

D5.4
Report on implementation

Project number: 779391

Project acronym: FutureTPM

Project title:
Future Proofing the Connected World: A Quantum-

Resistant Trusted Platform Module

Start date of the project: 1st January, 2018

Duration: 36 months

Programme: H2020-DS-LEIT-2017

Deliverable type: DEM

Deliverable reference number: DS-06-779391 / D5.4/ 1.0

Work package contributing to the

deliverable:
WP 5

Due date: June 2020 – M30

Actual submission date: 14th of July, 2020

Responsible organisation: IFAG

Editor: Michael Albrecht

Dissemination level: PU

Revision: 1.0

The project FutureTPM has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 779391.

Abstract:

This deliverable will report the public overview on the

final version of VM based QR TPM, HW based QR

TPM and the SW-based QR TPM.

Keywords:
Software-TPM, Virtual-TPM, Hardware-TPM,

Implementation

D5.4 – Report on implementation

FutureTPM D5.4 Public Page I

Editor

Michael Albrecht (IFAG)

Contributors (ordered according to beneficiary numbers)

Andreas Wallner (IFAG), Thomas Pöppelmann (IFAG)

Christine Wright (RHUL), Daniele Sgandurra (RHUL), Fernando Sanchez Ortega (RHUL), Harry
Lockyer (RHUL)

Paulo Sérgio Alves Martins (INESC-ID), Luís Fiolhais (INESC-ID), Rogério Paludo (INESC-ID)

Internal Reviewers

Sofianna Menesidou (UBITECH), Dimitris Papamartz (UBITECH)

Li Chen (SURREY), Athanasios Giannetsos (DTU)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author`s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page II

Executive Summary

The overall goal of FutureTPM is to design a Quantum-Resistant (QR) Trusted Platform Module
(TPM) by designing and developing QR algorithms suitable for inclusion in a TPM; based on the
selection of various families of QR crypto primitives as described in D2.1 [17]. For each primitive,
detailed attention is being paid to their implementation details and performance evaluation towards
their validation in the full range of TPM environments, namely hardware (hTPM), software (sTPM)
and virtualization (vTPM) environments. Accompanied with the QR algorithm design and
implementation, the FutureTPM project will demonstrate three use cases in secure mobile wallets
and payments, activity tracking and device management, which will provide environments and
applications to validate the feasibility and performance of the newly developed QR TPM in these
three selected real-world systems that may be affected by the advent of quantum computing as a
threat to security.

In this context, this deliverable reports the design and implementation of the quantum-resistant (QR)
HW-TPM (Task 5.3), gives a consolidated overview on the final implementation of the QR SW-TPM
(Task 5.1) and describes the current status of the final QR virtual-TPM implementation (Task 5.2),
scheduled for M30.

Open Issues, documented in D5.1 and D5.2 are resolved, NTTRU is implemented as well as L-DAA
on the promised level of optimization. The QR HW-TPM Demonstrator (D5.3) is finally available,
including updated security schemes (BLISS replacing qtesla) and ready for integration- and use case
testing (WP6).

D5.4 – Report on implementation

FutureTPM D5.4 Public Page III

Contents

Executive Summary ... II

List of Figures .. IV

List of Tables ... V

 Introduction .. 1

1.1 Scope and Purpose ... 1

1.2 Relation to Other WPs and Deliverables ... 2

1.3 Deliverable Structure ... 3

 Update on the SW-TPM .. 4

2.1 New Endpoints .. 4

2.2 Miscellaneous SW-TPM Updates.. 5

2.3 Resolved and Open Issues ... 6

 Virtual TPM Overview ... 7

3.1 QR Virtual-TPM Architecture ... 7

3.1.1 Choice of QEMU .. 7

3.1.2 Choice of QR-Libtpms ... 8

3.1.3 Implementation of Virtual TPM ... 8

3.1.4 Using SW-TPM within V-TPM .. 9

3.1.5 QR V-TPM ... 10

3.2 QR Cryptographic Algorithms in V-TPM .. 13

3.2.1 SPHINCS+ .. 13

3.2.2 Rainbow .. 15

3.2.3 BIKE .. 16

3.2.4 Integration of SPHINCS+, Rainbow and BIKE into QR-Libtpms 16

3.2.5 Open Issues .. 16

 HW-TPM Demonstrator Overview ... 18

4.1 QR HW-TPM Demonstrator .. 18

4.2 FPGA Evaluation Platform .. 18

4.3 Architecture of the HW-TPM Demonstrator ... 19

4.4 Basic Operation of the QR HW-TPM Demonstrator .. 21

4.5 New Endpoints .. 21

4.6 How to add new algorithms ... 22

4.7 Using the HW-TPM demonstrator ... 22

4.8 Example .. 23

4.9 TSS Adaptations ... 24

D5.4 – Report on implementation

FutureTPM D5.4 Public Page IV

4.10 Hardware Acceleration of PQC .. 25

 Conclusions and Next Steps ... 28

List of Abbreviations ... 29

Bibliography ... 30

Appendices .. 32

List of Figures

Figure 1: Types of TPM according to TCG .. 1

Figure 2: Overview of the QR TPM environments. .. 2

Figure 3: Architecture of V-TPM .. 8

Figure 4: Output of Kyber Encrypting a File in a VM .. 12

Figure 5: Output of Signing Operation on a File in a VM ... 12

Figure 6: "swtpm socket" command .. 17

Figure 7: Simplified system overview on the DesignStart SoC .. 19

Figure 8: General overview of the QR HW-TPM and comparison to the IBM SW-TPM 20

Figure 9: Block diagram of the QR HW-TPM demonstrator ... 20

Figure 10: Architecture of IBM’s TPM2.0 SW implementation (from
http://ibmswtpm.sourceforge.net/). .. 23

Figure 11: Communication Diagram between Alice and Bob for setup and repeated usage steps 24

Figure 12 TSS architecture / parts .. 25

Figure 13 Option for hardware acceleration of PQC .. 27

Figure 14: SPHINCS+ Compilation ... 32

Figure 15: SPHINCS+ Unit Test .. 32

Figure 16: SPHINCS+ Unit Test Results (Record 0 to 4) .. 33

Figure 17: SPHINCS+ Unit Test Results (Record 95 to 99)... 33

Figure 18: Rainbow Unit Test Results (Record 0 to 3) .. 35

Figure 19: Rainbow Unit Test Results (Record 96 to 99) ... 36

Figure 20: Rainbow Unit Test - Key Generation, Signature Generation and Verification 36

Figure 21: BIKE Unit Test ... 38

Figure 22: BIKE Unit Test Results (Record 0 to 4) .. 38

Figure 23: BIKE Unit Test Results (Record 95 to 99) .. 39

Figure 24: SPHINCS Code Copied Into QR-Libtpms ... 42

Figure 25: Rainbow Code Copied Into QR-Libtpms ... 42

Figure 26: BIKE Code Copied Into QR-Libtpms .. 43

file:///C:/00-SVN/FutureTPM/03-WPs/WP5/D5.4/FutureTPM-D5.4-Report-on-implementation-PU-M30.docx%23_Toc45527739
file:///C:/00-SVN/FutureTPM/03-WPs/WP5/D5.4/FutureTPM-D5.4-Report-on-implementation-PU-M30.docx%23_Toc45527739

D5.4 – Report on implementation

FutureTPM D5.4 Public Page V

Figure 27: CryptSphincsPlus.c, CryptRainbow.c, CryptBIKE.c and CryptUtil.c Copied Into QR-
Libtpms ... 43

Figure 28: CryptSphincsPlus_fp.h, CryptRainbow_fp.h and CryptBIKE_fp.h Copied Into QR-Libtpms
 .. 44

Figure 29: New BIKE files Copied Into QR-Libtpms .. 44

Figure 30: SPHINCS+, Rainbow and BIKE Compiled Into QR-Libtpms ... 45

Figure 31: SPHINCS+, Rainbow and BIKE Compiled Into QR-Libtpms ... 46

List of Tables

Table 1: V-TPM Performance Results ... 11

Table 2: Testing and Timings of the V-TPM within the Docker Container 12

Table 3: SPHINCS+ Parameter Sets .. 13

Table 4: NIST Categories .. 14

Table 5: Rainbow Parameter Sets .. 15

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 1 of 48

 Introduction

1.1 Scope and Purpose

Research on quantum computers has drawn attention from governments and industry. If, as
predicted, a large-scale quantum computer becomes a reality within the next 15 years, existing
public-key algorithms will be open to attack. FutureTPM is aimed at designing and developing a
Quantum-Resistant (QR) Trusted Platform Module (TPM). FutureTPM’s main goal is to enable a
smooth transition from current TPM environments, based on existing widely used and standardised
cryptographic techniques, to systems providing enhanced security through QR cryptographic
functions, including secure authentication, encryption and signing functions.

According to TPM 2.0 specifications [19], there are five different types of TPM 2.0 implementations:

 Discrete TPMs: they are dedicated chips that implement TPM functionality in their own
tamper-resistant semiconductor package. Theoretically, they are the most secure type of
TPM as, for instance, their packages are required to implement tamper resistance.

 Integrated TPMs: they are included as part of another chip. While they use hardware that
resists software bugs, they are not required to implement tamper resistance.

 Firmware TPMs: these are software-only solutions that run in a CPU's trusted execution
environment. Since these TPMs are entirely software solutions that run in trusted execution
environments, these TPMs are more likely to be vulnerable to software bugs.

 Software TPMs: they are software emulators of TPMs that depend on the environment that
they run in. Typically, they offer the same level of security of their execution environment,
and so are vulnerable to software bugs. Therefore, they are typically used for development
purposes.

 Virtual TPMs: they are meant to be provided by a hypervisor to allow virtual machines to
share a single instance of a TPM. These TPMs rely on the hypervisor to provide them with
an isolated execution environment that is hidden from the software running inside virtual
machines.

Figure 1: Types of TPM according to TCG

FutureTPM is investigating technologies for a new generation of TPM-based solutions, including
hardware (HW), software (SW) and virtualization environments, by incorporating QR cryptographic
primitives. In addition, FutureTPM aims to prove and validate the applicability, usability, effectiveness
and value of the QR TPM concepts, models and algorithms in real-world settings, including industry
and e-commerce, which may be affected by the advent of quantum computing.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 2 of 48

In this deliverable, we describe the current implementation status of the QR HW-TPM demonstrator;
overview the concept and progress on the QR Virtual TPM; and give an update on the QR SW-TPM.

