

D6.5

Final Demonstrators Implementation Report

Project number: 779391

Project acronym: FutureTPM

Project title:
Future Proofing the Connected World: A Quantum-Resistant

Trusted Platform Module

Start date of the project: 1st January, 2018

Duration: 36 months

Programme: H2020-DS-LEIT-2017

Deliverable type: Report

Deliverable reference number: DS-06-779391 / D6.3/ 1.0

Work package contributing to

the deliverable:
WP 6

Due date: October 2020 – M34

Actual submission date: February 3rd, 2021

Responsible organisation: S5

Editor: Sotiris Koussouris

Dissemination level: PU

Revision: 1.0

Abstract:

Deliverable D6.5 provides the final reporting on the second round

of experiments of the FutureTPM framework, in the context of the

three envisioned use cases. It summarizes the operation of the

core FutureTPM artefacts (QR algorithms implemented in the

HW-, SW, and VM-based TPM variants, Configuration Integrity

Verification, and Risk Assessment) in the demonstrators coupled

with a comprehensive analysis of the integration and evaluation of

the second release of the overall framework. This analysis is also

enriched with challenges that were taken into consideration when

migrating to such QR Root-of-Trusts. The latter also acts as a

preliminary documentation of the general adoption guidelines and

lessons learnt, throughout the project, which will be put forth in

Deliverable D6.6.

Keywords: Demonstrators, Implementation Report, Testing, Evaluation

The project FutureTPM has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 779391.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page I

Editor

Sotiris Koussouris (S5)

Thanassis Giannetsos (DTU)

Contributors (ordered according to beneficiary numbers)

Liqun Chen (SURREY)

Sofianna Menesidou, Dimitris Papamartzivanos (UBITECH)

Rogério Paludo, Luís Fiolhais, Leonel Sousa (INESC-ID)

Christine Wright (RHUL), Daniele Sgandurra (RHUL), Harry Lockyer (RHUL)

Roberto Sassu, Silviu Vlasceanu, Rahul Dulta (HWDU)

Fanis Sklinos, George Evangelogeorgos (INDEV)

George Bikas (S5)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author`s view – the
European Commission is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

D6.5 – Demonstrators Implementation Report – First Release

FutureTPM D6.5 Public Page II

Executive Summary

Deliverable D6.5 documents and wraps up the main activities of the evaluation, validation and
refinement phase related to setting up, executing and evaluating the three envisioned use cases
of the FutureTPM project, as identified in the previous WP6 deliverables and in the project’s DoA;
namely, Secure Mobile Wallet and Payment, Activity Tracking and Device Management. As the
goal of FutureTPM is to show-case the use of TPMs, as decentralized roots-of-trust, towards
providing enhanced security, privacy and trust while transitioning in the post-quantum era, the
core property of interest is the overhead added when executing the various QR cryptographic
primitives that have been analysed in the context of WP2; covering all of the needed security
functionalities ranging from digital signatures, and symmetric crypto to asymmetric crypto
algorithms, key management and the integration of advanced privacy-preserving L-DAA
mechanisms. Each one of these primitives is demonstrated in separate reference scenarios, in
order to avoid overlaps and to be able to progress with a more detailed evaluation and validation of
the TPM operations needed for achieving all of the defined requirements without, however,
affecting the applicability of this new generation of TPM chips (in continuation of the current TPM
2.0) in a variety of application domains with security and privacy considerations.

The deliverable is the second and final step, compiled by the consortium, towards testing the
assumptions of the project, and the feasibility, the applicability and the overall acceptance
of post-quantum TPMs in specific business cases, not only in terms of security, but also in
terms of performance, availability and of other business critical indicators.

In this context, the deliverable at hand provides a detailed documentation of the second-cycle
demonstrator results till M35 of the project (following the results extracted during the first cycle
that lasted till M24) and provides the findings in guidance with the processes and the indicators set
in the project’s evaluation plan (D6.1 “Technical Integration Points and Testing Plan”),

Building on top of the results and findings of the previous evaluation cycle, D6.5 provides a high-
level description of each reference scenario, evaluated in this second testing cycle, accompanied
by the different user stories of interest, the configuration parameters and the implementation,
integration status of each demonstrator and of course provides a detailed analysis of the
extracted results. The latter are, in many cases (depending on the use case, the scenario and the
metric examined), linked to the results of the first evaluation cycle, as the approach chosen by the
demonstrators’ work package was not to simply test the FutureTPM framework, but to also provide
continuous feedback. This has been achieved by setting up the demonstrators testbeds in such a
way so that the different algorithms employed in FutureTPM, as well as the technical backbone of
the envisioned FutureTPM platform, could be evaluated and improved in iterative rounds.

In the latter chapters of the deliverable, we also provide an in-depth analysis of the underpinnings
of the performed experiments with the extracted results and describe all issues that need to be
solved for further improving the performance of the overall FutureTPM framework. This summary
of all key performance indicators from the QR algorithms developed and tested, as well as the new
remote attestation enablers, will set the scene for the critical appraisal of all the project’s artefacts
towards securing both extremes of a network, namely the edge and the cloud.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page III

Contents

Chapter 1 Introduction .. 1

1.1 Evaluation, Testing and Validation Methodology ... 2

1.2 Harmonized Test Guidelines ... 3

1.3 Document Structure .. 4

Chapter 2 Demonstrator #1 – Secure Mobile Wallet and Payment ... 5

2.1 Demonstrator Overview and Final Architecture .. 5

2.1.1 Overview of the FIDO U2F Registration and Authentication Phases 7

2.1.2 Overview of Remote Attestation Schemes: Attestation by-proof and Attestation-by-
Quote 9

2.1.3 Strong Authentication by integrating the use of TPMs and DAA in the FIDO U2F
Protocol 10

2.1.4 Demonstrator Needs and Challenges .. 19

2.2 Implementation Path Report for the 2nd Experimentation Period 20

2.2.1 User Stories Realisation .. 20

2.2.2 Unit Test Results ... 25

2.2.3 KPIs Measured .. 27

Chapter 3 Demonstrator #2 – Activity Tracking .. 34

3.1 Demonstrator Overview and Final Architecture .. 34

3.1.1 Demonstrator Needs and Challenges .. 38

3.2 Implementation Path Report for the 2nd Experimentation Period 38

3.2.1 Activity Tracker Demonstrator – Experimentation with LDAA-v1 and LDAA-v2 39

3.2.2 LDAA-v2 Experimentation as a Standalone Application ... 52

3.3 Use Case Evaluation ... 54

Chapter 4 Demonstrator #3 – Device Management .. 55

4.1 Demonstrator Overview ... 55

4.1.1 Demonstrator Needs and Challenges .. 55

4.1.2 Demonstrator Architecture ... 55

4.2 Emulated System Description .. 57

4.3 Implementation Path Report for the 2nd Experimentation Period 58

4.3.1 User Stories Realisation .. 59

4.3.2 QR Virtual Trusted Platform Module Experimentation .. 75

4.4 Use Case Evaluation ... 78

Chapter 5 Conclusions ... 79

Chapter 6 List of Abbreviations .. 80

Chapter 7 Bibliography ... 82

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page IV

List of Figures

Figure 1: Secure Mobile Wallet and Payment High Level Approach .. 5

Figure 2: Mobile App environment. (a) User login, (b) FIDO Registration/Authentication and
execute financial transaction functionalities, (c) Interaction with YubiKey, (d) Successful
Configuration Integrity verification for transaction execution, (e) Failed Configuration Integrity
verification for transaction execution. .. 6

Figure 3: U2F Registration .. 8

Figure 4: Mo: U2F Authentication .. 8

Figure 5: Workflow of system Configuration Integrity Verification: Attestation by Proof (Left) and
Attestation by Quote (Right) .. 10

Figure 6: System Model .. 12

Figure 7: State diagram showing the states for generating a Service Attestation key. Blue takes
place on the host and green in the TPM .. 13

Figure 8: Diagram showing the states for generating an authentication key. Blue is provided by the
host, green is states with relation to the authentication key and red is in regards to the service
attestation (parent) key ... 13

Figure 9: State diagram showing the states for generating an ECC Key for Direct Anonymous
Attestation. Blue actions occur on the host, and orange in the TPM. ... 14

Figure 10: State diagram showing the states necessary for signing an Authentication Key for
Registration with a Relying Party. ... 15

Figure 11: State diagram showing the necessary states for signing a host-provided dataset for
authentication to a Relying party. .. 15

Figure 12: The adapted registration protocol. New items are highlighted in yellow, line-through
items have been removed. .. 17

Figure 13: The adapted authentication protocol. New items are highlighted in yellow, line-through
items have been removed ... 19

Figure 14: INDEV.AU.3 workflow. Attestation by Quote for the integrity verification of transactions
DB .. 22

Figure 15: INDEV.AU.4 workflow. Attestation by Proof for the verification of the operational
correctness of the mobile application .. 24

Figure 16: Boxplot of CC_Create of BLISS key pair .. 28

Figure 17: Demonstrator #2 – Main Actors and Entities .. 35

Figure 18: Demonstrator #2 – Revised Architecture showing entities concerned in the demonstrator
for the use cases till M36 .. 36

Figure 19: Demonstrator #2 – Screenshot of the S5Personal Tracker Interface 37

Figure 20: Demonstrator #2 – Screenshot of Sharing Selection and Execution at the S5Peronal
Tracker Side ... 37

Figure 21: S5.IU.1 sequence diagram ... 40

Figure 22: Comparison Graphs for different timings at application level .. 43

Figure 23: Comparison Graphs for different timings for 5kB and 25MB files.................................. 45

Figure 24: Comparison Graph 2 for different timings for 5kb and 25Mb files 45

Figure 25: Comparison Graphs for different timings for 5kB and 25MB files.................................. 46

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page V

Figure 26: Comparison Graph for different timings for 5kb LDAA-v1 vs LDAA-v2 48

Figure 27: Comparison Graphs for different timings for 5kb and 25kb files for the Initialise and Join
phase .. 49

Figure 28: Total Execution Time for the Join and Sign phase at the TSS level 50

Figure 29: Demonstrator #3 – overall architecture and main entities ... 56

Figure 30: Demonstrator #3 – Software stack diagram ... 58

Figure 31: Router runtime verification ... 61

Figure 32: Router AK certificate generation... 63

Figure 33: Router TLS cert generation .. 65

Figure 34: Network graph with all routers healthy.. 70

Figure 35: traceroute output with all routers healthy .. 70

Figure 36: Network graph with one router compromised ... 71

Figure 37: Network capture from the time the NMS detected the attack on Router 2 71

Figure 38: Network capture from the time packets are diverted to Router 3 72

Figure 39: Wireshark statistics .. 72

Figure 40: ping output from the client .. 72

Figure 41: traceroute output after the attack is detected on Router 2 .. 73

Figure 42: Virtual Machine Manager output before and after the attack .. 73

Figure 43: V-TPM Architecture .. 76

Figure 44: Timing Comparison of SW-TPM and V-TPM for Dilithium and Kyber 77

Figure 45: Timing Comparison of all V-TPM Commands for Rainbow, SPHINCS+ and Dilithium .. 77

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page VI

List of Tables

Table 1: Reference Scenarios Overview during Second Experimentation Cycle 1

Table 2: CC_Create command statistics over 100 experimental results for the BLISS key creation
 ... 29

Table 3: Demonstrator #1 – Comparison of Timings among the App, TSS and the Network
perspectives using HW QR-TPM (on FPGA board) for the realisation of user story INDEV.AU.3. . 29

Table 4: Demonstrator #1 – Comparison of Timings among the App, TSS and the Network
perspectives using HW QR-TPM (on FPGA board) for the realisation of user story INDEV.AU.4.
with successful signature verification. ... 30

Table 5: Demonstrator #1 – Comparison of Timings among the App, TSS and the Network
perspectives using HW QR-TPM (on FPGA board) for the realisation of user story INDEV.AU.4.
with failed signature verification. ... 31

Table 6: Demonstrator #1 – Quantitative Metrics by M24 and M35 ... 31

Table 7: Demonstrator #1 – Qualitative Metrics by M24 and M35 ... 33

Table 8: Comparison of DAA/LDAA Timings at Application level ... 42

Table 9: Demonstrator #2 –Timings at TSS Level using the FutureTPM QR Implementation (SW)
of LDAA-v1 ... 44

Table 10: Demonstrator #2 – Timings at TSS Level using the FutureTPM QR Implementation (SW)
of LDAA-v2 ... 46

Table 11: Demonstrator #2 – Timings at TSS Level using the FutureTPM QR Implementation (SW)
of LDAA-v1 versus LDAA-v2 ... 47

Table 12: Demonstrator #2 – Quantitative Metrics by M36 .. 50

Table 13: Demonstrator #2 – Qualitative Metrics by M36 .. 51

Table 14: Execution timings for LDAA-v2 in comparison with comparison with LDAA-v1. 52

Table 15: Public Key, Private Key and Sigature Sizes for LDAA-v2 in comparison with comparison
with LDAA-v1 .. 53

Table 16: Maximum memory requirements for LDAA-v2 in comparison with comparison with LDAA-
v1 .. 53

Table 17: Demonstrator #3 – Comparison of Timings between TPM2.0 (SW) and FutureTPM (SW)
 ... 68

Table 18: Demonstrator #3 – Quantitative Metrics by M36 .. 74

Table 19: Demonstrator #3 – Qualitative Metrics by M36 .. 75

Table 20: Results of V-TPM Tests for Dilithium and Kyber .. 76

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 1 of 82

Chapter 1 Introduction

Deliverable D6.5 comes as the final deliverable, of the implementation and evaluation work-
package, covering the demonstrators’ experimentation lifespan and documents the main activities
conducted towards the evaluation, validation and refinement phase related to setting up,
executing and testing the three envisioned use cases of the FutureTPM project.

