation process has failed, this means that the
attack is already in place which in turn results to the additional requirement of “letting” the attack to
run further (for a larger amount of time) in the device until the detailed tracing has finished.
Depending on the application at hand, such an approach (which will of course require the isolation
of the attacked device during the evidence collection so as other adjacent assets are not affected)
might not be feasible.

Compounding this issue, the other approach adopted by FutureTPM is the deployment, during
runtime, of Intel PT introspection agents already capable of enhanced monitoring and tracing of
most of the low-level functional calls. In this case, only those execution hooks that are necessary
for tracing the CFGs to be attested will be active during the run-time risk assessment phase (i.e.,

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 70 of 74

including the execution of the CFPA mechanism) and the enriched agents will be activated only if
the evidence collection is triggered; thus, resulting to the transmission of the necessary information
about the device that got compromised, vulnerabilities found in any of the internal system
components or their configurations, configuration changes, etc. This approach while less efficient,
as the penalty of increased tracing is incurred from the beginning, doesn’t necessitate a large
attack time window.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 71 of 74

Chapter 8 List of Abbreviations

Abbreviation Translation

EA Enhanced Authorisation

AES Advanced Encryption Standard

AK Attestation Key

BBA Binary-Based Attestation

BIKE Bit Flipping Key Encapsulation

BLISS Bimodal Lattice Signature Scheme

CFB Ciphertext Feedback

CIV Configuration Integrity Verification

CPU Central Processing Unit

CSR Certificate Signing Request

DAA Direct Anonymous Attestation

DSA Digital Signature Algorithm

EA Enhanced Authorization

eBPFs enhanced Berkeley Packet Filters

ECC Elliptic Curve Cryptography

FPGA Field Programmable Gate Array

HMAC Hash-based MAC

ICT Information and Communication Technologies

IMA Integrity Measurement Architecture

IntelPT Intel Processor Trace

IoT Internet of Things

KEX Key Exchange

LDAA Lattice-based Direct Anonymous Attestation

MAC Message Authentication Code

NIST National Institute of Standards and Technology

NMS Network Management System

NTT Number-Theoretic Transform

PBA Property-Based Attestation

PCA Privacy Certification Authority

PCRs Platform Configuration Registers

PKE Public Key Encryption

PQ Post-Quantum

PQC Post-Quantum Cryptography

QR Quantum Resistant

RNG Random Number Generator

RSA Rivest–Shamir–Adleman

SAPiC Stateful Applied Pi Calculus

SHA Secure Hash Algorithm

SoC System-on-chip

S-ZTP Secure Zero Touch Provisioning

TC Trusted Components

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 72 of 74

Abbreviation Translation

TCB Trusted Computing Base

TCG Trusted Computing Group

TCTI Command Transmission Interface

TLS Transport Layer Security

TPM Trusted Plaform Module

TSS TPM Software Stack

TTP Trusted Third Party

U2F Universal 2nd Factor

UC Universal Composability

XOF Extendable-Output Function

XOR Exclusive OR

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 73 of 74

Chapter 9 Bibliography

[1] “FutureTPM Deliverable D4.3: Runtime Risk Assessment, Resilience and Mitigation Planning
– First Release.”.

[2] “FutureTPM Deliverable D4.2: FutureTPM Risk Assessment Framework - First Release.”.

[3] “FutureTPM Deliverable D4.4: FutureTPM Risk Assessment Framework - Final Release.”.

[4] “FutureTPM Deliverable D1.2: FutureTPM Reference Architecture.”.

[5] “FutureTPM Deliverable D4.1: Threat Modelling & Risk Assessment Methodology.”.

[6] OLISTIC Risk Assessment Platform. UBITECH.

[7] “FutureTPM Deliverable D6.1: Technical Integration Points and Testing Plan.”.

[8] “Overview of the Linux Virtual File System — The Linux Kernel documentation.”
https://www.kernel.org/doc/html/latest/filesystems/vfs.html (accessed Dec. 01, 2020).

[9] “Trusted Platform Module Library Part 2: Structures.” [Online]. Available:
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.07-
2014-03-13.pdf.

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy specification language,”
in International Workshop on Policies for Distributed Systems and Networks, 2001, pp. 18–
38.

[11] “TCG TNC Federated TNC,” Trusted Computing Group.
https://trustedcomputinggroup.org/resource/federated-tnc/ (accessed Dec. 01, 2020).

[12] “Trusted Network Connect: Open Standards for Integrity-based Network Access Control,”
Trusted Computing Group. https://trustedcomputinggroup.org/resource/trusted-network-
connect-open-standards-for-integrity-based-network-access-control/ (accessed Dec. 01,
2020).