The subsequent figure gives an overview of the QR TPM environments developed within WP5. It
shows that all QR TPM environments are based on the IBM SW TPM, where the QR VM-TPM and
the QR SW-TPM share the same code-basis and the QR VM-TPM implements additional crypto
algorithms (BIKE, SPHINS+, Rainbow), as has been described in D2.2 [10]. Furthermore, it gives an
update on the algorithms that have now been implemented in D5.4 – latter are marked bold.

Figure 2: Overview of the QR TPM environments.

1.2 Relation to Other WPs and Deliverables

WP2 deals with the selection of which QR cryptographic primitives should be implemented in each
TPM environment, both providing advice and receiving feedback from WP5. WP5 serves as the
basis for the developments of the TPM environments to be demonstrated in the envisioned use
cases (WP6). In particular, the QR SW-TPM will be the basis for the “Personal Activity and Health
Kit Data Tracking” use case, the QR Virtual TPM will serve as basis for the “Device Management”
use-case and the QR HW-TPM will be used by the “Secure Mobile Wallet and Payments” use-case.

Nevertheless it has to be stated within WP6, that the 1st round of experimentation and evaluation,
was based on SW-TPM only, for all three use cases. In the current project phase, as HW TPM and
vTPM become more and more available, a 2nd round of experiments will show the adaption of the
use cases to their dedicated QR target platforms.

Within WP5, Task 5.1 (Implementation and Evaluation of Software QR TPM) dealt with the
development of the QR SW-TPM. Task 5.2 (Implementation and Evaluation of Virtual QR TPM) and
Task 5.3 (Implementation and Evaluation of Hardware QR TPM) are devoted to the design,
implementation and evaluation of the QR algorithms in a VM-based TPM and a HW-TPM
demonstrator, respectively. Furthermore, Task 5.4 deals with the development of a TPM Software
Stack (TSS) API that covers the newly introduced QR cryptographic algorithms and, finally, in Task
5.5 a HW coprocessor to accelerate lattice operations is going to be developed.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 3 of 48

1.3 Deliverable Structure

This deliverable is structured as follows:

 Chapter 2 provides an update of progress on the software TPM that has been made since
the submission of D5.3 in M27.

 Chapter 3 details the concept of the second version of the quantum-resistant VM-based TPM
and gives an overview of the current state of its development.

 Chapter 4 details the design of the final version of the quantum-resistant HW-based TPM
demonstrator.

 Chapter 5 concludes the deliverable and provides a roadmap for the next steps.

The following D5.4 updates are reflected in this document:

Consolidated, public summary of TSS and TPM environments, based on D5.1-D5.3, including
detailed summaries for SW- & virtual-TPM, an overview of HW-TPM and a brief description of PQC
HW Acceleration

SW-TPM

• Adapted TSS to reflect PQC algorithms of QR TPM

Virtual-TPM

 Derived VM-TPM-specifics from SW-TPM implementation

 Integrated BIKE and Rainbow into QR-Libtpms

 Integrated SW-TPM/QR-Libtpms with QEMU/KVM to provide V-TPM functionalities

HW Demonstrator

• IFX to provide INDEV/UBITECH with SW simulator & HW TPM

• Use of TSS over TPC/IP as main interface for the integration

• Use HW-TPM FW compiled for PC platform for use case integration (PAY)

• Description of PQC Hardware Acceleration

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 4 of 48

 Update on the SW-TPM

This chapter gives an incremental update on the changes performed on the Software TPM and TPM
Software Stack since the previous deliverable D5.3.

This release includes appropriate fixes for all the bugs identified during the integration and
experimentation activities of WP6 [12]. It also extends the NTTRU capabilities with general data
encryption and decryption. Furthermore, the previous four SW-TPM endpoints for key encapsulation
and decapsulation under Kyber and NTTRU were merged into two endpoints given their functionality.

The TSS was updated accordingly to support the new endpoints for key encapsulation and
decapsulation. Currently, the TSS allows the generation of encrypted salted sessions under Kyber
or NTTRU. Additionally, all regression tests have been extended to support the new endpoints.

2.1 New Endpoints

In the deliverable D5.3 the NTTRU lacked functionality for general data encryption and decryption.
This has been implemented and thoroughly tested in this release. Thus, following the guidelines
provided in D5.1 [13] the new commands for NTTRU are:

The TPM2_NTTRU_Encrypt encrypts a user-provided plaintext, with the following parameters:

 Input: key_handle for a loaded key handle to a NTTRU public key and the user’s plaintext
message (the message has a maximum size of MAX_DIGEST_BUFFER).

 Output: a ciphertext generated by the TPM.

The TPM2_NTTRU_Decrypt command decrypts a ciphertext generated by TPM2_NTTRU_Encrypt,
with the following parameters:

 Input: key_handle must reference a loaded private NTTRU key and a ciphertext generated
by TPM2_NTTRU_Encrypt.

 Output: the TPM will decrypt the cipher object to obtain the original plaintext message.

The TSS API already supports the new NTTRU endpoint for general data encryption (nttruencrypt)
and decryption (nttrudecrypt).

 nttruencrypt => a NTTRU-only command where an encryption is performed using the
selected loaded key and an input is received to be encrypted. An example of its usage is:

o ./nttruencrypt -hk LOADED_KEY_HANDLE -id IN_PLAIN -oe OUT_CIPHER

 nttrudecrypt => a NTTRU-only command where a decryption is performed using the selected
loaded key and an input is received to be encrypted. Its usage is:

o ./nttrudecrypt -hk LOADED_KEY_HANDLE -ie IN_CIPHER -od OUT_PLAIN

Additionally, new endpoints for key encapsulation and decapsulation were added to the SW-TPM
and TSS replacing the previous commands TPM2_NTTRU_Enc, TPM2_NTTRU_Dec,
TPM2_Kyber_Enc, and TPM2_Kyber_Dec, with the commands bellow.

The TPM2 _Enc command encapsulates a shared secret, with the following parameters:

 Input: key_handle for a loaded public key, either under Kyber or NTTRU.

 Output: a shared secret and a ciphertext generated by the TPM.

Respectively, TPM2_Dec decapsulates a shared secret, with the following parameters:

 Input: key_handle must reference a private loaded key and a ciphertext generated by
TPM2_Enc.

 Output: the TPM will decapsulate the cipher object to obtain the shared_secret.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 5 of 48

To reflect the additions of these commands to the SW-TPM the TSS API was updated by calling the
appropriate methods where required and with the commands bellow for direct encapsulation and
decapsulation.

 encapsulate => a command where an encapsulation is performed using the selected loaded
key. An example of its usage is:
o ./encapsulate –hk LOADED_KEY_HANDLE -c OUT_CIPHER -ss OUT_SHARED_SEC

 decapsulate => a NTTRU-only command where a decapsulation is performed using the
selected loaded key and a ciphertext previously generated by the nttru_enc command. An
example of its usage is:
o ./decapsulate -hk LOADED_KEY_HANDLE -c IN_CIPHER -ss OUT_SHARED_SEC

The extension of NTTRU to support general data encryption and decryption and the new endpoint
for key encapsulation and decapsulation completes all agreed upon required algorithms by the QR-
TPM and advances one of the still open issued of the deliverable D5.3.

2.2 Miscellaneous SW-TPM Updates

This session presents a summary of the actions taken to fix the open issues since the last public
deliverable D5.1 and also a minor fix from D5.3.

Regarding the updates since D5.1:

 Dilithium and Kyber implementation instances were both updated to their latest versions from
the NIST submission (round 2) [14][15] and the changes required by the current versions are
backwards-compatible with the previously described TPM stack versions in D5.1 [13].

 Two notable bugs were found during the implementation and integration in the V-TPM
environment. The first related to generation of a key from a predetermined seed which it
stemmed from the fact that the seed provided by the user was ignored during the key
generation process. The fix entailed calling the PRNG state using the seed instead of ignoring
it. The second bug was related to authenticated sessions using Kyber keys. This bug caused
inconsistencies across libtpms and the SW-TPM. Fixing this bug required updating the
incorrect functions. After merging theses fixes the QR-TPM stack was successfully deployed
across all use cases in WP6, where its results were published in D6.3 [12].

 Support for QR-TLS was added using the TPM as a cryptographic engine. The following
example demonstrates the usage of the OpenSLL engine. The command “tpm2tss-genkey”
creates a key-pair which is used by the command “openssl” to generate a self-signed
certificate.

$ tpm2tss-genkey -a dilithium dilithium.tss

$ openssl req -new -x509 -engine tpm2tss -key dilithium.tss -

keyform engine -out dilithium.crt

To accept TLS HTTP connections on port 8443, supported on Kyber and Dilithium, a server
is instantiated with

$ openssl s_server -cert dilithium.crt -key dilithium.tss -keyform

engine -engine tpm2tss -accept 8443 –www

Then a client can connect to server by executing

$ echo "GET index.html" | openssl s_client -engine tpm2tss -connect

localhost:8443

Thus, a key-exchange supported on Kyber takes places, and the server authenticates itself
with a Dilithium signature.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 6 of 48

Finally, the SW-TPM was updated from D5.3 to verify the secret size before calling the general
decryption methods of Kyber and NTTRU. This prevents the SW-TPM of trying to decrypt an
oversized secret. A secret that does not fit into the predefined space causes the SW-TPM to crash
with a stack overflow error.

2.3 Resolved and Open Issues

The following issues have been resolved since the last public release D5.1 of the SW-based TPM
implementation:

 The regression test suite has been updated and there is no integrity error in the Salt tests for
Kyber.

 Kyber and Dilithium were updated to the latest version submitted in NIST competition.

 There won't be a new API endpoint for SHAKE hashes. The consortium decided that it would
be best to invest more time in the remaining L-DAA issues and supporting the consortium
members in WP6 (this issue was originally described in D5.1).

 The modified OpenSSL broke backwards-compatibilty with other TLS ciphers when running
certain regression tests. Therefore, similarly to the SHAKE endpoint, it was decided by the
consortium that the failing regressions tests in the OpenSSL test suite will not be considered.

This deliverable fixed the following open issues of D5.3:

 The functionality of the NTTRU algorithm has been fully extended on the SW-TPM and TSS
to support general data encryption, decryption, and salted sessions.

However, the following challenges still remain “active”:

 The L-DAA issues have not been updated. Nonetheless, the consortium is working on a new
L-DAA proposal planned to overcome the issues opened in D5.1 [2]. The new implementation
of L-DAA will be detailed in the release of WP2.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 7 of 48

 Virtual TPM Overview

This chapter reports on the design of the first version of the Quantum-resistant VM-based Trusted
Platform Module (TPM), QR Virtual-TPM or QR VM-TPM. The differences between this chapter and
the corresponding chapter in D5.3 are as follows:

 Section 3.1.5 has been updated to report that:
o We have resolved the problem with the TIS buffer size and have tested some TPM

commands on the V-TPM with performance measurements taken.
o We have successfully integrated SW-TPM/QR-Libtpms with QEMU/KVM and tested

Kyber and Dilithium using the “Alice and Bob” protocol as described in the D5.1
document.