As the goal of FutureTPM is to enhance security at all levels of future systems, embedding trust at
both extremes of a network, namely and the edge and the cloud is crucial. Indeed, in the era when
“service is everything and everything is a service”, there is an emerging trend for intelligent edge
computing – comprising of heterogeneous devices with various security and privacy concerns – to
work in tandem so as to provide flexible design choice that best meet business and operational
goals. However, this evolution brings a number of new challenges with security, resilience, trust
and operational assurance, in the ecosystem of quantum computing, being some of the major
concerns that FutureTPM tries to resolve.

Compounding this issue, the approach followed when defining the experimentation scenarios
aimed at demonstrating each one of these properties in separate reference cases, which also
allowed the consortium to progress with a more detailed evaluation and validation of the different
TPM operations needed for achieving a subset of these requirements; always within the business
context provided by each demonstrator. As such, the purpose and results of this deliverable do not
cover an exhaustive set of all available TPM operations, but demonstrate the core ones needed for
achieving the main vision of FutureTPM towards enhanced operational assurance of “Systems-of-
Systems”, linking them to real business world needs and evaluating their usability, feasibility and
end-user acceptance.

These use cases, as described in deliverable D6.1 of the project are the following:

 “Secure Mobile Wallet and Payments” with core properties of interest being on
confidentiality and integrity of financial transactions, user authentication and secure
key management;

 “Personal Activity and Health Kit Data Tracking” where the primary interest is on ensuring
the privacy of the participating users by enabling them to control the level of anonymity
when sharing their data;

 “Device Management” focusing on services embedded in all of today’s business
ecosystems, towards the establishment of trust between network devices, including secure
device identification, software integrity and zero-touch configuration integrity
verification.

Table 1: Reference Scenarios Overview during Second Experimentation Cycle

Reference Scenario TPM Type
Security
Property

Functionalities

Secure Mobile Wallet and
Payments

Hardware TPM Security
Sealing, Unsealing, Key Generation,

Attestation by Quote, Attestation by Proof

Personal Activity and Health
Kit Data Tracking

Software TPM Privacy
DAA Join, DAA Sign, DAA Verify, DAA

Attestation

Device Management
Software TPM in

Virtualized
Environments

Trust
Remote Attestation, Device Management

with Secure Key Identifiers

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 2 of 82

As the FutureTPM project adopts a two-cycle development, integration, demonstration and
evaluation approach, D6.5 provides a detailed documentation of the second-cycle demonstrator
results till M35. Building on top of the results and the evaluation of the first-cycle which finished in
M24 of the project (see deliverable D6.3 [22]), this final implementation report focus on the
performance evaluation of the SW-based QR-TPM and the implemented Trusted Software
Stack (TSS) with timings of the sequences of TPM commands, for achieving the security,
privacy, and trust properties of interest per reference scenario.

We have to highlight that in some demonstrators, these timings concern new user stories which
were realised, according to the consortium’s evaluation plan, in the second evaluation cycle
towards completing the overall demonstrator scenario, while in others these timings are measured
compared to timings acquired during the first cycle aiming to substantiate the performance gains
and improvements that have been implemented following the suggestions springing out of the
evaluation results as presented in D6.3.

In this context, an updated description per demonstrator is provided, and reference to the executed
scenarios and user stories is done in each demonstrator, identifying also their requirements, as
well as the conditions and the implementation and integration status, followed by the analysis of
the extracted results.

Furthermore, an additional interesting direction is being put forth based on the comments received
by the project’s Advisory Board: to investigate the integration of standardized user authentication
schemes, as have been proposed by the FIDO Alliance, in the context of the e-Payment use case
for better protecting the security and privacy of all involved stakeholders and especially the user
conducting their financial transactions. In this context, the consortium leveraged the FIDO
Universal Two Factor (U2F) that is based on the use of multiple factors for authenticating user
based on “proof-of-ownership” of some secret. It extended this U2F protocol by designing new
models based on the integration of Direct Anonymous Attestation (DAA) so as to be able to
provide enhanced user privacy, operational assurance and functional safety; properties that
were not achieved by the existing protocol since, for instance, the focus is not on user privacy and
the vendor is left with the responsibility to provide anonymous attestation.

1.1 Evaluation, Testing and Validation Methodology

The evaluation approach has been specified in D6.1 [1] and consists of user stories and unit tests,
concluding with specific quantitative and qualitative KPIs for measuring the impact of the
FutureTPM framework in the business context of each demonstrator. As such, the evaluation is
not only concerned about the timings of the KPIs but is more concerned to evaluate the
application of the FutureTPM framework on the existing demonstrators and to measure the
rationale and the business value of introducing QR-TPM methods to those.

It is worth mentioning that the consortium decided to adjust the evaluation plan that had been put
forth in D6.1 [1] by prompting to focus (in the first cycle of experimentation) on the evaluation of the
QR SW-based TPM environment that has been integrated in all demonstrators. Within this
deliverable, the demonstrators worked with the envisioned release of the QR-TPM modules, (HW
or SW – see Table 1) alongside the other core FutureTPM framework components (providing the
Risk Assessment, Security Policy Enforcement and Configuration Integrity Verification
mechanisms), which allowed to test and evaluate both the FutureTPM platform as a whole but also
the different algorithms in the context of each use case.

Therefore, the HW-based QR TPM was integrated in the “Secure Mobile Wallet and Payments”
scenario while the other two use cases leveraged the SW-based QR TPM. In the context of the
“Device Management” application domain, the consortium also tested this software-based TPM
variant in virtualized environments to better emulate the use of a VM-based TPM. This action was
based on the initial set of results acquired in the first evaluation cycle, which have been used as a
reference point for the upcoming experiments. It is reminded that during that phase, all
demonstrators initially worked to integrate the TPM2.0 characteristics to their existing

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 3 of 82

infrastructures, followed by the conduction of QR-TPM experiments, delivering the first evaluation
report in the context D6.3.

In the following chapters, we provide an in-depth analysis of the underpinnings of the performed
experiments with the extracted results and describe all issues that were encountered and dealt
with which allowed the consortium to improve the performance of the overall framework. For the
sake of completeness, we provide in the following lines of this sub-section some information about
the testing and the different layers of testing, which have been part also of deliverable D6.3

When it comes to testing, the focus was on examining that the QR-TPM modules work in
accordance with their specifications [13] and have no undesirable effects when employed in ways
outside of their design parameters. Since each demonstrator was executed in different hosts with
various configurations, in what follows we attempt to shed some light on the harmonization process
used to assure comparable results between each demonstrator instance.

1.2 Harmonized Test Guidelines

Modern processors found in commodity systems employ a plethora of techniques to improve the
performance of all applications types. The TPM, on the other hand, does not offer such
performance optimizations through its Trusted Software Stack (TSS). As such, before describing
the testing methodology, we need to understand what differentiates the TPM architecture from
other commodity controller. Commodity processors rely on two major techniques to boost
performance: out-of-order execution and caching. Out-of-order execution is used to exploit
parallelism at the instruction level. Caching. On the other hand, is achieved by applying multiple
levels of small but fast (-mirrored) memories between the slow external memory and the processor,
hiding the large latency of the external memory. Since the HW-based QR TPM is implemented in
an ASIC [23]. with tightly integrated domain specific accelerators (DSA) for most cryptographic
operations, the usage of out-of-order execution in a testing platform can be safely ignored.
However, caching cannot be so easily dismissed.

In such processors, the OS uses time-slicing to share a single processor core between several
processes. Therefore, it is possible that a process, other than the one we are measuring, evicts our
process cached lines from the cache. As such, collecting measurements, at different time
instances, results in completely different performance timings between the same applications. To
diminish the effects of conflict-based evictions from the cache hierarchy, we must execute our
measurements hundreds of times in a row. In doing so, we are avoiding cold accesses to the
caches and possible spurious evictions. Further, this method closely resembles a TPM accessing
its scratchpad memory. To offset the results from spurious evictions and cold accesses, we shall
use the linearly weighted moving average (LWMA) in order to bias the most recent results from
the oldest, i.e., the measurements obtained using the warmed-up caches are preferred.

Measurements are performed differently depending on the infrastructure used. When measuring
application timings, using the FutureTPM stack, performance values are measured using bash’s
time command. While the TPM component is running and started up---using the startup command-
--, each command is measured with the TPM always been in the same state to make sure that no
overhead is measured from internal TPM operations, like platform configuration register reset, that
may take place after rebooting the TPM. The aforementioned procedure measures command
creation, communication, destruction, and the TPM’s processing. The TPM processing can be
generally thought of a five-stage operation: TCP reception, command validation and
deserialization, command execution, response creation and serialization with results, and
response dispatch. Note that when using authenticated sessions, the command validation
operation is more involved and may require more time.

Given that demonstrators use the underlying TSS in a different way, we found two alternative
levels of the software stack, common to all demonstrators, from where performance measurements
can be taken. The first alternative level is the TSS library, which has been patched to measure the
time elapsed between the beginning of TSS_Execute() and the end of the same function.
Measurements from the TSS library take into consideration the time necessary to execute a

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 4 of 82

command, the marshalling and unmarshalling of the buffers, and the time necessary to transmit the
data between the TSS and libtpms. The second alternative level from where performance
measurements can be taken is libtpms. Doing performance measurements at this level is
particularly interesting to compare the performance of non-QR algorithms versus QR algorithms.

Overall, within FutureTPM, we have prompted in identifying a robust testing methodology to be
followed by all reference use cases. As will be depicted in the following chapters, for each
demonstrator a detailed set of test cases were compiled (i.e., unit testing, integration testing and
system testing) in order to measure the behaviour of the QR SW-based TPM in different conditions
and scenarios, thus, evaluating whether the system can operate at the required response times for
supporting the required security, privacy and trust properties.

1.3 Document Structure

The structure of this document is formed in such a way so that each demonstrator is described in a
holistic manner under a dedicated section.

As such, the document starts with the first introductory section (Chapter 1) where the evaluation
and the testing methodology are highlighted as a reminder to the reader of how these have been
used during the duration of the demonstrators.

The second section (Chapter 2) is dedicated to the experimentation of the “Secure Mobile Wallet
and Payments” scenario that focuses on the Security and Integrity Verification aspects that TPMs
can offer, dealing with the application of FutureTPM on a business case in the financial services
market and business ecosystems.

The third section (Chapter 3) deals with the “Activity Tracking” Demonstrator, which focuses on
how User Privacy and Data Anonymization can be achieved in the domain of healthcare and
personal activity data management with the introduction of direct anonymous attestation methods
that are part of the FutureTPM framework

Chapter 4, is dedicated to the “Device Management” demonstrator, showcasing how FutureTPM
can be used to increase Trust between devices and systems focusing on a scenario with a
centrally managed distributed telecommunications infrastructure composed of various devices.

Finally, Chapter 5 of the document at hand concludes the deliverable.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 5 of 82

Chapter 2 Demonstrator #1 – Secure Mobile Wallet
and Payment

2.1 Demonstrator Overview and Final Architecture

This demonstrator focuses on a wide range of technological features that foster innovation in the
financial landscape. More specifically, the e-payment use case demonstrates how the sensitive
tokens are handled by both the mobile payment app and the corresponding backend server. The
token correctness is fundamental to the overall security of the mobile payment transaction itself,
making a quantum resistant TPM necessary to ensure the integrity of mission critical data. In
addition, as aforementioned, through the realisation of the user stories, the e-payment scenario
integrates the competitive characteristics of the FIDO U2F Protocol for user Registration and
Authentication, while it incorporates the developments of the project regarding the runtime tracing
techniques and the designed remote attestation schemes, namely Attestation-by-Proof and
Attestation-by-Quote. The aforementioned functionalities work in tandem with the QR-TPM for
future proofing the mobile e-payment application to resist quantum attacks.