[13] “Processor Tracing.” https://software.intel.com/content/www/us/en/develop/blogs/processor-
tracing.html (accessed Jan. 15, 2021).

[14] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using intel processor trace,”
ACM SIGPLAN Not., vol. 52, no. 4, pp. 585–598, 2017.

[15] “Intel® 64 and IA-32 Architectures Software Developer Manuals,” Intel.
https://www.intel.com/content/www/us/en/develop/articles/intel-sdm.html (accessed Jan. 15,
2021).

[16] “Perf tools support for Intel® Processor Trace - Perf Wiki.”
https://perf.wiki.kernel.org/index.php/Perf_tools_support_for_Intel%C2%AE_Processor_Trace
(accessed Jan. 15, 2021).

[17] “Perf Wiki.” https://perf.wiki.kernel.org/index.php/Main_Page (accessed Dec. 01, 2020).

[18] H. Sun, C. Zhang, H. Li, Z. Wu, L. Wu, and Y. Li, “ATOS: Adaptive Program Tracing With
Online Control Flow Graph Support,” IEEE Access, vol. 7, pp. 127495–127510, 2019.

[19] Ú. Erlingsson, M. Peinado, S. Peter, M. Budiu, and G. Mainar-Ruiz, “Fay: Extensible
distributed tracing from kernels to clusters,” ACM Trans. Comput. Syst. TOCS, vol. 30, no. 4,
pp. 1–35, 2012.

[20] T. Abera et al., “C-FLAT: control-flow attestation for embedded systems software,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 743–754.

D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning

FutureTPM D4.5 PU Page 74 of 74

[21] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax: lightweight hardware-
assisted attestation of program execution,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2018, pp. 1–8.

[22] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation of control flow integrity
using performance counters,” in IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2012), 2012, pp. 1–12.

[23] IOVisor, “BCC - Tools for BPF-based Linux IO analysis, networking, monitoring, and more,”
2018. [Online]. Available: https://github.com/iovisor/bcc#tools.

	Chapter 1 Introduction
	1.1 Scope and Purpose
	1.2 Relation to other WPs and Deliverables
	1.3 Deliverable Structure

	Chapter 2 FutureTPM Dynamic Multi-Level Detailed Tracing
	2.1 Multi-Level Detailed Tracing based on eBPFs and Intel PT Programmable Components
	2.2 Formal Definition of Property Tracing
	2.2.1 Control-Flow Graph Structure

	Chapter 3 High-Level Tracing Leveraging eBPF Execution Hooks
	3.1 Implementation Path Report
	3.2 eBPF Tracer Timings

	Chapter 4 Low-Level Detailed Tracing Leveraging Intel PT Introspection Agents
	4.1 Intel® Processor Tracing Building Blocks
	4.1.1 Overview
	4.1.2 Packets
	4.1.3 Intel libipt
	4.1.4 Linux perf

	4.2 Technical Building Blocks of the FutureTPM Intel PT Tracing
	4.2.1 Intel PT Components

	4.3 Architecture of the FutureTPM Intel PT Tracing Solution
	4.4 Notable Design Choices
	4.4.1 Intel PT Setup and Compatibility

	Chapter 5 FutureTPM Intel PT Tracing Evaluation
	5.1 Evaluation Plan
	5.1.1 Test Case t0 – Control
	5.1.2 Test Case t1 - Single Conditional Branch
	5.1.3 Test Case t2 – Loop
	5.1.4 Test Case t3 - Function Call
	5.1.5 Test Case t4 - Conditional Branch Within Loop
	5.1.6 Test Case t5 - Function Call Within Loop
	5.1.7 Test Case t6 - Function Call and Conditional Branch Within Loop

	5.2 Performance Evaluation
	5.2.1 Memory Usage
	5.2.2 High Complexity Scenario
	5.2.3 Low Complexity Scenario

	5.3 FutureTPM Intel PT Tracing Timings and Additional Test Cases
	5.3.1 Compiler Optimizations
	5.3.2 Nondeterministic Examples
	5.3.3 Vulnerable Binary

	Chapter 6 Critique and Open Questions
	6.1 Open Questions and Challenges
	6.1.1 Concurrency issues
	6.1.2 Populating the image cache
	6.1.3 Inconsistent block boundaries
	6.1.4 Migrate to purely software-based tracing capabilities.

	6.2 Other optimizations

	Chapter 7 Summary and Conclusion
	Chapter 8 List of Abbreviations
	Chapter 9 Bibliography