 Section 3.2.4 has been updated to report that we have successfully compiled BIKE into QR-
Libtpms

 Section 3.2.5 has been updated to report that we have commenced the testing of SPHINCS+,
Rainbow and BIKE but we have encountered a technical issue.

 Section 3.3 (Future Work) has been removed because the content has been integrated into
Section 3.2.5.

 Appendix D has been updated to add details of integration of BIKE into QR-Libtpms.

 Appendix E has been added to report an issue with TSS library when invoking QR
functionalities.

3.1 QR Virtual-TPM Architecture

3.1.1 Choice of QEMU

Several methods of VM-TPM have been proposed and developed, however, none of them entirely
fits with the requirements of the FutureTPM framework. A comparison of VM-TPM feasibility has
already been done in the literature [18], and an overview will be given in the remaining sections of
this chapter. Three implementation activities on two systems have been proposed, with emulations
on Xen and QEMU (short for Quick EMUlator) and a pass-through for Xen. [10] QEMU is the chosen
emulator, and KVM is the chosen virtualization layer. In particular, QEMU pass-through makes use
of the HW-TPM of the host, and strongly links a single guest to the host. Therefore, when used as a
pass-through, this approach is infeasible in a cloud-based implementation where multiple guests are
offered their own TPM functionality. Equally, it makes migration of guests infeasible, as the HW-TPM
state cannot be migrated. Instead, both of these functionalities are possible when, instead of using
the pass-through functionality, QEMU uses a TPM emulator (SW-TPM) as backend. QEMU with
TPM emulation currently exists, in particular by exploiting Libtpms1 (see next section for more
information) to emulate a TPM device, along with a modified TPM Interface Specification (TIS) on
the guest BIOS. Migration is possible in this situation as the TPM state is saved along with the VM
image. Each guest has its own emulated TPM, and therefore states cannot be shared between VMs.

1 https://github.com/stefanberger/libtpms

https://github.com/stefanberger/libtpms

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 8 of 48

Figure 3: Architecture of V-TPM

3.1.2 Choice of QR-Libtpms

The libtpms is a library to support emulation of TPM 1.2 and TPM 2.0. It is implemented
independently of a backend for storage and an interface for communication. It is thus a flexible library
for the integration of TPM functionality into hypervisors, primarily into QEMU. A Libtpms with QR
cryptographic functionality included (QR-Libtpms) is used in this chosen architecture. This QR-
Libtpms includes implementations of Dilithium, Kyber and L-DAA. We have identified the
modifications that have been made to the Libtpms for the purpose of adding new algorithms, i.e.
SPHINCS+, Rainbow and BIKE.

3.1.3 Implementation of Virtual TPM

In this architecture (see Figure 3), a Virtual Machine (VM) is connected using a driver to a TPM
emulator (based on QR-Libtpms) by using TPM-TIS buffer. Each VM contains a TSS QR, which is
the modified version of the TSS of IBM with the new functions which have QR-algorithms added in
the virtual TPM code such as Kyber and Dilithium.

The functions (createprimarykey, signed, etc) executed by the TSS, are captured by the

Virtual-TPM driver. The Virtual-TPM driver is created by the hypervisor QEMU when we power on
the VM with this command:

qemu-system-x86_64 -display sdl -accel kvm -m 1024 -boot d -bios

bios-256k.bin -boot menu=on -chardev

socket,id=chrtpm,path=/tmp/mytpm1/swtpm-sock -tpmdev

emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0

virtualmachine.img

This command creates in the VM these two components:

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 9 of 48

 /dev/tpm0 TPM Device Driver

 /dev/tpmrm0 multi-process entry point.

Please note that the TPM emulator must be started before trying to access it through QEMU. This
TPM emulator implements two components:

1. Command channel for transferring TPM commands and responses.
2. Control channel over which we can use to reset, modify or initialize the TPM state, among

other things.

As previously described, it is mandatory to create an instance of the TPM emulator before QEMU
tries to create the Virtual-TPM driver. The next command is an example of an instance of the TPM
emulator which is using UNIX socket for the communication:

mkdir /tmp/mytpm1

./swtpmsocket --tpmstate dir=/tmp/mytpm1 --tpm2 –ctrl

type=unixio,path=/tmp/mytpm1/swtpm-sock --log level=20

This emulator is connected to the driver virtual TPM by using TIS.

The consortium was testing the Virtual TPM architecture with QR-Libtpms code (that includes only
Dilithium, Kyber and L-DAA). Initially when using the QR algorithms in the QR-Libtpms, the
communication between the VM and the Libtpms did not work properly. To resolve this issue, we
have modified the TIS buffer size in Kernel of the VM and QEMU. See Section 3.1.5.

3.1.4 Using SW-TPM within V-TPM

In the following, we describe how to use the SW-TPM and V-TPM.

1. In the same host

To use the IBM TSS for TPM 2.0 directly with SW-TPM in the same host, we need to use the following
commands:

Start SW-TPM in one terminal:

mkdir /tmp/myvtpm

swtpm socket --tpmstate dir=/tmp/myvtpm --tpm2 --ctrl type=tcp,port=2322

\

 --server type=tcp,port=2321 --flags not-need-init

Execute indicative operations with the QR-TSS stack in another terminal:

export TPM_COMMAND_PORT=2321 TPM_PLATFORM_PORT=2322 \

 TPM_SERVER_NAME=localhost TPM_INTERFACE_TYPE=socsim \

 TPM_SERVER_TYPE=raw

tssstartup

tsspcrread -ha 10

count 1 pcrUpdateCounter 21

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 10 of 48

 digest length 32

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

To reset SW-TPM run the following command:

swtpm_ioctl -i --tcp :2322

2. Using a TSS in a VM and V-TPM

Start SW-TPM in one terminal in the host machine:

mkdir /tmp/mytpm1

./swtpmsocket --tpmstate dir=/tmp/mytpm1 --tpm2 –ctrl

type=unixio,path=/tmp/mytpm1/swtpm-sock --log level=20

Each VM has installed a TSS QR which is a modified version of the TSS of IBM with new functions
with the aim of checking the QR algorithms added in the virtual TPM such as Kyber and Dilithium.

The functions are executed by the QR-TSS are captured by the Virtual-TPM driver, which is created
by the hypervisor QEMU when we power on the VM with this command:

qemu-system-x86_64 -display sdl -accel kvm -m 1024 -boot d -bios bios-

256.bin -boot menu=on -chardev

socket, id=chrtpm, path=/tmp/mytpm1/swtpm-sock -tpmdev

emulator, id=tpm0, chardev=chrtpm -device tpm-tis, tpmdev=tpm0

virtualmachine.img

The consortium has created a Dockerfile to be used to test in local the SW-TPM and QR-Libtpms
and QR-TSS. The technical steps to create a virtual environment using a Dockerfile are available in
a separate whitepaper.

3.1.5 QR V-TPM

There were issues with the TIS buffer size which had to be edited to allow larger cryptographic keys
to be allocated correctly. This was amended by editing the following file:

./qemu/hw/tpm/ tmp_tis.h

where TPM_TIS_BUFFER_MAX is the variable which needs to be changed.

The buffer size had to be changed to 200 KB in order to accommodate the largest cryptographic
keys being used by the consortium. In making the file, the flag --ignore-errors needs to be included

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 11 of 48

to allow the file to be compiled, otherwise an unsigned int errors can occur. It should be noted

that the latest version of GCC needs to be installed on the device before QEMU is made2.

After successful compilation, the modified QEMU was created and the other steps were made to
boot the QEMU image with the V-TPM running, commands can be issued to the V-TPM, some issues

with performance were noted as tss startup command took slightly longer as

previous with 0.003817601 seconds time elapsed to initiate the command. The increased buffer
size should address the previous issue with regards to the keys being larger than the allocated buffer
size. Key generation commands worked with increased key size with no major impact on the
performance.

Some TPM commands where tested on the V-TPM to see the functionality and the how well they
worked the tests where benchmarked with the following perf. The results are shown in Table 1..

Command Purpose Time Elapsed

tssstartup Initiates startup to the V-TPM 0.005564852
seconds

tssstartauthsession Starts session with the V-TPM 0.004963542
seconds

tsshierarchychangeauth Prevents rouge users changing policy of the
V-TPM

0.004920123
seconds

tssdictionaryattackparameters

Simulates a dictionary-based attack against
the V-TPM

0.004927550
seconds

tssgetcapability Used top display what the TMP can do such
as display what algorithms it can handle and
use.

0.003924411
seconds

Table 1: V-TPM Performance Results

The V-TPM has been integrated with the QR-SWTPM with the use of a Docker container by allowing
KVM to run inside it for the V-TPM to correctly work. Running the V-TPM within Docker requires
some extra libraries to enable KVM to run within the container so the V-TPM can run in the
hypervisor3. Table 2: Testing and Timings of the V-TPM within the Docker Container shows the
timing results of running the commands in the container. These commands are based on the Alice
and Bob protocol described in the D5.1 document.

Command Timing

/.kyberencrypt -hk 80000001 -id

test.txt -oe enc.bin

real 0m0.257s

user 0m0.142s

2 It can be noted during compilation, some (unrelated) errors may still occur, and you may be asked to submit
a bug report, but this does not affect the V-TPM.
3 See: https://blog.scottlowe.org/2017/11/24/using-docker-machine-kvm-libvirt/

https://blog.scottlowe.org/2017/11/24/using-docker-machine-kvm-libvirt/

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 12 of 48

sys 0m0.107s

 ./sign -hk 80000001 -dilithium -

if enc.bin -os sig.bin -pwdk

dilithium

real 0m0.265s

user 0m0.136s

sys 0m0.120s

./load -hp 80000000 -ipr

kyber_priv.bin -ipu kyber_pub.bin

-pwdp sto

real 0m0.257s

user 0m0.139s

sys 0m0.111s

Table 2: Testing and Timings of the V-TPM within the Docker Container

Figure 4 and Figure 5 show the output and the timing of two QR commands issued within a VM.

Figure 4: Output of Kyber Encrypting a File in a VM

Figure 5: Output of Signing Operation on a File in a VM

We have found an issue with TSS library when invoking QR functionalities. See Appendix E for more
details. This issue is of non-deterministic nature, so it affects the functionalities only during some of
the runs, while overall the V-TPM functionalities are fine.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 13 of 48

3.2 QR Cryptographic Algorithms in V-TPM

The consortium has followed the steps described in the D5.1 document on adding new algorithms.