In D6.3, we provided the demonstration of: a) the sealing functionality for the Bearer and Financial
Tokens, and b) the unsealing functionality for the tokens. The focal point of this deliverable is the
demonstration of: c) the key generation for encrypting financial transaction history logs and
attesting the integrity of the
database (INDEV.AU.3), d)
the verification of the
operational correctness of
the mobile device using the
attestation-by-proof schema
(INDEV.AU.4) and finally, e) a
thorough analysis on how a
TPM can be used in synergy
with FIDO U2F Protocol
(INDEV.AU.5).

At the same time, all these
functionalities – aiming at
enhanced operational
correctness and functional
safety - are supported by the
multi-level detailed tracing
techniques developed in the
context of the risk assessment
framework for the efficient
monitoring of the configuration
and execution behavioural
properties to be attested [24].
Note that in the previous
experimental phase, such
tracing techniques were
deployed at the kernel level
(kernel interceptor) in order to
produce the evidence for the

risk quantification. Due to
implementation limitations in
the HW QR-TPM, which is
based on the ASIC FPGA board, we proceeded to the reengineering of the FutureTPM eBPF

Figure 1: Secure Mobile Wallet and Payment High Level Approach

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 6 of 82

tracer [3, 24] in order to be able to intercept the TPM commands execution over the network.
Figure 1 above presents the high-level approach of this reference scenario introduced in D6.1.

(a)

(b)

(c)

(d)

(e)

Figure 2: Mobile App environment. (a) User login, (b) FIDO Registration/Authentication and execute financial transaction
functionalities, (c) Interaction with YubiKey, (d) Successful Configuration Integrity verification for transaction execution,

(e) Failed Configuration Integrity verification for transaction execution.

The demonstrator which has been designed and developed during the FutureTPM project is based
on a refactored mobile application of the current INDEV application, bringing into the picture TPM
methods to secure sensitive tokens and facilitate the remote attestation functionalities. This
approach brings the ability to further extend our solution and apply prominent authentication
mechanisms, such as FIDO Universal 2nd Factor (U2F), and attest the operational state of the

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 7 of 82

mobile device, by establishing a communication channel between the Android application and the
dedicated TPM server. Figure 2 illustrates the mobile application environment used to facilitating
the necessary functionalities for the realisation of the user stories.

In the majority of the current Android devices, there is no TPM module attached, no recognized
API definition available for Android TSS and most of the Java-based implementations, such as
jTSS are complex and error prone. That is, this reference scenario is demonstrated based on the
use of the hardware TPM, which is released on an FPGA-based board exposed by TCP/IP. For
that reason, we decided to adapt the architecture and host the hardware TPM in a dedicated cloud
server. The assumptions made in order to demonstrate this reference scenario are:

 The FPGA-based Hardware QR-TPM is connected to a dedicated TPM server but acts as
an integral component of the mobile device;

 An authenticated channel is established between the Android mobile app and the TPM
server based on FIDO U2F signalling;

 User register to the dedicated TPM Server (FIDO U2F Registration Phase);

 User authenticates to the TPM Server with FIDO webAuthN every time that needs to per-
form a TPM functionality (FIDO U2F Authentication Phase);

 The tokens are sealed based on the handle h created during the FIDO U2F Authentication
Phase;

 The developed eBPF-based tracer has been refactored for TPM command interception on
the network level (instead of the Kernel level) due to the FPGA-based implementation of
the HW QR-TPM.

Even if the aforementioned assumptions have been made to facilitate the integration of the QR
trusted component to the mobile device, it has to be stated that -in parallel- these assumptions
highlight the need to foster the research and standardization actions for creating trust enablers for
mobile environments. The design and adoption of such trust anchors for mobile devices will
enable the provision of secure and trusted functions, which can enhance the security
posture of security-sensitive business domains, such as the financial technologies. Thus,
apart from the benefits of ensuring trust by integrating a QR-TPM in the Secure Mobile Wallet and
Payments use case, FutureTPM project highlights the need for the community to investigate for
viable solutions and proceed to standardisation actions based on Trusted Computing architectures.

2.1.1 Overview of the FIDO U2F Registration and Authentication Phases

FIDO (Fast ID Online) is a set of technology-agnostic security specifications for strong
authentication. FIDO specifications support multifactor authentication (MFA) and public key
cryptography. FIDO U2F protocol is the state-of-the-art in the domain of authentication. U2F is an
open authentication standard that enables internet users to securely access any number of online
services with one single security key instantly and with no drivers or client software needed. U2F
authentication requires a strong second factor such as a Near Field Communication (NFC) tap or
USB security token. The user is prompted to insert and touch their personal U2F device during
login (proof of presence). The user's FIDO-enabled device creates a new key pair, and the public
key is shared with the online service and associated with the user's account. The service can then
authenticate the user by requesting that the registered device signs a challenge with the private
key. With this approach, no secrets are shared between service providers, and an affordable U2F
Security Key can support any number of services. Both U2F Registration and Authentication
Phases will be used with NFC-based Yubico HSM device. Figure 2 and Figure 3 present the
aforementioned challenge-response flows for the Registration and Authentication phases
respectively.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 8 of 82

Figure 3: U2F Registration

Note that, U2F authentication is an extra layer of security introduced in D6.1 and it was outside
the scope of this demonstrator at first place. However, based on the comments received from the
project’s Advisory Board, we will use it explicitly in this reference scenario as extra security
guarantees between the mobile and the dedicated TPM server. This extra layer does not change
the nature of the application since it will not be necessary when the Android device contains an
attached TPM. Our approach, using this extra layer, is more generic and covers also the
Android devices without the support of the TPM, by providing the ability to connect and use a
dedicated TPM server.

Figure 4: Mo: U2F Authentication

The implementation of the Android application needs to secure two discrete types of tokens. These
two types of tokens are the Bearer Token and the Financial Token.

 Bearer Token: A security token with the property that any party in possession of this token
(a "bearer") can use it in any way that any other party in possession of it can. When a user

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 9 of 82

authenticates, the authentication server then generates the Bearer Token which is neces-
sary to get an Access Token. This token is an OAuth token that is used for authentication
between the client and the business logic.

 Financial Token: This token is created by a 3d party service, used to finalize a financial
transaction and represents a user’s credit card in a time frame.

To sum up, in this reference scenario the a) sealing functionality for the Bearer and Financial
Tokens, and b) the unsealing functionality for the Bearer Token, have been demonstrated in D6.3.
However, in order to realise the rest of the user stories in the 2nd experimental phase, a user needs
to be registered and authenticated to the service in order to interact with the e-payment service. In
addition, the registration and authentication process, described above, will be used as the basis for
the analysis conducted for INDEV.AU.5 and how a TPM can be used in synergy with FIDO U2F
Protocol in Section 2.1.3.

In addition, in the context of this use case, we do not solely focus on meeting the trust and
operational assurance requirements of the field by using the QR trust enablers, but we also
contribute to the privacy preservation of users through the integration of Direct Anonymous
Attestation (DAA) protocol in the FIDO U2F Registration and Authentication phases. In this way,
FutureTPM project aims to go beyond the provision of QR-TPM, as trust enabler in the financial
domain, but aims to enhance FIDO protocol with trust and privacy preserving qualities. The
FutureTPM consortium aims to push the updated FIDO models, which are describe in Section
2.1.3 in detail, to the FIDO standardization bodies for consideration to the future releases of the
technical specifications. In fact, the latest FIDO working group has already identified DAA as a
privacy preserving primitive that can benefit the FIDO protocol; however they have not released the
technical details to achieve it. FutureTPM consortium has identified this gap, and our endeavor
aims to address this limitation.

The next section elaborates on our actions towards enhancing the security posture of the Fintech
application domain by integrating and showcasing the Configuration Integrity Verification of the
mobile device using the two attestation schemes, namely Attestation by-proof and Attestation-by-
Quote, as have been introduced in the FutureTPM project in D4.4 [25].

2.1.2 Overview of Remote Attestation Schemes: Attestation by-proof and Attesta-
tion-by-Quote

As aforementioned, part of the Secure Mobile Wallet and Payments use case will be the
demonstration of two attestation schemes namely, Attestation by Proof and Attestation by
Quote (as depicted in the left and right side of Figure 5, respectively), for enabling the automatic,
or upon request, secure establishment of trust between the Mobile App and the backend banking
system. Note that, in the generic representation of Figure 5, the Attestation software agents, i.e.,
the Verifier (Vrf) and Prover (Prv), correspond to the banking server and Mobile App (that works in
synergy with the HW QR-TPM), respectively.

The evidence of the integrity state of the mission critical resources or functionalities on the mobile
device are authenticated by the attached HW QR-TPM. Thus, the Attestation by Quote and
Attestation by Proof processes, are used in the realisation of the INDEV.AU.3 and INDEV.AU.4,
respectively.

More specifically, the Attestation by Quote enables the integrity verification of the mobile device
without conveying additional or unnecessary information of the underlying host to the remote
verifier. In the context of INDEV.AU.3, the aim is to attest a local database containing the financial
transactions history. Every time a transaction is made, a new entry is appended in the database.
To ensure the database integrity, a database digest is stored in the PCRs of the TPM. Upon an
attestation request of the Verifier, the mobile APP interacts with the QR-TPM, which constructs a
quote structure comprising the current values of the chosen PCRs, and signs it with a key

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 10 of 82

Figure 5: Workflow of system Configuration Integrity Verification: Attestation by Proof (Left) and Attestation by Quote
(Right)

generated by the QR-TPM using the BLISS signature scheme. The quote certificate and signature
are then sent to the Verifier. Following this approach, the correct state of the recorded transaction
history on the mobile device can be attested by providing the necessary evidence to the server.

The Attestation by Proof schema allows for attestation without disclosing any information that can
infer identifiable characteristics about the individual configurations of the attested system. This
scheme is utilised in the context of INDEV.AU.4, where the Verifier attests the sequence of QR-
TPM commands executed on the mobile device (i.e., the extracted CFG) for the realisation of the
INDEV.AU.3. Upon a Verifier’s attestation request which includes a nonce n and a policy digest
which reflects the reference value of the operational state of the mobile App, the latter presents a
signed nonce to the Verifier as an indisputable evidence that the App’s execution has resulted the
correct measurement.

Section 2.2.1 offers a more detailed description of the developed workflows for the aforementioned
attestation schemes in the user stories. The interested reader can refer to D6.4 and D4.4 for more
details on the two schemes.

2.1.3 Strong Authentication by integrating the use of TPMs and DAA in the FIDO
U2F Protocol

This section elaborates on the modelling of integrating the TPM in the FIDO U2F Protocol and how
the DAA algorithm is used for achieving user-controlled unlikability in the financial services domain.
By enabling both FIDO authentication and DAA services, we achieve authenticated and
anonymous verification of Yubico credentials in the identity management process of financial
transactions. More specifically, in this section we present the overall system model that shows its
internal components. After introducing the components, we look into the required trust modelling.

Note that, this thorough analysis is presented as the realisation of the INDEV.AU.5 user story,
which poses a significant research challenge.

2.1.3.1 System Model

Figure 6 overall system model and the different actors of the proposed system. This setup is an
extension of the standard U2F setup, while we replace the roaming authenticator with a TPM. In
addition, the Issuer, i.e., the manufacturer of the module, is presented as an additional, but not
active, asset in the U2F specification. For a roaming authenticator such as Yubikey, the Issuer
would be Yubico. The different entities which are engaged in the systems are the followings:

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 11 of 82

 Service Provider: The Service Provider is the entity that the user wishes to authenticate
with. The service provider also acts as a verifier, as it verifies that the TPM is valid, using
anonymous signatures created based on the DAA protocol.

 Host: The host contains the client and is also called the platform (the host and TPM). The
host could be any device that integrates a TPM, such as the smartphone in the case of the
e-payment use case. It is responsible for handling communication with the service provider,
as in the FIDO U2F protocol. The host further provides information to the TPM regarding
the service provider it is talking to, again as in the original protocol.

 Trusted Platform Module: The TPM resides in the platform and is physically bound to it.
The TPM provides secure cryptographic functionalities and is used to generate keys and
signatures. The TPM also has the responsibility of measuring the integrity of the host, i.e.,
by hashing applications, to ensure device integrity. The TPM encrypts and decrypts Service
Attestation Keys, which are unique to a user/service-provider pair.

 Service Attestation Key: A service attestation key (SAK) encrypts and decrypts multiple
authorization keys. Such a Service Attestation Key is unique to a specific service provider
and a single user. The key can only be used when a request comes from the service
provider it is linked to.

 Authentication Key: The authorization keys are used for signing the challenges received
from the service provider. Those keys are protected by policies which virtually ensures that
only the right user, under the right circumstances, can gain access to the key. The
authentication key is equivalent to the keys described in the FIDO U2F Protocol, but in our
case, these are a product of the TPM functionality and, thus, they are better protected.

 DAA Key: This is a unique key only accessible to the TPM. The DAA key provides enables
the anonymous attestation. This can be compared to the attestation certificate in the FIDO
U2F protocol.

 Issuer: The Issuer is the manufacturer of the TPM. In the FIDO U2F protocol, this is the
relying party.

 User: The user(s) are the last actor and are responsible for providing authentication data
such as passwords, biometric data, etc. to the host to be able to unseal keys. The user
interacts with the host device.

Note that, the designed system takes advantage of the key hierarchy. The keys that are higher in
the hierarchy are used to wrap, and thus protect, other keys lower in the hierarchy. In this direction,
a primary key wraps the service attestation key, and that key wraps authentication keys. A service
attestation key is unique to a user and service provider and wraps all the authorization keys used
to authenticate the user to that given service provider.

2.1.3.2 Requirements

A requirement of paramount importance is that we must ensure that the system will only operate
when the host is in a trusted state. There may be several aspects of the deployed system that
need to be trusted in order to ensure that the system in its entirety is in a legitimate operational
state, so that to have this requirement valid and to uphold. That is, one need to ensure the integrity
of the systems during the creation of the service attestation keys or DAA keys.

In the developed concept of TPM integration in the FIDO U2F protocol we consider that the
underlined system supports Configuration Integrity Verification (CIV), and it is measured both
during load-time (before and immediately after boot) and run-time. For the overall system, this
means that in case an attacker executes attacks on the system post-boot, the attestation process
could reveal discover in cases where the attack changes the system’s behavioural profile.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 12 of 82

To be able to achieve trust in the
dynamic environment of the platform
dynamic measurements are needed,
such as Control-Flow Attestation
techniques. In the models, we assume
that universal standards for device
integrity are in place and are being
checked, meaning that any operation can
only happen if and only if the device
meets the integrity requirements. These
requirements are met by the
measurements gathered during boot and
during run-time and guarantee that the
system configurations are as expected.

In addition, apart from the trust
requirements that drive the design of the
models to be presented in the next
section, there is a strong requirement in
protecting user privacy. In this regard,
the utilisation of DAA in the context of
FIDO protocol and the utilisation of DAA
keys and protect users’ privacy against
service provider that could potentially link
a user’s activity among different
services.

2.1.3.3 Trust Models

The models are designed to capture the assumptions and relationships among assets and entities
needed for the system to operate in a trusted manner. They should capture not only the use-cases
of the system, but also the potentially untrusted entities and assets, such as objects, data, etc.

The final goal of these models is to provide a formally verifiable trust model, that could be verified
with tools such as ProVerif [19] or Tamarin [20]. These models can be used to generate attestation
policies that can protect mission critical operations and guarantee operational assurance. The
formal verification of these models is out of the scope of this deliverable and has been identified as
future work after the completion of the project.

Towards this direction, we make use of diagrams to model the trust relations between entities in
the system. These diagrams depict a sequence of states that reflect assets, entities, code-
execution, etc., which the underlying trust assumptions and requirements. If any of the
states do not meet the necessary requirements, they cannot be trusted; hence, the overall security
cannot be guaranteed. Using these models, we can describe a generic enhanced version of the
FIDO U2F Protocol that operates in tandem with a TPM.

We limit the modelling only to those diagrams that depict the core attestation and key management
functionalities and trust requirements of the system:

A. Create Service Attestation Key

The Service Attestation Key is used to wrap the user authentication keys, as extracted by the
attached Yubiko. They are unique to a specific user and a specific service provider. During
registration, this key is created and meets the requirements of origin-specific keys, since the
authentication keys that this key wraps, can only be unlocked if the correct service provider is
present.

As shown in Figure 6, the key is encrypted by the TPM. In reality, it is encrypted by a primary key
that lies within the TPM. If this model succeeds, a key is provided to the host where the public part

Figure 6: System Model

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 13 of 82

is available, and the private part is encrypted by the primary key, and can only be decrypted in the
TPM, if the correct AuthValue is provided. Assuming all states are successfully executed, a key is
created and sealed to an authorization value that represents the origin.

 Precondition: Primary key created.

 Postcondition: Service Attestation key wrapped by primary key, and the key blob is re-
turned.

Figure 7: State diagram showing the states for generating a Service Attestation key. Blue takes place on the host and
green in the TPM

Generate AuthValue: This AuthValue is required to protect the overall system of MITM-attacks by
using origin-specific data. It combines the information of a user-provided password, the relying
party as seen from the host, and a public known randomness. This value is used as an
authorization value (password) for the key.

TPM Create: Creates the attestation key that is used to wrap authentication keys. The AuthValue
is set as the host-provided value.

Seal: Seals the newly created key to the authorization value provided.

B. Create Authentication Key

The authorization key (pair) is the key that is used during authentication. When created, the public
part of the key can be sent to the relying party. The key is created with a set of policies that may be
required by the service provider. This process is exemplified in the model of Figure 8 with a
configuration whitelist. This requires a service attestation key to be loaded (as we defined in the
previous model). This can only be done if the origin of which we are creating authentication keys is
the same as when the service attestation key was created. As with the Service Attestation Key, we
are getting data output to the host, where the public key is readable for the host, but the secret part
is not exposed out of the TPM.

 Precondition: Primary and Service Attestation key created.

 Postcondition: Authentication key wrapped by attestation key.

Figure 8: Diagram showing the states for generating an authentication key. Blue is provided by the host, green is states
with relation to the authentication key and red is in regards to the service attestation (parent) key

Configuration Whitelist: The provider may require one or more configuration whitelists to be
considered in the generation of an authentication key in order to add as an extra factor to achieve
trust. Such configuration whitelists are used to provide a trust-baseline for unsealing the key.

Generate AuthValue: The process in which the unique authorization value needed to unseal the
service attestation key, is provided. An example could be a SHA256 hash of some application-
specific data, user-specific data (password), and some randomness to ensure uniqueness. This
value is to ensure that an adversary intercepting communication is not providing data to the
system.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 14 of 82

Calculate Policy Digest: In an authenticated session, the policy digest is calculated to be able to
unseal the key. The digest is calculated by executing different policy commands on the TPM,
followed by getting the newly created digest. Such a digest can be any combination of the policies
to support the requirements of multi-factor authentication.

Load Service Attestation Key: Loads the attestation key to act as the parent of the authentication
key under creation.

Unseal: This process unseals the Service Attestation Key (inside the TPM, the private key is not
available to the user)

TPM Create: Creates the Authentication Key. This state must provide a unique key that cannot be
linked to any other authorization key, created under the same service attestation key.

Seal: Seals the Authentication Key to the configuration whitelist and the policy digest value
generated.

The whitelist is by design the foundation of the policy, as it should represent the desired state of
the configurations in the system. The registers of the TPM can be extended but not overwritten.
Because of this, the actual policy-value can be generated by extending that value with the
secondary policies. This model shows how the TPM can fulfil requirements to generate keys that
are only readable in the TPM by design. Due to the nature of the policies, any number of policies
could be used to seal the key.

C. Create DAA Key

The DAA key is used in the DAA protocol for the purpose of attesting the validity of the TPM. The
DAA key is created in order to comply with the requirement of attestation. This key is encrypted by
the TPM, while a primary key must be created. Since the DAA key is used to attest the validity of
the TPM during authentication, it must be protected by a platform password.

 Precondition: Parent key created.

 Postcondition: DAA Key created and sealed.

Figure 9: State diagram showing the states for generating an ECC Key for Direct Anonymous Attestation. Blue actions
occur on the host, and orange in the TPM.

Password: This is the password the key is to be sealed with. The password is a secret value and
should, therefore, only be known to the owner of the platform.

TPM Create: Creates the ECC DAA Key with the password send with as authValue.

Seal: Seals the newly created key to the authorization value provided.

The DAA key creation process follow the same approach as the one for the attestation key shown
in Figure 7. To ensure that nobody else than the platform owner can create the DAA Key, the key
is sealed using a password.

D. Create Attestation Signature

To be able to attest to the validity of the trusted module, we need to provide a signature from a
DAA key. This signature establishes a guarantee at the service provider that the trusted module,
i.e., is a TPM and that it is valid.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 15 of 82

 Precondition: DAA Setup and Join protocols completed successfully.

 Postcondition: Signature created

Figure 10: State diagram showing the states necessary for signing an Authentication Key for Registration with a Relying
Party.

Password: The password is required to unseal the DAA key. This is provided untampered and is
known only to the platform owner.

Load DAA Key: Load the DAA Key into the TPM.

Unseal: Unseal the DAA key with the password (AuthValue) provided by the host.

Randomize Credential: Before using the credential, it is necessary to randomize it such that the
signatures are unlinkable to meet requirement of establishing a protocol that must support multiple
unlinkable keys. If linkability is desired between signatures, a basename can be provided here.

DAA Sign: The signing operation with the DAA key. The signing operation is done on the
marshalled public key. This is done by using the TPM’s commit function and further calculations on
the host.

The goal of the use case is to provide a signature to a public key that can be verified as only being
able to be produced on a valid TPM. Since it is the public part of an authentication key that is to be
signed, no special operations are needed to load this. The public key is being signed to convince
the verifier that the public key originated from a valid TPM. Indeed, the key could be protected by
one or more policies, though working under the assumption that the password is only known to the
platform owner, this is can be considered sufficient. By using Direct Anonymous Attestation, the
ability to link different attestation signatures with each other is eliminated.

E. Create Authentication Signature

This is a core functionality for the authentication phase of the protocol. The private key is used to
sign the data. The corresponding public key lies on the service provider. This is a multi-stepped
process since we need to unseal not only the service attestation key but also the authorization key.

 Precondition: Authentication Key, Service Attestation Key and Primary Key are created.

 Postcondition: Signature is created.

Figure 11: State diagram showing the necessary states for signing a host-provided dataset for authentication to a Relying

party.

Integrity Measurements: Integrity Measurements are being done during boot and create a set of
digest values stored within the TPM. These values represent the current configurations of the
platform and range from low-level configurations such as the BIOS, MBR, etc., all the way to post-
boot measurements of installed applications and their configurations.

Calculate AuthValue: The value based on application and user data, and predefined random
data. It is used to gain access to the Service Attestation key and protect against man in the middle
attacks.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 16 of 82

Load Service Attestation Key: Load the service attestation key into the TPM.

Unseal: Unseal the Service Attestation Key, which gives the TPM access to the private parts of the
key. The private part is never revealed to the user.

Load Authentication Key: Loads the selected authentication key into the TPM, but the private
part of the key is still sealed.

Calculate Policy Digest: In an authenticated session, the policy digest is calculated to use the
authentication key. This must be done by executing the required policies correctly and in the
correct order. If a configuration whitelist digest is provided by the relying party during setup, the
first policy to execute must be the PolicyPCR followed by any policies required.

Unseal: The unsealing of the authentication key based on the policy digest calculated before.

TPM Sign: The signing operation with the Authentication Key on the host provided data. This
succeeds if and only if the policy-digest matches that of which was generated during creation, and
if the correct authvalue for the parent is provided.

Assuming all the steps in model for the creation of the Authentication Key (Figure 8) are executed
correctly, then it is only possible to sign the data provided if both the service attestation key can be
unsealed (based on the client’s perspective of the verifier and a password) and the platform’s
integrity measurements meet the expectations of the relying party and any other negotiated
policies. This ensures the necessary functional security requirement that keys can be generated
and exercised under specific circumstances, since any (intentional of unintentional) change in the
state of the system will result to a failure of the unsealing process a key.

2.1.3.4 Adapted design of the registration and authentication protocols

Given the models described in the previous section that guarantee the trust requirements for the
functionalities key generation and management delegated to the TPM, this section elaborates on
how the registration and authentication protocols of the FIDO U2F can be adapted to integrate the
trust assurance thought the TPM and the competitive advantages of DAA for achieving enhanced
privacy of the end-user.

2.1.3.4.1 Registration protocol

The FIDO U2F protocol does not focus on users’ privacy, but only on providing a second factor,
while the user is authenticated using a username and password during registration. The aim of the
adapted protocol is to ensure users privacy by exploiting the benefits of DAA. The adaptation of the
protocol aims to be as generic as possible. That is, we do not specifically define the authentication
method to be used. Instead, we change this to a more generic term basic authentication. Basic
authentication implies that the host (or user of the host) can provide evidence that it is eligible for
registration. By doing this, we ensure that this setup can be used to obtain both full- and partial
anonymity. A user could use other forms of authentication, e.g., password, group signature, or any
other way of authentication that lets the relying party verify that registration is allowed.

On the basic authentication request, the relying party responds with a challenge. Since we aim to
perform local multi-factor authentication, the process must meet policy requirements to comply
with. These requirements are sent back with the challenge and can, for example, contain a
configuration whitelist, requirements to password, biometric data, and so forth.