The integration plan is aimed at adding the following QR cryptographic algorithms into QR-Libtpms:

 SPHINCS+

 Rainbow

 BIKE

3.2.1 SPHINCS+

SPHINCS+ is a stateless variation of the stateful XMSS hash-based signature scheme. The
distinguishing characteristic of this signature scheme is that its security is based only on the
hardness of symmetric primitives. The signature size is around 30KB, which is acceptable in many
scenarios. The main downside of the scheme is that it is slow and resource-intensive. In applications
where speed and, to a lesser extent, signature size are not very important and there is a general
consensus within the cryptographic community that it will be standardized by NIST [21].

3.2.1.1 SPHINCS+ Chosen Parameter Set

The consortium has examined six parameter sets put forward by the SPHINCS+ working group. For
a security level, there are tradeoffs between signature size (s) and speed (f). These are shown in
Table 3.1

Table 3: SPHINCS+ Parameter Sets

The consortium has chosen to use the “-128f” parameter set which has 128 bitsec and security level
1 (second row from the top).

The SPHINCS+ “-128f” has the following parameter set:

n : the security parameter = 16
h : the height of the hypertree = 60
d : the number of layers in the hypertree = 20
t : the number of leaves of a FORS tree
log(t) = 9
k : the number of trees in FORS = 30
w : the Winternitz parameter = 16
Bits per second = 128
Signature in bytes = 16976

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 14 of 48

It makes sense to choose security level 1 because NIST has 5 security categories for security
evaluation of PQC algorithms, and NIST recommends focusing on categories 1, 2 and 3 (see Table
4).[17]

NIST Category Description

1 Attack with similar complexity of those required for breaking AES-128

2 Attack with similar complexity of those required for collision search
SHA256/SHA3-256

3 Attack with similar complexity of those required for breaking AES-192

4 Attack with similar complexity of those required for collision search
SHA384/SHA3-384

5 Attack with similar complexity of those required for breaking AES-256

Table 4: NIST Categories

In other words, SPHINCS+ implementation has:

 Public Key Size = 32 Bytes

 Secret Key Size = 64 Bytes

 Signature Size = 16976 Bytes

 Signed Message Size = Signature Size + Message Size

To implement SPHINCS+, the consortium has used the standard codebase from the SPHINCS+
site: https://sphincs.org/ The SPHINCS+ code was unit tested. The unit test results demonstrated
that SPHINCS+ key generation, signature generation and verification are working correctly which
provided the assurance that the SPHINCS+ code is fit for purpose. To implement SPHINCS+ in SW-
TPM and TSS, the consortium has made the relevant code changes. For more details, see Appendix
A.

https://sphincs.org/

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 15 of 48

3.2.2 Rainbow

Rainbow is a multivariate digital signature scheme. It is a generalization of the Unbalanced Oil and
Vinegar (UOV) structure. This design allows parameterizations that are more efficient at the cost of
additional algebraic structure. The Rainbow signature scheme was analyzed to be EUF-CMA secure
utilizing a hash construction with a random salt.

Since the original Rainbow signature scheme was published in 2005, the scheme has been studied
with various parameters. NIST commented that the spectrum of Rainbow parameters allows for
optimization in a diverse array of use cases. In the NIST second round submission, the key
generation algorithm for the original Rainbow scheme was improved, the nine parameter sets in the
first round submission was narrowed down to three sets. Two variants of Rainbow signatures were
proposed in order to make a trade-off in key size and performance.

It is also commented by NIST that a further benefit of Rainbow is that it has also been studied in
other contexts, including in lightweight applications. Overall, Rainbow has the advantages of being
simple and easy to implement and very fast, but it has the limitation of having large key sizes [22].

3.2.2.1 Rainbow Chosen Parameter Set

In the NIST first round submission, there were nine parameter sets. In the NIST second round
submission, the key generation algorithm for the original Rainbow scheme was improved, the nine
parameter sets in the first round submission was narrowed down to three sets. These are shown in
Table 5.[22]

NIST
Security
Category

Standard Rainbow Cyclic Rainbow Compressed Rainbow

| pk | KB | sk | KB | pk | KB | sk | KB | pk | KB | sk |

I/II 149.0 93.0 58.1 93.0 58.1 64B

III/IV 710.6 511.4 206.7 511.4 206.7 64B

V/VI 1,705.5 1,227.1 491.9 1,227.1 491.9 64B

Table 5: Rainbow Parameter Sets

Rainbow Signature sizes are: 48B, 140B, 184B [22]

The consortium has chosen to implement the Standard (or Classic) Rainbow parameter set for NIST
Security Category I/II in order to be consistent with SPHINCS+ “-128f” parameter set which has
security level 1.

In other words, Rainbow implementation has:

 Public Key Size = 149000 Bytes

 Secret Key Size = 93000 Bytes

 Signature Size = 184 Bytes (Maximum)

 Signed Message Size = Signature Size + Message Size

To implement Rainbow, the consortium has used the Rainbow codebase from the NIST site:
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions. The Rainbow code
was unit tested. The unit test results demonstrated that Rainbow key generation, signature
generation and verification are working correctly which provided the assurance that the Rainbow
code is fit for purpose. To implement Rainbow in SW-TPM and TSS, the consortium has made the
relevant code changes. For more details, see Appendix B.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 16 of 48

3.2.3 BIKE

3.2.3.1 BIKE Chosen Parameter Set

BIKE (Bit Flipping Key Encapsulation) is a suite of algorithms for key encapsulation based on quasi-
cyclic moderate density parity-check (QC-MDPC) codes that can be decoded using bit flipping
decoding techniques.9 Key Encapsulation mechanism (KEM) is composed of 3 algorithms: [23]

 GEN – outputs a public encapsulation key pk and a private decapsulation key sk,

 ENCAPS – takes as input an encapsulation key pk and outputs a ciphertext c and a
symmetric key K, and

 DECAPS – takes as input a decapsulation key sk and a cryptogram c and outputs a
symmetric key K or a decapsulation symbol (unless using implicit rejection).

The BIKE suite consists of 3 variants: BIKE-1, BIKE-2 and BIKE-3. Each variant offers different
performance trade-offs [23].

 BIKE-1 has fast, inversion-less key generation and larger public keys (2 blocks).

 BIKE-2’s key generation is more expensive but public keys are smaller. BIKE-3’s decapsulation
invokes the decoding algorithm on a “noisy” syndrome.

 BIKE-3 is fundamentally distinct from BIKE-1 and BIKE-2, mainly in terms of security and
security-related aspects like choice of parameters.

To be consistent with SPHINCS+ and Rainbow, the consortium has chosen to implement BIKE-1 at
NIST Security Level 1. The BIKE-1 implementation has: [23]

 Public Key Size = 2541 Bytes

 Secret Key Size = 249 Bytes

 Cipher Text Size = 2541 Bytes (Maximum)

To implement BIKE, the consortium has used the standard codebase from the BIKE site:
https://bikesuite.org/ The BIKE code was unit tested. The unit test results demonstrated that BIKE
key generation, encapsulation and decapsulation are working correctly which provided the
assurance that the BIKE code is fit for purpose. For more details, see Appendix C.

3.2.4 Integration of SPHINCS+, Rainbow and BIKE into QR-Libtpms

To integrate SPHINCS+, Rainbow and BIKE into QR-Libtpms, the SPHINCS+, Rainbow and BIKE
source files, the modified SW-TPM and TSS files were copied into the relevant QR-Libtpms folders
and successfully compiled. For more details, see Appendix D.

The newly added algorithms (SPHINCS+, Rainbow and BIKE) have been successfully integrated
into the SW-TPM with a Docker container with reference to D5.1 section 3.2.2.

3.2.5 Open Issues

We have started testing the integrated functionalities offered by SPHINCS+, Rainbow and BIKE,
successfully integrated into SW-TPM/QR-Libtpms (see Section 3.2) in the context of the V-TPM
similarly as above (using the “Alice and Bob” protocol). Because TPM is designed to be “algorithm
agile”, the SW-TPM and TSS code have been changed to point to run the new algorithms and no
changes were made to network commands such as “swtpm”.

https://bikesuite.org/

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 17 of 48

When configuring the SW-TPM, the “swtpm” command is needed for the user to send commands to
the SW-TPM (see Figure 6).

Without this command, no commands can be sent via tss2 and the newly added algorithms cannot
be tested. We found an issue when setting the flags “not-need-init”. The issue found is a “SetBit”
memory issue which has become present when running the SW-TPM, once the command has a
terminal response with an error message:

Entering failure mode, mode 4 location SetBit line 98 (see Figure 6)

This was investigated and there were no changes to this from the Kyber integration to the newly
added algorithms. A post was made on the Github repository with regards to this issue and its ticket
is still waiting for a response.

Figure 6: "swtpm socket" command

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 18 of 48

 HW-TPM Demonstrator Overview

This chapter reports on the design of the quantum-resistant HW TPM (QR HW-TPM).

4.1 QR HW-TPM Demonstrator

The herein described HW-TPM demonstrator is based on a fork of the open-source implementation
of the SW-TPM 2.0 produced by IBM and Microsoft running bare-metal on a Cortex-M3 CPU
synthesized for an FPGA evaluation platform. It comes with added support for new QR algorithms,
namely the key encapsulation mechanism (KEM) NewHope [1] and the digital signature scheme
(DSS) BLISS [4].

The following discusses the architecture of the HW-TPM demonstrator, the implementation of a
minimal OS environment necessary to run the modified QR SW-TPM on the FPGA, the
implementation of the QR algorithms BLISS and NewHope on the HW-TPM demonstrator. Moreover,
an outline for concepts on hardware acceleration of cryptographic primitives is provided.

The main reasons for the chosen architecture are:

 the ability to integrate the accelerator that will be built as part of D5.5

 the advantage to not be bound by the limitations posed by existing platforms, especially with
regards to available memory

 the analysis and testing possibilities for all details of the platform. This would allow for more
detailed lessons learnt and guidelines on the considerations for possible integrated HW-
based TPM implementations as will be generated during WP6.