The next step engages a challenge-response message, i.e., the response from the host to the
challenge during registration. This message originally contains an attestation certificate that allows
the relying party to validate the type of U2F Device. If the relying party does not link this with the to-
be-stored public key, then the unlinkability requirement can still be met among future authentication
requests.

To achieve full anonymity, we need to provide attestation without revealing our identity. To do so,
Direct Anonymous Attestation (DAA) has been promoted as the prominent methodology to meet
the privacy requirements in the context of the project.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 17 of 82

Direct Anonymous Attestation (DAA) is a protocol that offers anonymous attestation of a platform
without providing information about the platform itself. It still relies on a common trusted party such
as the TPM Manufacturer, which we call Issuer. The protocol consists of two main phases: Join
and Sign. In the first phase, the TPM (the Prover) proves to the Issuer its identity and sends along
a DAA Key (an ECC key). The Issuer then issues a credential based on that key to the Prover.
When the platform needs to provide its identity to a party, it scrambles the credential and creates a
signature with the modified credential. It is up to the platform whether the signatures provided can
be linked to each other, by introducing a basename into the scrambled credential.

When the Verifier receives the signature, it can verify that it is legit based on a Zero-Knowledge
proof - without talking to the Issuer. With this approach, the Issuer is only contacted when it needs
to issue a credential, and a verifier can verify a signature independently of the Issuer.

Given the advantages of the DAA, the proposed approached for the adapted registration protocol
replaces the attestation certificate with a DAA signature over the public key. By doing so, the host
proves to the relying party that a valid TPM is used, and the public key is acknowledged as a key
derived from a valid TPM.

Figure 12: The adapted registration protocol. New items are highlighted in yellow, line-through items have been removed.

Figure 12 presents the adapted protocol as a result of the abovementioned analysis. Overall, by
utilizing DAA, the host can anonymously register to a party without revealing its identity. The
proposed approach eliminates the requirement for the username and password combination and
leaves it to the relying party to decide the authentication scheme. In addition, a new parameter is
introduced, namely the PolicyData, to instruct a set of policies the key must be sealed with. The
AppID factor is no longer needed as the origin of the host is attested thought the DAA signature.

Basic Authentication: A relying party shall perform a basic registration/authentication in order to
grand access to a service. Authentication is necessary but can be of different levels. To support
requirements, this basic authentication must be able to be unlinkable to a specific user or person.

Challenge: The challenge is a simple nonce, which is essential to protect against replay attacks.
As a new parameter, the adapted protocol considers the PolicyData, which is a (potentially
negotiated) set of policies used to seal the key. This can be requirements of different
authentication-schemes such as passwords, biometrics or an application whitelist.

Prepare Registration Request Message: The host receives the challenge parameter and
immediately prepares the required client data, which is a hash of the challenge and the application
ID seen from the host perspective - the hashed version of client data is called the

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 18 of 82

ChallengeParameter. The application parameter is vital, as it is used to prevent phishing and man
in the middle attacks. Instead of the ApplicationParameter being just the digest of the AppID, we
introduce it as the digest of the AppID and application ID seen from the host (e.g., AppID: Email,
Application ID: https://google.com). We do this to protect the key from MITM attacks but support
multiple applications on a single Relying party.

Registration Request: Both the ChallengeParameter and the ApplicationParameter is sent to the
TPM and the latter is used for generating a signature and a key.

Generate and Sign: The TPM then creates a keypair and seals it to the origin described by the
application parameter. It then returns a signature on those parameters along with the public key
and the UUID (key handle). Note that, the key handle in the case of the e-payment use case is the
one provided through the interaction of the Yubico. Further, the TPM returns a DAA signature over
the PK. The ClientData is not sent with the message as it is not needed.

Validate: When the relying party receives the message, it should first confirm the DAA Signature,
and if that holds, it can check the signature provided. In the original protocol, the ClientData is sent
along for the Relying party to verify the signature and validate the data. In our case, we have no
interest in knowing what went wrong (i.e., the origin is incorrect due to MITM), but simply if
something is wrong. The Relying Party can simply reconstruct the ClientData as it expects it to look
like, and then check the signature. If this process results to an unexpected outcome, it discards the
key; otherwise, the key is stored but not linked with a user.

2.1.3.4.2 Authentication protocol

Analysing the authentication, the same issue arises as with registration: the first step includes the
host authenticating using a username and password. Since the aim is to protect the host’s privacy
only proof that the host is registered is sufficient. That is, request for a challenge is sent. Obviously,
since the Relying Party does not know who the user is, it cannot send the corresponding key
handle. Therefore, the Relying Party simply provides the challenge-parameter. The platform
locates a key registered with the service provider, which is then used to sign the challenge. In the
response message to the host, there is no need for a counter since the TPM is by design un-
cloneable, and the platform is verified when loading the key. The control-byte is no longer
necessary as user’s presence can be established with policies, e.g., by biometrics. The key handle
(UUID) is sent along, such that the relying party can locate the key.

As is depicted in Figure 13, the adapted design has reduced the data needed to be transmitted,
and no personal information is exchanged, but the Relying Party can be convinced that interfaces
with a genuine user, since it has registered at an earlier state.

https://google.com/

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 19 of 82

Figure 13: The adapted authentication protocol. New items are highlighted in yellow, line-through items have been
removed

Request: Since a username and password can reveal to the relying party who the user is, the
adapted design simply requests a challenge.

Challenge: In the original protocol, the relying party would identify the user and provide a
challenge, AppID, and a Key Handle. However, in the adapted design we argued in the registration
phase why why we discarded the App ID, and since the relying party has no information for the
user it cannot provide a Key Handle. Due to this, the relying party simply returns a challenge.

Prepare: Originally the host had to check the origin on the facet list fetched with the help of the
AppID provided to see if the origin provided is legit. Instead, we simply create a ClientData
structure and hash it to create the ChallengeParameter and hash the origin to provide the
ApplicationParameter.

Unseal and Sign: If, and only if, the application parameter is the same as when the authorization
key was created, then the authorization key can be loaded. In this case, the key needs to be
unsealed with respect to the policies negotiated. If that is successful, then the TPM can sign the
challenge parameter and send it. Note that, since the App ID is eliminated, it is not included in the
signature. The UUID of the public key is also included in this message; otherwise, the Relying
Party cannot locate the key. The key handle is essential to privacy: it is the host and not the relying
party that decides what key to use. Since the user-presence can be defined in a protocol, this item
is not returned, and neither is the counter due to the fact that the key could not be unlocked on any
other platform (assuming configuration integrity verification and the fact that the trusted
environment by design is assumed un-cloneable).

Validation: It is not before this step that the Relying Party can locate the public key. When the
public key is located, the signature can be verified, and the user is authenticated.

2.1.4 Demonstrator Needs and Challenges

The 1st experimentation period, which resulted to the compilation of D6.3, was conducted using the
Software-based variation of the QR-TPM and the implementation was focused on the realisation of
the first two user stories of this use case. The 2nd experimentation period is conducted by
leveraging the Hardware-based QR-TPM. Since, the HW TPM comes on an FPGA board, this
means that for the demonstration purposes we had to make a set of reconfigurations to the
reference implementation to interface the board. The major challenge faced in this transition was
the necessary reengineering of the eBPF tracer which was designed in earlier stages of the

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 20 of 82

project. More specifically, the deployed interception hook was modified in order to be able to
intercept the TCP traffic generated on the network controller, as the FPGA is connected to the
dedicated TPM server via an ethernet cable. In addition, as reported in D4.4 and D6.4, the eBPF
tracer is aware of the internal structure of the TPM command codes in order to be able to decode
them. That is, given that the HW QR-TPM comes with the extensions of the NewHope and BLISS
QR schemes, we extended the TPM command decoder in order to capture the TPM inner features.

In parallel to the developments of WP4, and more specifically with the definition of the Attestation-
by-Proof and Attestation-by-Quote schemes in D4.4, the developed user stories integrate the
remote attestation artifacts of the FutureTPM project in order to provide a holistic evaluation
approach. As such, the use of the FutureTPM enables the trusted execution of financial
transactions for the Secure Mobile Wallet and Payments by providing evidence via eBPF tracing
and the generation of CFGs and attesting the operational behaviour and the configuration integrity
of the mobile device.

It has to be stated that the implementation of the INDEV.AU.5 poses a significant research
challenge in the field of Authentication and financial technologies. Our research and developments
led to the definition of the protocols and the models that have to be adopted in order to achieve the
security and privacy requirements of this research challenge, as those have been presented in
Section 2.1.3.

2.2 Implementation Path Report for the 2nd Experimentation Period

The focal point of the 2nd phase of the demonstrator is the realisation of the INDEV.AU.3,
INDEV.AU.4 and INDEV.AU.5 user stories. The mobile application, only after a secure
authentication of the user and establishment of a secure channel with the TPM and authentication
server, will be able to use the TPM functionalities. Taking a step ahead, the current implementation
considers the FutureTPM stack, which is used for deploying the new algorithms and libraries
provided by the project in the Secure Mobile Wallet and Payments scenario. More specifically, the
demonstrator has integrated the HW implementation of the QR-TPM, using the FPGA board
connected to the dedicated TPM sever over an ethernet connection. The HW QR-TPM comes with
the implementation of the NewHope Key Exchange and the BLISS digital signature schemes. Both
schemes are utilised to support the functionalities of the aforementioned user stories.

The major challenges faced during this implementation had to do with the integration of the HW
QR-TPM and creating an approach of measuring the QR-TPM performance by having the lowest
possible interference to the operational profile of the FPGA board. Towards this direction, minor
modifications applied to the TSS engine in order to acquire the timestamps of TPM commands
execution, so that to calculate the performance timings. Additionally, the eBPF tracer developed
and documented in the context of WP4 was reengineered in order to be able to intercept the
communication between the host machine (dedicated TPM server) and the FPGA board over the
established TCP/IP connection. Thus, the interception timestamps between the request and
response packets that encapsulate the TPM commands sent from/to the TSS residing in the host,
can give us a quite accurate performance measurement for the execution of the QR algorithms on
the PFGA. It has to be stated that due to implementation limitations, the network packet
interception was chosen as the approach that offers the “closest proximity” to the FPGA. Note that,
these measurements include the time for establishing the TCP/IP connection and the time for
transmitting the TPM command packets. This time frame can be considered negligible.

2.2.1 User Stories Realisation

Out of the User Stories and Test Cases described in D6.1, the INDEV.AU.1 and INDEV.AU.2 have
been demonstrated in the context of D6.3, while the INDEV.AU.3, INDEV.AU.4 and INDEV.AU.5
have been scheduled for this period. The tables below describe the developed workflows for the
corresponding user stories.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 21 of 82

Description

User Story Title: INDEV.AU.1 - As an Individual User I want to log in to the INDEV Service and
keep safe the bearer token.

Workflow Developed: A preliminary step of the workflow is the generation and storage of a
Control-flow graph (CFG). Then, the workflow proceeds to the registration of the Android user to
the TPM Server leveraging FIDO U2F (only the first time). The user registration process relies on a
challenge/response protocol, as shown in Figure 2. Once the user is registered, she is
authenticated to the TPM Server leveraging FIDO U2F when she wants to perform a TPM
functionality, following the procedure shown in Figure 3. The Android application seals the Bearer
Token in the dedicated TPM, based on the handle and the recorded CFG, by invoking the TSS
stack on the dedicated TPM server.

Issues Encountered: No issues encountered.

Status: Completed

Degree of Realisation: Full

Comments (if any): Completed in the context of D6.3

Description

User Story Title: INDEV.AU.2 - As an Individual User I want to use an external service to
generate tokens for my credit card that go directly in the TPM and avoid revealing my credit card to
the server.

Workflow Developed: The Android user authenticates to the TPM Server leveraging FIDO U2F
when she wants to perform a TPM functionality (see Figure 13). Then, she provides her credit card
to a 3d party service to generate the necessary Financial Token for a financial transaction
finalization. The user unseals the Bearer Token based on the recorded CFG state (INDEV.AU.1),
and the Token is provided to the INDEV Server. The server forwards the token to the 3d Party
service to generate the Financial Token. The 3d Party service forwards the generated Financial
Token to the server and the server seals the Financial Token.

Issues Encountered: No issues encountered.

Status: Completed

Degree of Realisation: Full

Comments (if any): Completed in the context of D6.3

Description

User Story Title: INDEV.AU.3 - As an Individual User I want to ensure that my financial
transactions history is secure and not tampered with

User Story Confirmations:

• The local database containing financial transaction history logs is encrypted with a key
generated by the TPM and also their integrity is verified using the PCRs of the TPM.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 22 of 82

Description

Workflow Developed: The Android Mobile App, which is used for performing the financial
transactions, maintains a local database containing the financial transactions history. Every time a
transaction is made, a new entry is appended in the database. To ensure the database
confidentiality, the transactions history is encrypted using a NewHope key, generated by the QR-
TPM. The hash of the database is then stored in the PCRs of the TPM in order to ensure its
integrity.

An external entity (e.g., a financial service provider) acts as a verifier and initiates a Remote
Attestation using the Attestation-by-Quote method. In the context of this use case this entity is the
TPM server since the server is connected to the unique QR HW TPM. Thus, the Verifier sends a
nonce n (used for the freshness of the interaction) and a selection of PCRs to attest, I. The mobile
APP passes these arguments to the QR-TPM, which constructs a quote structure comprising the
current values of the chosen PCRs, and signs it with the attestation key generated by the QR-TPM
using the BLISS signature scheme. In this way, it is certified that the quote structure has been
generated internally by the QR-TPM. The quote certificate and signature are then sent to the
Verifier. The quote and its signature are successfully verified by the Verifier, if and only if they are
valid, and if the PCR values correspond to the artificial reference values already calculated by the
Verifier.

Given the above, the correct state of the recorded transaction history on the mobile device can be
attested by providing the necessary evidence to the external entity. In this way, the e-Payment
service provider attests the correct state of the transaction’s history on the mobile phone and
ensure its integrity.

Figure 14: INDEV.AU.3 workflow. Attestation by Quote for the integrity verification of transactions DB

Issues Encountered: No issues encountered.

Status: Completed

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 23 of 82

Description

Degree of Realisation: Full

Comments (if any): We assume that the service provider is aware of the transactions’ history of
the client application. That is, the provider knowns the correct state of the PCRs to be attested.
Using the Attestation-by-Quote method, the provider attests the correct state of the transactions’
history on the mobile phone and ensures its integrity. By having the attestation result, the provider
can decide whether new transactions are allowed to be performed by the mobile app, or to forbid
financial transactions in case the database has been tampered. Note that, the encryption of the
database on the mobile device occurs only for meeting the confidentiality requirement of the
financial data on the device. The PCRs of the mobile device store the state to the unencrypted
database to achieve the integrity verification.

Description

User Story Title: INDEV.AU.4 - As an Individual User I want to verify the integrity of the systemic
environment setup of the device used to connect to the service

User Story Confirmations:

• User can verify the operational correctness of the host device environment based on the CFG
generated beforehand and reflect the normal behaviour of the device

Workflow Developed: The realisation this user story implies the attestation of a critical function of
the system in order to ensure the correct status of the device used to connect to the service. In this
direction, we proceed to the attestation of the sequence of QR-TPM commands executed on the
mobile device for the realisation of the INDEV.AU.3. Thus, this workflow requires the generation
and storage of a Control-flow graph (CFG) generated by the deployed eBPF tracer which monitors
the execution of the TPM commands at the Linux Kernel level.

To achieve this goal, the developed workflow is based on the Attestation-by-proof schema. Initially,
the Verifier sends a nonce n to the Mobile App. The mobile App presents a signed nonce to the
Verifier as an indisputable evidence that the App’s execution has resulted the correct
measurement. To do so, the Verifier sends a policy digest which reflects the correct reference
value of the run-time App’s behaviour. This policy digest is used as a template policy which is used
for the creation of a BLISS key, used for signing the nonce. The prover, i.e., the Mobile App,
proceeds to the execution of the AU.3 and a tracing measurement is taken by the eBPF tracer and
stored to the PCRs of the TPM. A Policy_PCR command is used to check the values of the PCRs
and provide the proof that the captured tracing is the one which was provided by the Verifier at first
place. If the Policy_PCR matches the current PCRs content with the policy digest, then the prover
proceeds to the correct signing of the nonce provided by the prover and sends the corresponding
response to the latter. In this way, the Prover, i.e., the server is in position to tell that the correct
execution path, i.e., the CFG was followed on the prover during the execution of the AU3
realisation.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 24 of 82

Description

Figure 15: INDEV.AU.4 workflow. Attestation by Proof for the verification of the operational correctness of the mobile
application

Issues Encountered: No issues encountered.

Status: Completed

Degree of Realisation: Full

Comments (if any): It has to be stated the server is aware of the public part of the Attestation Key
of BLISS, which is used to confirm the correct signature of the nonce.

Description

User Story Title: INDEV.AU.5 - As an Individual User I want to perform the two-factor
authentication with the Financial service through the TPM

Workflow Developed: We approached the realisation of this user story from a research
perspective as was initially the plan described in D6.1. More specifically, instead of an
implementation of the actual required testbed, we proceed to an investigation on the challenges
and models required for Integrating the use of TPMs in the FIDO U2F Protocol in order to provide a
strong authentication scheme via Trusted Platforms. That is, the realisation of this user story has
taken the form of a thorough analysis of the models and the adapted design of the FIDO U2F
Protocol, as described in section 2.1.3. Crucially, our analysis is not solely focused on using the
QR-TPM to the FIDO protocol, but on top of that, our modelling integrates the DAA in the FIDO
protocol to deliver an updated authentication protocol with trust and privacy preserving qualities.

Issues Encountered: No issues encountered.

Status: Materialised as a thorough analysis of open research topic.

Degree of Realisation: Full.

Comments (if any): N/A

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 25 of 82

2.2.2 Unit Test Results

The following unit test, which correspond to the user stories mentioned above, have been
implemented during this period.

Test Case MWP1

Reference Code MWP1

Components Mobile App lib

Description

This unit test extends the functionality of the FUTURETPM04 and aims at
verifying the correctness of the sealing and unsealing functionalities of the
Bearer Token, needed for the authorization of the device, based on the
correct FIDO handle token reflected in the PCRs states. (INDEV.AU.1)

Status Performed

Unit Tests
Results

Bearer Token is successfully sealed and unsealed based on the correct PCR
state.

Test Case MWP2

Reference Code MWP2

Components Mobile App lib

Description

This unit test extends the functionality of the FUTURETPM04 and aims at
verifying the correctness of the sealing and unsealing functionality of the
Financial Token, needed for the completion of the financial transaction,
based on the correct FIDO handle token reflected in the PCRs states.
(INDEV.AU.2)

Status Performed

Unit Tests
Results

Financial Token is successfully sealed and unsealed based on the correct
PCR state.

Test Case MWP3

Reference Code MWP3

Components Mobile App lib

Description
This unit test extends the functionality of the FUTURETPM02 and aims at
verifying the correctness of the symmetric key generation. This unit test
verifies the correctness of a TPM key creation. (INDEV.AU.3)

Status Performed

Unit Tests
Results

Instead of the generation of a symmetric key the consortium took the
decision to generate the asymmetric key pair Generation based on
NewHope QR algorithm for evaluating this newly deployed QR scheme. The

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 26 of 82

Test Case MWP3

key creation functionality has been successfully implemented and integrated
in the HW QR-TPM. Encryption and decryption functionalities have been
verified.

Test Case MWP4

Reference Code MWP4

Components Mobile App lib

Description
This unit test aims at verifying the correctness of the integrity verification of
the transaction’s history log. The unit test encrypts the history transactional
logs. (INDEV.AU.3)

Status Performed

Unit Tests
Results

Instead of the generation of a symmetric key, the consortium took the
decision to generate the asymmetric key pair Generation based on
NewHope QR algorithm for evaluating this newly deployed QR scheme.
Encryption and decryption functionalities have been verified. The integrity
verification has been tested following the attestation by quote scheme and
completed successfully.

Test Case MWP5

Reference Code MWP5

Components Mobile App lib

Description

This unit test aims at verifying the operational correctness of the Android
device that is connecting to the TPM server. This requires the generation of
the CFG reflecting the normal behaviour of all application components (this
will be created through the RA framework) and the subsequent run time
monitoring and tracing of the CFPs and the verification against the generated
CFGs. (INDEV.AU.4)

Status Performed

Unit Tests
Results

The generation of CFGs has been performed successfully based on the
outcome of eBPF tracer developed as part of the RA framework in WP4. The
verification has been performed using the Attestation by Proof schema. The
verification of the attestation outcome is performed successfully.

Test Case MWP6

Reference Code MWP6

Components Mobile App lib

Description This unit test aims at verifying the operational correctness of the FIDO U2F

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 27 of 82

Test Case MWP6

two factor authentication, to be supported only through a TPM.
(INDEV.AU.5)

Status
Not Executed, as the corresponding action realised by the analysis
conducted in section 2.1.3.

2.2.3 KPIs Measured

During the second phase of the demonstrators, we proceed to the evaluation of the entire set of
KPIs that was identified in D6.1. For these experiments, we measured the performance of the
triggered TPM commands used for the realisation of the user stories. Note that, the timings in
Tables Table 3, Table 4 and Table 5, correspond to the average execution time after 100
executions of each experiment. In addition, specifically for the e-payment use case, we performed
the performance evaluation for three deferent perspectives, namely, the Application, the TSS Layer
and Network Layer perspectives.

More specifically, the application perspective provides the timings from the standpoint of the
backend application of the financial transactions’ server. The TSS Layer implies the
instrumentation of the TSS stack by placing the proper hook at the TSS_Execute() function of the
TSS. The Network Layer perspective measures the performance of the TPM command execution
on the network layer based on the packet capturing achieved using the eBPF tracer developed in
the context of WP4.

As aforementioned, the eBPF tracer developed and documented in the context of WP4 was
reengineered in order to be able to intercept the communication between the host machine
(dedicated TPM server) and the FPGA board over the established TCP/IP connection. Thus, the
interception timestamps between the request and response packets that encapsulate the TPM
commands sent from/to the TSS residing in the host, can give us a quite accurate performance
measurement for the execution of the QR algorithms on the PFGA. It has to be stated that due to
implementation limitations, the network packet interception was chosen as the approach that offers
the “closest proximity” to the FPGA. Note that, these measurements include the time for
establishing the TCP/IP connection and the time for transmitting the TPM command packets. This
time frame can be considered negligible.

In addition, through the experimental testbed for the realisation of the INDEV.AU.3 and
INDEV.AU.4 user stories, we are in position to measure the performance of the NewHope Key
Exchange and the BLISS digital signature schemes, while we also measure the performance of the
attestation by Quote and Attestation by Proof schemes. The aforementioned experiments are
performed having the HW QR-TPM integrated to use case reference implementation.

2.2.3.1 Quantitative Metrics

Regarding the quantitative evaluation of the project, the acceptance criteria set initially in D6.1 [1].
The acceptance criteria of both the first and the second release of the demonstrator have been met
in their vast majority.

Table 3, Table 4 and Table 5 show the time differences of the demonstrator among the different
chosen standpoints. Table 3 corresponds to the evaluation of INDEV.AU.3, and Table 4 and 5 to
the INDEV.AU.4. The entries of the FIDO U2F registration and Authentication are those measured
during the first experimental period but are reported again in the tables to ease reference. The
timings for the FIDO U2F Registration and Authentication process are independent from the TPM
operation. That is why, these performance timings are replicated in the following tables.

As a general statement, which applies to all commands in the realised use stories, the
timings of the Application layer are greater than those from the TSS layer, and in turn, the
latter are greater than those of the Networking stack. This is a justifiable evidence, as the

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 28 of 82

application layer is at the highest level on the utilised operational stack. The performance between
the Application and the TSS perspective is negligible. One can notice a difference of around 0.01
sec between the timings. However, the timings of the Network layer are considerably faster that the
Application and TSS layers. This is justified by the fact that the Application and TSS layers
incorporate also the time needed for the marshalling and unmarshalling operations. As
aforementioned, the timing of the network layer can be seen as the execution timing of the TPM
commands on the HW QR-TPM on the FPGA board. In cases, where a TPM command engages
the execution of a QR algorithm the captured measurement can offer an approximation of the
performance of the algorithm.

NewHope key creation and encryption/decryption operations: More specifically, regarding the
NewHope performance, as can be seen in Table 3, CC_Create command is used for the creation
of a key pair. The NewHope key generation (as a child object) is a quite fast process which
requires, on average, 1.53 secs to complete. The CC_Create refers to the creation of a child
object, which requires the creation of a primary object first, under one of the hierarchies using the
CC_CreatePrimary. The latter completes in a similar time frame of around 1.53 secs on average.

After creating the NewHope key pair, the encryption and decryption operations are performed
using the CC_NEWHOPE_Enc and CC_NEWHOPE_Dec, respectively. The commands have been
tested in the context of INDEV.AU.3 for the encryption and decryption for the transactions’
database. Both operations required 1.53 secs to complete.

Overall, the aforementioned operations of NewHope can be performed within a reasonable time
frame, considering also that the HW QR-TPM is implemented on an FPGA board and the
implementation used in not optimise for the ARM architecture. In
addition, the FPGA includes a simple scheduler which consumes ~50%
of the available CPU time. Given these facts, the performance of
NewHope can be considered satisfactory.