4.2 FPGA Evaluation Platform

The ARM DesignStart Eval platform is used for the evaluation of the QR HW-TPM. It is optimized for
the DesignStart MPS2+ board and well-suited for rapid prototyping. The MPS2+ board is supplied
with fixed encrypted FPGA implementations of all the Cortex-M processors integrated into a
prototype System-on-Chip (SoC). In addition, DesignStarts includes the encrypted netlist of an ARM
Cortex-M3 processor with modifiable source code for a SoC with useful peripherals like PSRAM,
Ethernet, Audio, VGA, SPI and GPIO. A simplified block diagram of the system is provided in Figure
7. The Cortex-M3 is closely related to the ARM Secure Core (SC) SC300, which also implements
the ARMv7 instruction set and additional security functions. The SC300 is used in commercially
available security microcontrollers. Usage of the prototyping SoC thus allows deriving general
statements about the resource requirements of the TPM software and implementations of
cryptographic software (e.g. memory footprint, execution time, etc.) for SC300/Cortex-M3. Due to
the similarities between SC300 and Cortex-M3 and with the accessibility of the platform, without a
non-disclosure agreement (NDA), it is assessed as a suitable prototyping platform. When an
unmodified bitstream containing the prototype SoC with the ARM Cortex-M3 processor is loaded to
the FPGA together with program code (i.e., a hex file), it directly allows evaluation of the resource
requirements and performance of the software implementation. Moreover, it is possible to modify the
source code of the prototype SoC subsystem. This way coprocessor implementations can be
integrated into the SoC and then get loaded onto the FPGA. For this the Advanced High-performance
Bus (AHB) already contains a spare save that can be easily replaced by an accelerator (see Figure
4). Of course, a DesignStart environment cannot be shipped as a HW-based TPM solution due to
the cost of the FPGA and hardware requirements of the relatively powerful SoC. An actual QR HW-
TPM does most likely not require Ethernet, Audio, or VGA. Thus, DesignStart’s main purpose is to
provide an evaluation platform that is accessible and easy to program and use but that still allows to
derive information and data relevant for actual hardware implementations.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 19 of 48

Figure 7: Simplified system overview on the DesignStart SoC

4.3 Architecture of the HW-TPM Demonstrator

As already pointed out, an FPGA platform running a typical embedded Processor is used to build
the QR HW-TPM. To build its firmware, a fork of the IBM SW-TPM extended with QR algorithms (the
“QR SW-TPM”) is being used. Several adaptions were necessary to make this fork run in a bare
metal environment – we will point them out subsequently. A general overview on this is given in
Figure 8. As with the other QR TPM variants developed within FutureTPM, communication takes
place via TCP/IP. Thus, the IBM SW-TPM running on the FPGA development board has been
supplemented by a minimal operating system (OS) environment comprised of a TCP/IP stack and a
scheduler that switches between the TCP/IP stack and the QR SW-TPM, which is depicted in Figure
9. For evaluation purposes we make use of the Ethernet Stack as it is easier to integrate than SPI.
The Ethernet peripheral is part of the DesignStart FPGA design and low-level drivers are available.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 20 of 48

Figure 8: General overview of the QR HW-TPM and comparison to the IBM SW-
TPM

Figure 9: Block diagram of the QR HW-TPM demonstrator

To get this running, several adaptations were necessary:

- The IBM SW-TPM had to be ported to the FPGA platform. Most importantly, as the IBM SW-
TPM depends on the OpenSSL library for cryptographic operations and OpenSSL cannot be
built for the chosen FPGA platform, the OpenSSL library had to be replaced by the WolfCrypt4
open-source cryptographic library.

4 https://www.wolfssl.com/products/wolfcrypt-2/

https://www.wolfssl.com/products/wolfcrypt-2/

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 21 of 48

- As TCP/IP stack the so-called BSD-socket-based A Light-weight TCP/IP stack (lwIP)5 was
chosen. Again, this implementation had to be ported to the FPGA platform. Moreover, it was
necessary to adapt the IBM SW-TPM implementation to this TCP/IP stack and to intertwine
both through callbacks.

- Because the lwIP stack needs to execute housekeeping functionality regularly, a minimalistic
scheduler was implemented that allows for the IBM SW-TPM and the lwIP stack to run in
parallel as two threads.

- Moreover, Ethernet drivers were ported to the chosen FPGA platform and compilation errors
in the IBM SW-TPM implementation were corrected.

- A method to support non-volatile memory (NVM) emulation was implemented: As the used
FPGA board is not equipped with NVM, encapsulation keys have been defined statically
within the QR SW-TPM source code, which is sufficient for the purpose of demonstration.

Apart of these fundamental developments, the HW-TPM demonstrator has – similar to the other
FutureTPM TPM platforms – been extended with the QR algorithms NewHope and BLISS. Details
on that will be given subsequently.

4.4 Basic Operation of the QR HW-TPM Demonstrator

As already outlined, the communication with the QR HW TPM demonstrator is similar to the one
described in D5.1 for the SW-TPM. It requires the usage of sockets to establish a TCP/IP connection
between the QR SW-TPM running on the FPGA platform and a client. Through this connection, the
QR HW TPM mimics the physical TPM command transmission interface (TCTI) layer found in the
physical TPM.

After receiving data, the QR HW-TPM demonstrator executes the requested command by validating
the session, its internal state, the command code, and its key handles. Then, the remaining data is
forwarded to the Command Dispatcher where the unmarshalling functions are selected from the
decoded command code and its data is unmarshalled. Finally, the command is executed. If there is
any data to be returned to the client, the same procedure is applied in reverse order. The marshalling
functions are obtained from the command code; the data is marshalled and then sent back to the
client through the same TCP/IP connection.

4.5 New Endpoints

To support new QR algorithms, the following endpoints have been implemented in the QR HW-TPM
demonstrator.

 NewHope512-CCA:

◦ Key Generation: to generate a NewHope key one must use the standardized
TPM2_Create, TPM2_CreateLoaded and TPM2_CreatePrimary functions, already
provided by the TPM2 specification, with the TPM_ALG_NEWHOPE value and the
corresponding security mode k.

◦ TPM2_NEWHOPE_Enc encapsulates a shared secret, with the following parameters:

▪ Input: key_handle for a loaded key handle to a NewHope public key.

▪ Output: a shared secret and a ciphertext generated by the TPM.

5 https://savannah.nongnu.org/projects/lwip/

https://savannah.nongnu.org/projects/lwip/

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 22 of 48

◦ TPM2_NEWHOPE_Dec decapsulates a shared secret, with the following parameters:

▪ Input: key_handle must reference a private loaded NewHope key and a ciphertext
generated by TPM2_NEWHOPE_Enc.

▪ Output: the TPM will decapsulate the cipher object to obtain the shared_secret.

 BLISS-I6:

◦ Key Generation: to generate a BLISS key one must use the standardized TPM2_Create,
TPM2_CreateLoaded and TPM2_CreatePrimary functions, already provided by the
TPM2 specification, with the TPM_ALG_BLISS value and the corresponding security
mode mode.

◦ Signing: to sign a digest using the QR HW-TPM, the user must use the following
functions: TPM2_Sign and TPM2_Quote.

◦ Signature Verification: to verify a BLISS signature, the user must use the
TPM2_VerifySignature function.

4.6 How to add new algorithms

As the HW-TPM demonstrator is based on a fork of the IBM SW-TPM, the strategy discussed in
D5.1 for the addition of new algorithms applies here.

4.7 Using the HW-TPM demonstrator

The QR HW-TPM demonstrator FPGA board offers an RJ45 Ethernet interface. However, note that
its TCP/IP implementation does not support the network management protocol DHCP. Thus, its
address is fixed to 192.168.0.16.

6 The BLISS variant GALACTICS was used because of its improvements over the original BLISS paper in that sampling is
constant time, improving security. https://eprint.iacr.org/2019/511.pdf

https://eprint.iacr.org/2019/511.pdf

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 23 of 48

After connecting the FPGA board to the power supply, the board automatically boots the QR SW-
TPM and listens on the same TCP/IP ports as the IBM SW-TPM, that is, port 2321 for the command
server and port 2322 for the platform server. Like the IBM SW-TPM, it is addressable by the TSS
implementations. The basic structure is depicted in Figure 10.

4.8 Example

This subsection will give an example, where Alice (the QR HW-TPM) communicates with Bob (a
local QR SW-TPM) to transmit an encrypted and authenticated message using the QR HW-TPM
demonstrator. The idea behind this example is motived by the following: Unlike key agreements, that
are well-known from the world of classical cryptography (e.g. Diffie-Hellman key agreement [3]),
where both participating parties contribute to a same extent to the exchanged secret, KEMs like
NewHope are more like a one-way road. There, the sender fully determines the exchanged secret.
However, using several runs of an IND-CCA-secure KEM like NewHope, we can mimic an
authenticated (perfect-forward secret) key agreement:

First, Alice and Bob obtain long-term KEM keys and exchange their public keys. Second, Alice uses
NewHope to send a secret s1 to Bob using Bob’s long-term public key. Likewise, Bob sends a secret
s2 to Alice encrypted under her long-term public key. The third step ensures the connection enjoys
perfect forward secrecy. Alice generates a NewHope ephemeral key-pair and sends the resulting
public-key to Bob. Bob then sends another secret s3 to Alice using Alice’s ephemeral key. At the
end, Alice and Bob can create a session key by hashing the concatenation of s1, s2 and s3. Using
this session key, Alice encrypts a message, additionally signs it using her BLISS private key and
sends the ciphertext together with the signature to Bob. Bob checks the signature and on success
decrypts the ciphertext using the previously agreed session key.

Figure 11 depicts the communication diagram.

Figure 10: Architecture of IBM’s TPM2.0 SW implementation
 (from http://ibmswtpm.sourceforge.net/).

http://ibmswtpm.sourceforge.net/

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 24 of 48

Figure 11: Communication Diagram between Alice and Bob for setup and repeated
usage steps

The use-case is run using the TSS command line binaries, extended to support the PQ algorithms.

4.9 TSS Adaptations

As described above, the TSS is the piece of software on a client that will communicate with the TPM.
As such a modified TSS that supports NewHope and BLISS was needed for the QR HW-TPM
Demonstrator.

Similar to the approach chosen for the QR HW-TPM Demonstrator that is based on an open-source
implementation published by IBM, the TSS is split into a library part that handles communication,
and individual binaries that each implement calling of a single TPM command.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 25 of 48

Figure 12 TSS architecture / parts

The communication part of the TSS could remain the same it already implements the TPM command
transmission interface used by the QR HW-TPM Demonstrator.

The changes that were needed comprise mostly of support for the new algorithm IDs that are used
to select the NewHope or BLISS algorithm. In detail this means:

 The create (calling TPM2_Create), createprimary (TPM2_CreatePrimary) and loadexternal
(TPM2_CreateLoaded) executables needed to be extended by command line switches to
use the algorithm IDs for NewHope and BLISS, and accept the according response packets.
Data structures sent by the TPM are stored 1:1 in files for any output data.

 Similarly, sign (TPM2_Sign) and verify (TPM2_Verify) needed to be extended to allow usage
of the BLISS algorithm ID.

 The NewHope integration is built in two new commands, TPM2_NEWHOPE_Enc and
TPM2_NEWHOPE_Dec. For these two commands two new executables NewHope_Enc and
NewHope_Dec where added. Both commands take parameters in accordance with other
executables to write their output parameters to files or the standard output.

With these changes, all commands and command parameters that were added to the QR HW-TPM
demonstrator can be used. To do so one has to define the TPM_SERVER_NAME environment
variable to be set to the IP address of the demonstrator:

With this setting, any of the executables can be called to send the according command to the QR
HW-TPM demonstrator, as seen above in the description of the example use-case.

4.10 Hardware Acceleration of PQC

PQC routines can be accelerated in hardware with various degrees of flexibility. We classify
hardware-based PQC accelerators in the dimensions: coupling, algorithmic flexibility, and extent of
acceleration. In Figure 13 an abstract microcontroller architecture is provided. The CPU subsystem
comprises a registerfile and is connected to a high performance main bus. The main bus is used to
read and write the non-volatile memory (NVM) for code and permanently stored data and the SRAM
for temporary data. A peripheral bus connects peripherals with lower performance requirements, like

$ export TPM_SERVER_NAME="192.168.0.16"

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 26 of 48

a timer or Universal Asynchronous Receiver Transmitter (UART). The grey components describe
various possible options for the placement of hardware-based PQC accelerators. From the locality
depicted in Figure 8 the level of coupling an accelerator has to the main CPU can be derived.

 High coupling - Instruction Set Extension (ISE): With ISE new instructions are added to the
microarchitecture of the CPU that can be used to speedup certain operations of PQC
schemes. Usually, the added instructions are stateless to ease integration and have a low
overhead as a large part of the CPU subsystem is reused. However, when the CPU executes
the instructions from the ISE it cannot perform other tasks. Exemplarily, an ISE may comprise
of additional arithmetic instructions for the computation of the NTT butterfly or instructions
that facilitate Gaussian sampling.

 Medium coupling - Co-Pro: The CPU can be extended by tightly coupled cryptographic co-
processors (Co-Pro) that are optimized for PQC. Such co-processors typically have direct
access to the registerfile and may also contain an internal registerfile and state. This direct
access leads to decreased memory transfer times. They can thus operate on larger datasets
and may reuse hardware of the Core. A Co-Pro could for example implement a full NTT
accelerator or SHA-3 core.

 Loose-coupling - Accelerator on Bus: An accelerator for PQC may be added to the main bus
of the microcontroller or to a peripheral bus if data transfer time is of lower importance. Similar
to other peripherals the CPU transfers data from the registerfile/SRAM into the memory
address space of the peripheral, starts an operations and then periodically controls the
operation, feeds new data or just waits until the operation is finished. After an operation is
finished the CPU obtains the result and copies it into the registerfile/SRAM. A peripheral on
the system bus can usually execute complex operations independently of the CPU on internal
memory. This frees the CPU for other tasks, e.g., I/O and allows integration into a SoC
system with minimal dependencies on other subsystems. A loosely coupled accellerator may
implement a full NTT accelerator, a SHA-3 core, or even a monolithic implementation of a full
PQC scheme (e.g., NewHope).

Another dimension is the level of algorithmic flexibility the accelerator offers. A hardware-based
accelerator may support acceleration for

 a single parameter set of a particular scheme (e.g., NewHope-512),

 all parameter sets of a particular scheme (e.g., NewHope),

 several parameter sets of a particular class of schemes (e.g., a binomial sampler for
Kyber, NewHope, Saber),

 or may implement functions that can accelerate a wide variety of schemes efficiently.

Moreover, the extent of acceleration is an important additional dimension. An accelerator may

 implement a subfunction of a building block (e.g., a butterfly or a part of the SHA-2 round
function),

 one complete building block (e.g., the SHA-3, NTT, or binomial sampling) or multiple
building blocks, or

 a full scheme (e.g., NewHope).

With respect to related work, the highest performance is usually achieved by accelerators that are
loosely coupled, accelerate a single parameter set and implement a full scheme. In such cases the
accelerators can have their own high performance internal memory and are not constrained by the
data path of the CPU (e.g., a 32-bit memory bus).

For a QR HW TPM, the coupling of the accelerator is assessed to be of minor importance and
depends mostly on the required performance and achievable cost position. The most important
property is the flexibility to accelerate at least several parameter sets of a particular class of schemes
or wide variety of schemes. This is because of the uncertainties of the NIST competition and
additional need for TCG to approve algorithms.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 27 of 48

Figure 13 Option for hardware acceleration of PQC

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 28 of 48

 Conclusions and Next Steps

In this deliverable, we have discussed the concept of the Quantum-Resistant Virtual Trusted Platform
Module, which is now ready in a first version by M30. Moreover, we have given an update to the final
state of the Quantum-Resistant Software Trusted Platform Module and an overview of the
architecture of the final version of the Quantum-Resistant Hardware Trusted Platform Module
demonstrator.

The next steps will be to finalize the implementation of the QR Virtual TPM (Task 5.2) and further
optimization of L-DAA (Task 5.5). The TPM SW Stack (Task 5.4) is updated to support all PQC
algorithms implemented in the three QR TPM environments. In Task 5.5, the HW QR crypto-
coprocessor is implemented to accelerate the Ring-LWE schemes NewHope and BLISS in HW.
Finally, performance evaluations and testing are done.

Outlook to D5.5 Deliverables
The final deliverable document in M33 will provide a HW-TPM Coprocessor implementation, final
optimizations for the SW-TPM environment and last updates on vTPM integration and testing results.

SW-TPM

 Possibly Bug fixes and optimization (esp. L-DAA), after T5.4

vTPM

 Possibly late results on Sphinx+, Bike, Rainbow integration and testing, after T5.4

HW-Coprocessor Demonstrator

• Implementation of HW-Coprocessor demonstrator

• Evaluation of cryptographic coprocessor and crypto performance testing

In case of very late technical implementation results after M33, updates will be documented in the
final deliverable document of WP2 at M36.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 29 of 48

List of Abbreviations

Abbreviation Translation

AHB Advanced High Performance Bus

BIOS Basic Input Output System

DHCP Dynamic Host Configuration Protocol

DSS Digital Signature Scheme

FPGA Field Programmable Gate Array

HW Hardware

NDA Non-disclosure Agreement

KEM Key Encapsulation Mechanism

NVM Non-Volatile Memory

NVRAM Non-Volatile Random Access Memory

PCR Platform Configuration Registers

QEMU Quick EMUlator

QR Quantum Resistant

SC Secure Core

SH Shell

SoC System on Chip

SW Software

TCTI TPM command transmission interface

TIS TPM Interface Specification

TPM Trusted Platform Module

TSS TPM Software Stack

UC Use-case

VM Virtual Machine

VNC Virtual Network Computing

WP Work Package

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 30 of 48

Bibliography

[1] E. Alkim, L. Ducas, T. Poppelmann and P. Schwabe, “Post-quantum Key Exchange - A New
Hope,” in USENIX Security Symposium, Vancouver, Canada, 2016.

[2] L. Chen, N. E. Kassem, A. Lehmann and V. Lyubashevsky, “A Framework for Efficient
Lattice-Based DAA,” in 1st Workshop on Cyber-Security Arms Race (CYSARM’19), London,
United Kingdom, 2019.

[3] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on
Information Theory. 22 (6), p. 644–654, 1976.

[4] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler and D. Stehlé,
“Dilithium - Submission to the NIST post-quantum project,” 30 03 2019. [Online]. Available:
https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf

[5] Bindel, N., Akleylek, Alkim, E., Barreto, P., Buchmann, J., Eaton, E., . . . Zanon, G. (2019, 26
4). qTesla - Submission to the NIST post-quantum project. Retrieved from NIST:
https://qtesla.org/wp-content/uploads/2019/04/qTESLA_round2_04.26.2019.pdf

[6] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler
and D. Stehlé, “CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM,” in 2018
IEEE European Symposium on Security and Privacy, EuroS&P, London, UK, 2018.

[7] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler and D. Stehlé,
“Dilithium - Submission to the NIST post-quantum project,” 30 03 2019. [Online]. Available:
https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf.

[8] N. El Kassem, L. Chen, R. El Bansarkhani, A. El Kaafarani, J. Camenisch, P. Hough, P.
Martins and L. Sousa, “More efficient, provably-secure direct anonymous attestation from
lattices,” Future Generation Computer Systems, Volume 99, pp. 425-258, 2019

[9] TCG, “TCG Algorithm Registry,” 7 2 2018. [Online]. Available:
https://trustedcomputinggroup.org/wp-content/uploads/TCG-
_Algorithm_Registry_Rev_1.27_FinalPublication.pdf

[10] T.F. Consortium, “D2.2 – Second Report on New QR Cryptographic Primitives,” 2019

[11] T.F. Consortium, “D5.2 Second version of implementation”, Christian Hanser, 2019

[12] T.F. Consortium,“D6.3 Demonstrators Implementation Report – First Release”, Sotiris
Koussouris, 2018

[13] T.F. Consortium, “D5.1 First version of implementation”, Daniele Sgandurra, 2017

[14] NTTRU: “Truly Fast NTRU Using NTT”, Vadim Lyubashevsky and Gregor Seiler, Cryptology
ePrint Archive, Report 2019/040, 2019, https://eprint.iacr.org/2019/040

[15] NIST Round2 submission: CRYSTALS-KYBER, Peter Schwabe and Roberto Avanzi and
Joppe Bos and Leo Ducas and Eike Kiltz and Tancrede Lepoint and Vadim Lyubashevsky
and John M. Schanck and Gregor Seiler and Damien Stehle, 2019,
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-
2/submissions/CRYSTALS-Dilithium-Round2.zip ;

[16] NIST Round2 submission: CRYSTALS-DILITHIUM, Vadim Lyubashevsky and Leo Ducas
and Eike Kiltz and Tancrede Lepoint and Peter Schwabe and Gregor Seiler and Damien
Stehle, 2019, https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-2/submissions/CRYSTALS-Dilithium-Round2.zip

[17] T.F. Consortium, “D2.1 First Report on New QR Cryptographic Primitives”, Gagliatdoni, T.,
2018

[18] Cucurull, J and Guasch, S.: “Virtual TPM for a secure cloud: fallacy or reality?” Scytl Secure
Electronic Voting, 2014.

https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf
https://qtesla.org/wp-content/uploads/2019/04/qTESLA_round2_04.26.2019.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-_Algorithm_Registry_Rev_1.27_FinalPublication.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-_Algorithm_Registry_Rev_1.27_FinalPublication.pdf
https://eprint.iacr.org/2019/040
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/CRYSTALS-Dilithium-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/CRYSTALS-Dilithium-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/CRYSTALS-Dilithium-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/CRYSTALS-Dilithium-Round2.zip

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 31 of 48

[19] TCG, "Trusted Platform Module 2.0: A Brief Introduction", 2015 [Online]. Available at:
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-
Introduction.pdf

[20] Aragon, N., Barreto P. S. L. M., Bettaieb S., Bidoux L., Blazy, O., Deneuville J., Gaborit, P.,
Gueron, S., Güneysu, T., Melchor, C. A., Misoczki, R., Persichetti, E., Sendrier, N., Tillich. J.,
Vasseur, V. and Zémor, G., “BIKE: Bit Flipping Key Encapsulation”, Round 2 Submission
2019. [Online]. Available at: https://bikesuite.org/files/round2/spec/BIKE-Spec-
Round2.2019.03.30.pdf

[21] Aumasson J., Bernstein D. J., Dobraunig C., Eichlseder M., Fluhrer S., Gazdag S., Hülsing
A., Kampanakis P., Kölbl S., Lange T., Lauridsen M. M., Mendel F., Niederhagen R.,
Rechberger C., Rijneveld J. and Schwabe P., SPHINCS+ Submission to the NIST post-
quantum project, 2019

[22] Ding J., Chen M., Petzoldt A., Schmidt D. and Yang B. Y., “Rainbow”, The 2nd NIST
Standardization Conference for Post-Quantum Cryptosystems, 2019.