BLISS key creation and signing operations: In both user stories
INDEV.AU.3 and INDEV.AU.4, the BLISS signature scheme has been
used for acting as the attestation key for attestation by quote and by
proof approaches. Thus, the CC_Create command triggers the process
of the key creation of BLISS. As can be seen Tables Table 3, Table 4
andTable 5, the BLISS key creation needs considerable time to
complete. More specifically, in all cases this operation converges to
around 41 secs for the key creation in average of the 100 execution of
each user story scenario. This notable behaviour motivated us to search
in more detail its behaviour and investigate the distributional
characteristics of the 100 execution results. More specifically, for the
case on the Network layer measurements of Table 3, we have extracted
the statistic shown in Table 2. We can infer that BLISS has a stochastic
behaviour that make the time performance to deviate significantly among
the collected results. This is advocated by the range (Max-Min) of 255.6

seconds, while the standard deviation of the results is 42.63 seconds.

Figure 16 reveals the distributional characteristics of the results. The
Median is placed at around 30 secs, the 1st and 2nd quartiles being rather
concise, but the 3rd and 4th being rather expansive, and thus, affecting
the average performance to converge approximately to 40 secs.

The BLISS implementation which was integrated in the HW QR-TPM can be found in the
GALACTICS repository [21]. Given this implementation one can see that during key generation
there are multiple steps, where randomness of the primitives may be rejected, and the generation
process is initiated again. That is, given this implementation approach, the deviation in the
performance of the BLISS key generation is justified, as the process tries to maximise the
randomness and several iterations may occur to achieve this goal.

Figure 16: Boxplot of
CC_Create of BLISS key

pair

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 29 of 82

Table 2: CC_Create command statistics over 100 experimental results for the BLISS key creation

CC_Create (BLISS) statistics

Max
263.54
seconds

Min 7.94 seconds

Range 255.6 seconds

St. Deviation 42.63 seconds

Coefficient 0.9822

The BLISS scheme is used to derive the attestation keys leveraging in the configuration integrity
verification protocols. In this regard, the signing and signature verification operations are important
to evaluate the overall efficiency of the attestation schemes. More specifically, the CC_Quote and
CC_VerifySignature are used in the attestation by quote scheme for signing the quote and verifying
its signature respectively. The CC_Quote command aims at providing a quote and signature for a
given list of PCRs. Thus, the average of 2.32 secs requires both accessing the PCRs and signing
their content. The signature verification is a rather nimble process and takes around 1.26 secs.

Table 4 and Table 5 include the execution of the CC_Sign, which is used for signing the nonce n
used in the attestation by proof scheme [24]. The two tables represent the sequence of TPM
commands used for the realisation of same scenario of INDEV.AU.4 user story, but the one in
Table 5, leads to a failed attestation outcome, due to a policy discrepancy. That is, the CC_Sign
command in the case of the wrong policy needs ~1.024 secs, as it fails to complete the signing
process due to a policy non-compliance; the BLISS key creation performed using a policy which
cannot be verified. As a result, the signing process terminates in a shorter time frame. On the other
hand, in the case of Table 4, the CC_Sign is executed normally under a valid policy matching and
requires ~2.29 secs to complete. The CC_Sign performance is considered reasonable given the
current implementation of the HW QR-TPM.

Table 3: Demonstrator #1 – Comparison of Timings among the App, TSS and the Network perspectives using HW QR-
TPM (on FPGA board) for the realisation of user story INDEV.AU.3.

HW QR-TPM Command
Application

Timings (sec)

TSS
Layer (sec)

Network Layer
interception using

eBPFs (sec)

FIDO U2F Registration 0.032 + 0.031 [=0.063]

FIDO U2F Authentication 0.016 + 0.017 [=0.033]

CC_Startup 1.02253222466 1.01330438375 0.267365820408

CC_CreatePrimary 1.53199502707 1.52219373465 0.774837913513

CC_Create (newhope) 1.53315597534 1.52315644741 0.781616315842

CC_Create (bliss) 43.9633174801 43.9522656822 43.4051845002

CC_Load 1.24923972845 1.24015207529 0.615240006447

CC_NEWHOPE_Enc 1.53221192122 1.51612931967 0.763236413002

CC_PCR_Extend 1.01708666325 1.00894747257 0.258343296051

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 30 of 82

HW QR-TPM Command
Application

Timings (sec)

TSS
Layer (sec)

Network Layer
interception using

eBPFs (sec)

CC_NEWHOPE_Dec 1.53350549459 1.52393599272 0.76504529953

CC_Load 1.19869992733 1.1885679388 0.584811768532

CC_Quote 2.31629784346 2.30664509058 1.57253108263

CC_FlushContext 1.02460578918 1.01436275005 0.259500694275

CC_LoadExternal 1.02329705477 1.01380927324 0.256406946182

CC_VerifySignature 1.26514987469 1.25572157145 0.626230025291

Total 60.21109500411

Table 4: Demonstrator #1 – Comparison of Timings among the App, TSS and the Network perspectives using HW QR-
TPM (on FPGA board) for the realisation of user story INDEV.AU.4. with successful signature verification.

HW QR-TPM Command
Application

Timings (sec)

TSS
Layer (sec)

Network Layer
interception using

eBPFs (sec)

FIDO U2F Registration 0.032 + 0.031 [=0.063]

FIDO U2F Authentication 0.016 + 0.017 [=0.033]

CC_Startup 1.02175130129 1.01202268839 0.261343362331

CC_PCR_Extend 1.02312913656 1.01314315557 0.25795977354

CC_StartAuthSession 1.02397012711 1.01540932417 0.264666309357

CC_PolicyPCR 1.02413032532 1.01493059874 0.25902463913

CC_PolicyGetDigest 1.02474012852 1.01523864508 0.258535227776

CC_Startup 1.02400782108 1.0152261591 0.258282940388

CC_PCR_Extend 1.02451362133 1.01625168562 0.259160575867

CC_StartAuthSession 1.02481968164 1.01443250418 0.258640646935

CC_PolicyPCR 1.02350260735 1.0142342329 0.258288798332

CC_CreatePrimary 1.53854681015 1.52879444122 0.775353782177

CC_Create(bliss) 40.7815047693 40.7722033358 40.2426240754

CC_Load 1.23451404572 1.22659765482 0.609657390118

CC_Sign 2.2854979682 2.27603115797 1.53549443722

CC_LoadExternal 1.02415616501 1.01391834325 0.256568736281

CC_VerifySignature 1.25534365438 1.24173166243 0.601121025282

Total 57.33412816296

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 31 of 82

Table 5: Demonstrator #1 – Comparison of Timings among the App, TSS and the Network perspectives using HW QR-
TPM (on FPGA board) for the realisation of user story INDEV.AU.4. with failed signature verification.

HW QR-TPM Command
Application

Timings (sec)

TSS
Layer (sec)

Network Layer
interception using

eBPFs (sec)

FIDO U2F Registration 0.032 + 0.031 [=0.063]

FIDO U2F Authentication 0.016 + 0.017 [=0.033]

CC_Startup 1.04219357967 1.033020401 0.283529734612

CC_PCR_Extend 1.02371020317 1.01462564468 0.258074879646

CC_StartAuthSession 1.02457458973 1.01488978863 0.258891987801

CC_PolicyPCR 1.02409098148 1.01493635178 0.259133982658

CC_PolicyGetDigest 1.02450957298 1.01527831554 0.258982896805

CC_Startup 1.02513589859 1.0150737524 0.258654332161

CC_PCR_Extend 1.02335813046 1.00944423676 0.258316397667

CC_StartAuthSession 1.02413773537 1.0151296854 0.258891010284

CC_PolicyPCR 1.02583520412 1.01545004845 0.258951711655

CC_CreatePrimary 1.53579690456 1.52652206421 0.773678135872

CC_Create 41.8168566227 41.8077156544 41.3133294582

CC_Load 1.17736263275 1.16880648136 0.577876329422

CC_Sign 1.02373678684 1.02264732865 0.258264088631

Total 54.7912988424

The next table gives a summary of the KPIs corresponding to the implemented reference
scenarios, as identified in D6.1, and measured in the second round of experimentation. As can be
seen, all of the KPIs have been achieved with a success rate close to 100%, thus, further justifying
the benefits of integrating decentralized Roots-of-Trust in such heavily regulated environments as
the ones met in the Fintech application domain.

Table 6: Demonstrator #1 – Quantitative Metrics by M24 and M35

Id Metric
Target
Value

Acceptan
ce

criteria

(M)andatory
/ (G)ood to

Have /
(O)ptional

Measured by
M36

Comments

1
Amount of

sealed objects
>=2 =2 M

With TPM2.0:
100%

With
FutureTPM:

100%

Target Achieved.

Successfully sealed both
Bearer and Financial

Tokens.

2

Performance
of sealing

functionality
within the

domain of ms

<=1000
ms

<=2000
ms

M

With TPM2.0:
306.48 ms

With SW
FutureTPM:
1027.21 ms

With HW
FutureTPM:

1024.00 ms

Target Achieved.

The sealing performance is
below the acceptance
threshold. Using either the
SW or the HW
implementation of the
FutureTPM

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 32 of 82

Id Metric
Target
Value

Acceptan
ce

criteria

(M)andatory
/ (G)ood to

Have /
(O)ptional

Measured by
M36

Comments

3
Performance
of the FIDO
Registration

<=2 sec <=3 sec M

With TPM2.0:
0.063 ms

With
FutureTPM:
0.063 ms

Target achieved.

We consider only the server-
side processes for user
registration, excluding
network latency and user’s
interaction with the U2F
Security Key. Target
achieved.

4
Performance
of the FIDO

Authentication

<=1.5
sec

<=2 sec M

With TPM2.0:
0.0038 ms

With
FutureTPM:
0.0038 ms

Target achieved.

We consider only the server-
side processes for
authentication, excluding
network latency and user’s
interaction with the U2F
Security Key. Target
achieved.

5

Performance
of the control
flow property-

based
attestation

toolkit for the
operational
correctness

<=7 sec <=10 sec M

With HW
FutureTPM:

Attes.By.Quote

[CC_Quote +
CC_VerifySignat
ure] = 3.59 sec

Attes.By.Proof

[CC_Sign +
CC_VerifySignat

ure] = 3.55
secs

Target achieved.

For this KPI we consider the
time needed to perform the
core attestation by Quote of
Proof schemes. That is we
sum the timings of
CC_Quote, CC_Sign and
CC_VerifySignature, as
shown in the previous
column. The attestation key
creation is addressed by the
following KPI.

6

Performance
of key

generation
functionality
within the

domain of ms

<=20
ms

<=30 ms M

With HW
FutureTPM:

 NewHope: 780

ms
BLISS: 43405

ms

The timings given here for
the key creation of NewHope
and BLISS represent the
average of 100 executions of
the corresponding command.
In addition, we report here
the timings captured from the
network perspective as the
closest point to HW TPM that
gives the most accurate
result.

The KPIs numbered 1, 2, 3 and 4 were tested during the 1st experimentation period. However, the
2nd KPI regarding the performance of the sealing process has been updated in order to provide a
timing measurement during the 2nd experimentation period with the use of HW TPM.

The KPIs numbered 5 and 6 were planned for the 2nd experimentation period. For the 5th KPI, it
must be stated that we focus on the performance of the core cryptographic operations of the
attestation scheme (Quote, Proof), per se, and we do not refer to the time needed to perform the
tracing and the generation of the control flow graph. If fact, this process has been evaluated in the
context of WP4 and more specifically in D4.5; there the eBPF and IntelPT tracing techniques, in
the context of the FutureTPM multi-level detailed monitoring techniques, have been throughly
evaluated and compared for different orders of software complexity.

The performance of key generation functionality in the 6th KPI may not meet the target values set in
D6.1, however we need to state that the target was rather optimistic. Considering that the HW QR-
TPM is implemented on an FPGA board and the implementation used is not optimised for the ARM
architecture, and its scheduler consumes ~50% of the available CPU time, the acquired

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 33 of 82

performance timings of the NewHope case can be considered satisfactory. The performance of the
BLISS key creation process is strictly related to its intrinsic behaviour as explained before.

2.2.3.2 Qualitative Metrics

During the 2nd experimental phase, all the mandatory qualitative metrics have been achieved. More
specifically, the protection of sensitive tokens was a target which achieved during the 1st
experimentation period. The successful KPIs related to the integrity and confidentiality of the
history logs come as a result of the realisation of the INDEV.AU.3 user story. The user
authentication through the use of TPM metric is achieved through the design and extensive
analysis of the trust models given in section 2.1.3. Regarding the optional metric for the creation of
a TPM-based wallet that can support TPM migration functionality, the consortium left this target as
a future work that can play a crucial role in future applications.