[23] Aragon, N., Barreto P. S. L. M., Bettaieb S., Bidoux L., Blazy, O., Deneuville J., Gaborit, P.,
Gueron, S., Güneysu, T., Melchor, C. A., Misoczki, R., “BIKE: Bit Flipping Key
Encapsulation”, Round 2 Submission.

[24] T.F. Consortium, “D5.3 Final version of implementation”, Michael Albrecht, 2020

https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://bikesuite.org/files/round2/spec/BIKE-Spec-Round2.2019.03.30.pdf
https://bikesuite.org/files/round2/spec/BIKE-Spec-Round2.2019.03.30.pdf

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 32 of 48

Appendices

Appendix A: SPHINCS+ Implementation

To implement SPHINCS+, the consortium has used the standard codebase from the SPHINCS+
site: https://sphincs.org/ The SPHINCS+ source files were then renamed with a prefix of
“sphincsplus” in order to make them identifiably belonging to SPHINCS+ when ported into QR-
Libtpms. The “#Include” statements within the source files were also appropriately renamed.

The sphincsplus-Makefile was modified (due to name changes) and executed. It produces an
executable, sphincsplus-PQCgenKAT_sign. Before integrating into QR-Libtpms, the SPHINCS+
code was unit tested by executing sphincsplus-PQCgenKAT_sign.

Figure 14: SPHINCS+ Compilation

Figure 15: SPHINCS+ Unit Test

The unit test produced a response file, sphincsplus-PQCsignKAT_64.rsp which contains 100 test
result records, each with a different message length. The following 2 figures show the SPHINCS+
unit test results for record 0 to 4 and for record 95 to 99.

https://sphincs.org/

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 33 of 48

Figure 16: SPHINCS+ Unit Test Results (Record 0 to 4)

Figure 17: SPHINCS+ Unit Test Results (Record 95 to 99)

The unit test results demonstrated that SPHINCS+ key generation, signature generation and
verification are working correctly which provided the assurance that the SPHINCS+ code is fit for
purpose.

Following the instructions given in the D5.1 [13] document on how to add new algorithms to TPM,
the consortium has made the relevant code changes to SW-TPM for the following: AlgorithmCap.c,
CryptUtil.c, Implementation.h, InternalRoutines.h, Makefile-common, Marshal.c, Marshal_fp.h,
TpmTypes.h, Unmarshal.c and Unmarshal_fp.h.

In addition, two new files were created: CryptSphincsPlus.c and CryptSphincsPlus_fp.h.

CryptSphincsPlus.c has three important functions:

1. Key Generation
2. Signature Generation

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 34 of 48

3. Verification of Signature

The code was taken from sphincsplus-sign.c. The interfaces were then modified to adhere to the
TPM specification:

Key Generation

CryptSphincsPlusGenerateKey(
// IN/OUT: The object structure in which the key is created.
OBJECT *sphincsplusKey,
// IN: if not NULL, the deterministic RNG state
RAND_STATE *rand
);

Signature Generation

CryptSphincsPlusSign(
TPMT_SIGNATURE *sigOut,
OBJECT *key, // IN: key to use
TPM2B_DIGEST *hIn // IN: the digest to sign
);

Verification of Signature

CryptSphincsPlusValidateSignature
TPMT_SIGNATURE *sig, // IN: signature
OBJECT *key, // IN: public modulus
TPM2B_DIGEST *digest // IN: The digest being validated
);

The consortium has made similar code changes to TSS. In the Utils folder: certify.c, create.c,
createloaded.c, createprimary.c, loadexternal.c, objecttemplates.c, quote.c, sign.c, tssmarshal.c,
tssprint.c, Unmarshal.c and verifysignature.c. In the Utils/ibmtss folder: Implementation.h,
TPM_Types.h, tssmarshal.h, tssprint.h and Unmarshal_fp.h.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 35 of 48

Appendix B: Rainbow Implementation

To implement Rainbow, the consortium has used the Rainbow codebase from the NIST site:
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions. The Rainbow
source files were then renamed with a prefix of “rainbow” in order to make them identifiably belonging
to Rainbow when ported into QR-Libtpms. The “#Include” statements within the source files were
also appropriately renamed.

The rainbow-Makefile was modified (due to name changes) and executed. It produced four
executables: rainbow-PQCgenKAT_sign, rainbow-genkey, rainbow-gensignature and rainbow-
verify. Before integrating into QR-Libtpms, the Rainbow code was unit tested by executing rainbow-
PQCgenKAT_sign. The test produced a response file, rainbow-PQCsignKAT_92960.rsp, which
contains 100 test result records, each with a different message length. The following two figures
show the Rainbow unit test results for record 0 to 3 and for record 96 to 99 respectively.

Figure 18: Rainbow Unit Test Results (Record 0 to 3)

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 36 of 48

Figure 19: Rainbow Unit Test Results (Record 96 to 99)

An additional test was done by performing the following steps:

1. Create a message file for signing.
2. Create a signature file.
3. Execute rainbow-genkey with parameters [pk_file_name] [sk_file_name].
4. Execute rainbow-gensignature with parameters [sk_file_name] [file_to_be_signed].
5. Copy the signature generated into the signature_file.
6. Execute rainbow-verify with parameters [pk-file-name] [signature_file_name]

[message_file_name].

See the below figure for steps 3, 4 and 6.

Figure 20: Rainbow Unit Test - Key Generation, Signature Generation and
Verification

The unit test results demonstrated that Rainbow key generation, signature generation and
verification are working correctly which provided the assurance that the Rainbow code is fit for
purpose.

Using the SW-TPM code that has been modified to include SPHINCS+, the consortium has made
further changes to include Rainbow: AlgorithmCap.c, CryptUtil.c, Implementation.h,
InternalRoutines.h, Makefile-common, Marshal.c, Marshal_fp.h, TpmTypes.h, Unmarshal.c and
Unmarshal_fp.h.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 37 of 48

In addition, two new files were created: CryptRainbow.c and CryptRainbow_fp.h.

CryptRainbow.c has three important functions:

 Key Generation

 Signature Generation

 Verification of Signature

The code was taken from rainbow-sign.c. The interfaces were then modified to adhere to the TPM
specification:

Key Generation

CryptRainbowGenerateKey(
// IN/OUT: The object structure in which the key is created.
OBJECT *rainbowKey,
// IN: if not NULL, the deterministic RNG state
RAND_STATE *rand
);

Signature Generation

CryptRainbowSign(
TPMT_SIGNATURE *sigOut,
OBJECT *key, // IN: key to use
TPM2B_DIGEST *hIn // IN: the digest to sign
);

Verification of Signature

CryptRainbowValidateSignature(
TPMT_SIGNATURE *sig, // IN: signature
OBJECT *key, // IN: public modulus
TPM2B_DIGEST *digest // IN: The digest being validated
);

Using the TSS code that has been modified to include SPHINCS+, the consortium has made further
changes to include Rainbow. In the Utils folder: certify.c, create.c, createloaded.c, createprimary.c,
loadexternal.c, objecttemplates.c, quote.c, sign.c, tssmarshal.c, tssprint.c, Unmarshal.c and
verifysignature.c. In the Utils/ibmtss folder: Implementation.h, TPM_Types.h, tssmarshal.h, tssprint.h
and Unmarshal_fp.h.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 38 of 48

Appendix C: BIKE Implementation

To implement BIKE, the consortium has used the standard codebase from the BIKE site:
https://bikesuite.org/. The BIKE source files were then renamed with a prefix of ‘BIKE-’ in order to
make them identifiably belonging to BIKE when ported into QR-Libtpms. The “#Include” statements
within the source files were also appropriately renamed.

The BIKE-Makefile was modified (due to name changes) and executed (see Figure 10). It produced
four executables: bike-nist-kat. Before integrating into QR-Libtpms, the BIKE code was unit tested
by executing bike-nist-kat.

Figure 21: BIKE Unit Test

The test produced a response file, PQCkemKAT_BIKE_8838.rsp, which contains 100 test result
records. The following two figures show the BIKE unit test results for record 0 to 4 and for record 96
to 99 respectively.

Figure 22: BIKE Unit Test Results (Record 0 to 4)

https://bikesuite.org/

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 39 of 48

Figure 23: BIKE Unit Test Results (Record 95 to 99)

The unit test results demonstrated that BIKE key generation, encapsulation and decapsulation are
working correctly which provided the assurance that the BIKE code is fit for purpose.

Using the SW-TPM code that has been modified to include SPHINCS+ and Rainbow, the consortium
has made further changes to include BIKE: AlgorithmCap.c, AsymmetricCommands.c,
CommandAttributeData.h, CommandDispatchData,h, Commands.h, CryptUtil.c, Implementation.h,
InternalRoutines.h, Makefile-common.txt, Marshal.c, Marshal_fp.h, Object.c, TpmTypes.h,
Unmarshal.c and Unmarshal_fp.h.

In addition, six new files were created: CryptBIKE.c, CryptBIKE_fp.h, BIKE_Dec_fp.h,
BIKE_Decrypt_fp.h, BIKE_Enc_fp.h and BIKE_Encrypt_fp.h

CryptBIKE.c has five important functions:

 Key Generation

 Encapsulation

 Decapsulation

 Encryption

 Decryption

The code was taken from BIKE-kem.c. The interfaces were then modified to adhere to the TPM
specification:

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 40 of 48

Key Generation

CryptBIKEGenerateKey(

// IN/OUT: The object structure in which the key is created.

OBJECT *BIKEKey,

// IN: if not NULL, the deterministic RNG state

RAND_STATE *rand

);

Encapsulation

CryptBIKEEncapsulate(

// IN: The object structure which contains the public key used in

// the encapsulation.

TPMT_PUBLIC *publicArea,

// OUT: the shared key

TPM2B_BIKE_SHARED_KEY *ss,

// OUT: the cipher text

 TPM2B_BIKE_CIPHER_TEXT *ct

);

Decapsulation

CryptBIKEDecapsulate(

// IN: The object structure which contains the secret key used in

// the decapsulation.

 TPMT_SENSITIVE *sensitive,

// IN: BIKE security mode

 TPMT_BIKE_SECURITY k,

// IN: the cipher text.

 TPM2B_BIKE_CIPHER_TEXT *ct,

// OUT: the shared key.

 TPM2B_BIKE_SHARED_KEY *ss
);

Encryption

CryptBIKEEncrypt(

// OUT: The encrypted data

 TPM2B_BIKE_ENCRYPT *cOut,

// IN: The object structure in which the key is created.

 OBJECT *BIKEKey,

// IN: the data to encrypt

 TPM2B *dIn
);

Decryption

CryptBIKEDecrypt(

// OUT: The decrypted data

 TPM2B *cOut,

// IN: The object structure in which the key is created.

 OBJECT *BIKEKey,

// IN: the data to decrypt

 TPM2B_BIKE_ENCRYPT *dIn
);

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 41 of 48

Using the TSS code that has been modified to include SPHINCS+ and Rainbow, the consortium has
made further changes to include BIKE. In the Utils folder: CommandAttributeData.c, Commands.c,
Commands_fp.h, create.c, createloaded.c, createprimary.c, loadexternal.c, objecttemplates.c,
objecttemplates.h, tssauth20.c, tssmarshal.c, and Unmarshal.c. In the Utils/ibmtss folder:
Implementation.h, Parameters.h, TPM_Types.h, tssmarshal.h and Unmarshal_fp.h.

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 42 of 48

Appendix D: SPHINCS+, Rainbow and BIKE Integration Into QR-Libtpms

1. The SPHINCS+, Rainbow and BIKE source files were copied to
./Docker_libtpmsQR/libtpms_inescID/src/tmp2/crypto/openssl folder:

Figure 24: SPHINCS Code Copied Into QR-Libtpms

Figure 25: Rainbow Code Copied Into QR-Libtpms

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 43 of 48

Figure 26: BIKE Code Copied Into QR-Libtpms

2. CryptSphincsPlus.c, CryptRainbow.c, CryptBIKE.c and CryptUtil.c were copied to

./Docker_libtpmsQR/libtpms_inescID/src/tmp2/crypto/openssl folder:

Figure 27: CryptSphincsPlus.c, CryptRainbow.c, CryptBIKE.c and CryptUtil.c
Copied Into QR-Libtpms

3. CryptSphincsPlus_fp.h, CryptRainbow_fp.h and CryptBIKE_fp.h were copied to

./Docker_libtpmsQR/libtpms_inescID/src/tmp2/crypto folder:

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 44 of 48

Figure 28: CryptSphincsPlus_fp.h, CryptRainbow_fp.h and CryptBIKE_fp.h Copied
Into QR-Libtpms

4. The following new BIKE files were copied to ./Docker_libtpmsQR/libtpms_inescID/src/tmp2

folder: BIKE_Dec_fp.h, BIKE_Decrypt_fp.h, BIKE_Enc_fp.h and BIKE_Encrypt_fp.h.

Figure 29: New BIKE files Copied Into QR-Libtpms

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 45 of 48

5. The SW-TPM code (modified to include SPHINCS+, Rainbow and BIKE) were copied to
./Docker_libtpmsQR/libtpms_inescID/src/tmp2 folder: AlgorithmCap.c,
AsymmetricCommands.c, CommandAttributeData.h, CommandDispatchData.h, Cryptutil.c
Implementation.h, InternalRoutines.h, Marshal.c, Marshal_fp.h, Object.c, TpmTypes.h,
Unmarshal.c and Unmarshal_fp.h.

6. The TSS code in the utils folder (modified to include SPHINCS+, Rainbow and BIKE) were copied
to ./Docker_libtpmsQR/tpm_sim/tss/utils folder: CommandAttributeData.c, Commands.c,
Commands_fp.h, certify.c, create.c, createloaded.c, createprimary.c, loadexternal.c,
objecttemplates.c, objecttemplates.h, quote.c, sign.c, tssauth20.c, tssmarshal.c, tssprint.c,
Unmarshal.c and verifysignature.c.

7. The TSS code in the utils/ibmtss folder (modified to include SPHINCS+, Rainbow and BIKE)

were copied to ./Docker_libtpmsQR/tpm_sim/tss/utils/ibmtss folder: Implementation.h,
Parameters.h, TPM_Types.h, tssmarshal.h, tssprint.h and Unmarshal_fp.h.

8. The following new BIKE files were copied to ./Docker_libtpmsQR/tpm_sim/tss/utils/ibmtss folder:

BIKE_Dec_fp.h, BIKE_Decrypt_fp.h, BIKE_Enc_fp.h and BIKE_Encrypt_fp.h.

9. Three Makefiles in the ./Docker_libtpmsQR/libtpms_inesID/src folder have been modified to
include SPHINCS+, Rainbow and BIKE. They are:

 Makefile

 Makefile.am

 Makefile.in

10. Build the docker file by running the command: sudo docker build . -t swtpm_qr -f ./Dockerfile

The following two figures show that SPHINCS+, Rainbow and BIKE were successfully compiled
into QR-Libtpms:

Figure 30: SPHINCS+, Rainbow and BIKE Compiled Into QR-Libtpms

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 46 of 48

Figure 31: SPHINCS+, Rainbow and BIKE Compiled Into QR-Libtpms

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 47 of 48

Appendix E: TSS2 Issues Found In V-TPM

We have found an issue with TSS2 in that sometimes it is not possible to send commands to the V-

TPM. In particular, some commands do work on the V-TPM as found, such as get_capability,

but anything which requires some key generation to be uses won't return anything. This issue might
happen when making TSS2 from source, and this is required for the QR algorithms to be
implemented. A ticket regarding the issue found has been raised GitHub repo of the project. With
the Docker/V-TPM integration, this is sometime problematic to use as V-TPM may crash during its
install and some network/transportation issues. Another example of this issue would be that
sometimes the V-TPM docker image won't verify the keys as the received length is drastically shorter
than the sent length.

When running tssverifysignature this issue was found, as shown in the following:

./verifysignature -hk 80000002 -dilithium -if enc.bin -is sig.bin -v

verifysignature: Hashing message file enc.bin with halg 000b

verifysignature: Copying hash

 verifysignature: hash length 32

 b4 23 58 e6 7a 84 95 10 9a 5a d4 e1 7e d0 c7 53

 51 9f 99 ee 3e 06 7e 88 21 fb 12 29 47 dd 60 a9

TSS_Command_PreProcessor: Input parameters

 keyHandle TPM_HANDLE 80000002

 digest length 32

 b4 23 58 e6 7a 84 95 10 9a 5a d4 e1 7e d0 c7 53

 51 9f 99 ee 3e 06 7e 88 21 fb 12 29 47 dd 60 a9

 signature

 sigAlg TPM_ALG_DILITHIUM

 TPMU_SIGNATURE selection 002d not implemented

TSS_Execute20: Command 00000177 marshal

TSS_Execute_valist: Step 1: initialization

TSS_Execute_valist: Step 5: command encrypt

TSS_Sessions_GetDecryptSession: Found 0 decrypt sessions at 0

TSS_Execute_valist: Step 6 calculate HMACs

TSS_Execute_valist: Step 7 set command authorizations

TSS_Execute_valist: Step 8: process the command

TSS_AuthExecute: Executing TPM2_VerifySignature

TSS_Socket_Open: Opening localhost:2321-raw

TSS_Socket_SendCommand: TPM2_VerifySignature

 TSS_Socket_SendCommand length 2792

 80 01 00 00 0a e8 00 00 01 77 80 00 00 02 00 00

D5.4 – Report on implementation

FutureTPM D5.4 Public Page 48 of 48

[...]

 5a d4 e1 7e d0 c7 53 51 9f 99 ee 3e 06 7e 88 21

 fb 12 29 47 dd 60 a9 03

 TSS_Socket_ReceiveCommand length 10

 80 01 00 00 00 0a 00 00 02 db

TSS_Socket_Close: Closing localhost-raw

verifysignature: failed, rc 000002db

As said before, this issue is of non-deterministic nature, so it affects the functionalities only during
some of the runs, while overall the V-TPM functionalities are fine. We hope the developers of TSS
will fix this issue soon.

	Executive Summary
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Scope and Purpose
	1.2 Relation to Other WPs and Deliverables
	1.3 Deliverable Structure

	Chapter 2 Update on the SW-TPM
	2.1 New Endpoints
	2.2 Miscellaneous SW-TPM Updates
	2.3 Resolved and Open Issues

	Chapter 3 Virtual TPM Overview
	3.1 QR Virtual-TPM Architecture
	3.1.1 Choice of QEMU
	3.1.2 Choice of QR-Libtpms
	3.1.3 Implementation of Virtual TPM
	3.1.4 Using SW-TPM within V-TPM
	3.1.5 QR V-TPM

	3.2 QR Cryptographic Algorithms in V-TPM
	3.2.1 SPHINCS+
	3.2.1.1 SPHINCS+ Chosen Parameter Set

	3.2.2 Rainbow
	3.2.2.1 Rainbow Chosen Parameter Set

	3.2.3 BIKE
	3.2.3.1 BIKE Chosen Parameter Set

	3.2.4 Integration of SPHINCS+, Rainbow and BIKE into QR-Libtpms
	3.2.5 Open Issues

	Chapter 4 HW-TPM Demonstrator Overview
	4.1 QR HW-TPM Demonstrator
	4.2 FPGA Evaluation Platform
	4.3 Architecture of the HW-TPM Demonstrator
	4.4 Basic Operation of the QR HW-TPM Demonstrator
	4.5 New Endpoints
	4.6 How to add new algorithms
	4.7 Using the HW-TPM demonstrator
	4.8 Example
	4.9 TSS Adaptations
	4.10 Hardware Acceleration of PQC

	Chapter 5 Conclusions and Next Steps
	List of Abbreviations
	Bibliography
	Appendices