Table 7: Demonstrator #1 – Qualitative Metrics by M24 and M35

Id Metric Target Value

(M)andatory
/ (G)ood to

Have /
(O)ptional

Measured by
M35

Comments

1
Protection of sensitive

tokens
Supported M

With TPM2.0:
Yes

With

FutureTPM: Yes

Successfully sealed both
Bearer and Financial

Tokens.

2
Confidentiality of local

history logs
Supported M

With
FutureTPM:
Yes, using

NewHope QR

scheme

Successfully performed
the encryption and
decryption commands of
NewHope

3
Integrity of local history

logs
Supported M

With
FutureTPM:
Yes, using
BLISS QR
scheme to
enable the

attestation by
Quote method.

Successfully performed
the integrity verification of
the history logs through
attestation by Quote and
the use of BLISS
signature scheme.

4
User authentication
through the use of

TPM
Supported M

Target Achieved

Documentation
is given in

Section 2.1.3.

We approached this KPI
as a research topic and
we developed the
required trust models in
order to achieve user
authentication through
the use of TPM and DAA
protocol. The evaluation
is given in Section 2.1.3.

5

The creation of a TPM-
based wallet that can

support TPM migration
functionality throughout

the user’s devices

Supported O
Not implemented. Left for future work as a
crucial function for future applications also

outside of the fintech scope.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 34 of 82

Chapter 3 Demonstrator #2 – Activity Tracking

3.1 Demonstrator Overview and Final Architecture

As described in the previous deliverables, the S5Tracker demonstrator is based around the
infrastructure build by S5 (Suite5 Data Intelligence Solutions Ltd), that is called S5Tracker, and
targets the activity tracking and personal health data collection and analysis domain, offered as a
service to healthcare institutions and professionals who need to track the physical activity as well
as health vital signals of individuals that they curate.

The main usage of the S5Tracker is that for creating information-rich user profiles, based on
activities recorded in diverse ICT communication channels and devices, pulled automatically, or
inserted into the system in a semi-automatic manner by users themselves. The current information
entry sources supported include APIs of specific IoT devices (e.g. Apple Health, Fitbit, Nike+,
Garmin, Smart devices, etc.), Web2.0 social platforms that record users activity (such as
Facebook, Twitter, etc.), as well as other smart devices that could be connected to the platform
such as Smart Home kits, etc.

In terms of technical infrastructure, the S5Tracker is a set of solutions which are the following:

 a cloud-based analytics engine (S5Tracker Analytics Engine) acting as a data handling
information environment of personalised and interlinked data streams related to activities
performed mostly by individuals, and

 various personal applications (called S5PersonalTracker, where each one corresponds to
one and only one individual) that are used to retrieve data from wearable devices and other
data sources that are residing at the individual’s side and push these data to the cloud-
based engine.

The actors identified, which play significant roles in the data value chain of the use case, and have
security and privacy considerations, are the following:

 An Individual User, who is a user that collects his own data from specific sensors and
social media accounts, using an application call S5PersonalTracker (See below);

 A Data Analyst, who gets access to the data (anonymised data or access to personal data)
to perform certain analyses;

 The S5Tracker Analytics Engine which is not an actual user but a system role that is
responsible for the operation of the S5Tracker Analytics Engine.

The different components are the following:

 S5PersonalTracker - A device on the side of the “individual user” which is used primary for
data collection and data push to the S5Tracker Analytics Engine;

 S5Tracker Analytics Engine – A central cloud-based service, which gets data from the
S5PersonalTracker and performs some analyses online, managing individuals’ data;

 S5DataEdgeAnalysis – A computer interface used by the Data Analyst, that connects to
the S5Tracker to fetch data and run online queries

The following picture highlights both the S5PersonalTracker and the S5DataAnalysis parts of the
infrastructure, while also the current dataflow directions are shown.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 35 of 82

Figure 17: Demonstrator #2 – Main Actors and Entities

As in any client-server infrastructure, which handles sensitive data, the service suffers from a set of
systemic challenges that require continuous integration and testing efforts, as well as big time
investments to undertake strategic decisions guaranteeing the service’s performance and
availability. In more detail, the main challenges faced at the moment, as the service resides in a
public cloud provider operating as a centralised application, have to do with:

 Data sharing privacy, confidentiality and security considerations, both at the level of the
cloud-based infrastructure (S5Tracker Analytics Engine) as well as in the
S5PersonalTracker side

 Data volume handling and scalability issues

 Data processing power and system performance optimisation over the cloud-based
offering.

Out of the aforementioned pain points, the most important which has been in the focus of the
FutureTPM demonstrator, is that of Data Anonymization and Privacy preservation that can be used
to both secure the data and the details of each user to not be accessible from other parties
accessing the platform, and also for the generation of aggregated “User Personas” which are
fictional representative users, that can be globally accessible by analysts, in order to create
reference cases.

During this demonstrator, the core focus lay on the how the utilisation of Software TPM, both at
the S5PersonalTracker and at the S5DataAnalysis sides could be used to realise a highly trusted
and secure environment for sharing personal data in a trusted and privacy preserving manner, that
can guarantee data integrity and anonymity as well in case the latter is chosen.

The demonstrator that was developed during the FutureTPM project is based on a refactored
architecture of the current S5Tracker infrastructure of the company, bringing into the picture TPM
methods that allow for highly privacy-preserving information exchange. In this frame, as depicted in
the previous figure, the demonstrator has three main actors and three different components where
each one of these actors operates one component.

The exact architecture of the overall infrastructure, as revised to fit the TPM modules, both in the
first and in the second experimentation period is shown in the next figure. As indicated in the
figure, the westbound component is that of the S5Personal Tracker, which consists of a frontend
interface and in the back end the different sub-modules are integrated that are used to retrieve the
data, store it locally, perform thin analytic methods and prepare the data to be sent over to the
Cloud Based Engine which resides eastbound. In more detail, data is retrieved from different
sensors (southbound in the figure), which do not possess TPM capabilities as they have very low
computational resources. The data is cleansed, curated and homogenised, and is stored in the S5
PersonalTracker Database. There, a Monstach services is used to synchronise the data with an
Elasticsearch component which is used to feed the Thin Analytics Engine, alongside with the DB.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 36 of 82

In case data needs to be shared to the S5Tracker Analytics Engine, a choice is made in the
FrontEnd by the user of whether the data will be stored as is or anonymised, and following this
data goes through a Data Selector & Bundler, which is tasked to select and truncate the payload
into sizes optimised for transfer.

The eastbound component is that of the S5Tracker Analytics Engine, which resides in a cloud
infrastructure (or alternatively is hosted by an organisation that offers S5PersonalTrackers to its
clients). A Data Check-in module is listening for incoming data streams and resolves in case a
payload is received whether it should be stored in the S5Tracker Users Data Store or it should
pass through the Persona Builder to be stored in the Anonymous Persona Data Store. Both of
these databases are available to a Spark-based Analytics Engine, that can be used through the
Frontend by Data Scientists, and the results can be saved in the S5Tracker Insights Store. Also, all
databases in the Analytics Engine component are available through an Export API to serve Data
Scientists with those data as needed.

The TPM comes in this picture in order to attest the S5PersonalTracker to the S5Tracker Analytics
Engine. As such each S5PersonalTracker executes first a Join() command in order for its TPM to
join the network (step 1 in the figure below). Then upon deciding to share the data the Commit()
(Step 2) command is executed, and then they payload is signed using the Sign() command (step
4). Upon arrival to the S5Tracker Analytics Engine, the payload’s signature is checked using the
Verify() (step 4) command, and in case there is a failure, the payload is dropped, else It is stored
either in the User Data Store, or is passed to the Persona Builder (by resolving the base name
selected).

Figure 18: Demonstrator #2 – Revised Architecture showing entities concerned in the demonstrator for the use cases till
M36

In this context, privacy regarding the data owner could be achieved by enabling interconnection
between the S5PersonalTracker and the S5Tracker Analytics Engine through Direct Anonymous
Attestation, while at the same time, data sharing modalities towards the S5Tracker Analytics
Engine side would be safeguarded, by providing access only to trusted devices for data fetching

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 37 of 82

and analysis, which would be configured according to the data sharing principles of the overall
platform (so that for example data cannot be exported to a storage medium.

Figure 19: Demonstrator #2 – Screenshot of the S5Personal Tracker Interface

During this second and final demonstration period, the experimentation emphasised on the DAA
part between the S5PersonalTracker and the Analytics Engine infrastructure, with the focus being
on the allowance of the former to sign and send payload to the latter, which verifies the payload
and stores it in the appropriate database, depending whether the payload sent is anonymous (thus
contributing to building anonymised “personas”), or eponymous, by using specific basenames,
which then is stored to the personal bucket of a user in the database.

Figure 20: Demonstrator #2 – Screenshot of Sharing Selection and Execution at the S5Peronal Tracker Side

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 38 of 82

These actions have been performed using both the initial and also a complete revised version of
the LDAA method of that used in the first experimentation period, to test for performance gains and
the validate the overall solution as a next-generation QR infrastructure, as described below.

3.1.1 Demonstrator Needs and Challenges

The Activity Tracking demonstrator aims to incorporate TPMs into the overall ecosystem of its
operations, and therefore it was essential to test that the offered trust and security guarantees
could serve the purpose of providing to end-users the level of trust and anonymization they would
need and of course to the platform to be able to know that the data is coming from genuine and
authenticated devices which are part of the ATracker infrastructure.

In this context, during the first period, a version of the QR LDAA protocol was tested for adding the
necessary features in the communication happening between the S5PersonalTrackers and the S5
Analytics Engine, to safeguard that data uploaded to the platform is genuine and comes from the
authenticated endpoints.

Coming out of the first experimentation phase, two major challenges were faced. The first had to
do with certain delays that caused runtime errors and sync errors between the two different
entities, with the main reason for those being the size of the payload and the delays imposed by
the TPM in the signing and verifying the data. Severe delays were experienced in the execution of
the Sign() TPM commands, which was a logical consequence of the number of computations
necessary for the QR algorithms to get configured and executed. To overcome this challenge, a
specific parameter in the QR FutureTPM stack has been used, which selects the weakest security
parameters to use in the LDAA, in an effort to boost performance.

It was also necessary to implement a mechanism that truncated the payload into smaller
packages, which were in total faster to sign and verify, and overcome this obstacle, and test
whether this was also acceptable from a business point of view.

Nevertheless, although these challenges were dealt with at the first phase with the tweaks
mentioned above, it was decided to focus during the second experimentation phase into optimising
the code and the integration with the ATracker interface, to allow for the signing and transfer of
larger packet sizes, as well as to test a revised version of the LDAA methods which would be
developed during the project.

3.2 Implementation Path Report for the 2nd Experimentation Period

During the 2nd phase of the demonstrator within the FutureTPM project, the user stories realised
had to do with optimising the overall infrastructure and ground-up rewriting certain function that led
to a new deployment of the demonstrator with the aim to integrate the revised version the LDAA
protocol and for allowing the signature of larger packet sizes.

As such, a heavily revised version of the ATracker infrastructure was deployed and two versions of
LDAA were integrated, in order to evaluate the signature of payload packages and the verification
of those by the S5Tracker Analytics Engine, for storing them in the appropriate buckets (or
dropping them in case these were not verifiable).

Firstly, this allowed to test that the new data management component of the infrastructure in
cooperation with the method was able to satisfy the maximum packet size envisioned for the
operation of the infrastructure which is of the size of 25MB of data. This size actually refers to
syncing a bulk amount of sensor data collected over a period of 1 month (the maximum timespan
that the system allows for retrieving data from a S5Personaltracker) between the
S5PersonalTracker and the S5 Analytics Engine for a period of 1 month.

Secondly and more important, the objective was to test a revised version of the LDAA protocol to
identify if the delays witness during the first initial experimentation round could be minimized,
making the overall infrastructure more robust, utilizing the same packet sizes (5kB and 25MB) and
the same round of tries in each scenario. In this context, the whole process that deals with LDAA

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 39 of 82

has been reconstructed for the demonstrator and therefore a new version of the demonstrator was
deployed to allow the transfer of data between the collaborating entities and the according user
stories have been successfully implemented.

Since the first version of the LDAA scheme was impractical in terms of execution times and
memory consumption, the revised version was proposed much later as a result of an ongoing
research (see [18]). Thus, the implementation of the revised scheme was a late addition to the
INESC-ID tasks, which revealed some issues concerning the verification of signatures generated
by the protocol. As a result, only the Join() and Commit() commands of the revised LDAA protocol
was integrated into the context of the ATracker. Nonetheless, the scheme was implemented and
benchmarked by INESC-ID as a standalone application. The results are summarized in subsection
3.2.2.

3.2.1 Activity Tracker Demonstrator – Experimentation with LDAA-v1 and LDAA-
v2

3.2.1.1 Emulated System Description

For reasons of reproducibility, all the tests that have been performed in this second
experimentation phase utilised the same hardware infrastructure as well as the same virtualized
environment.

In more detail, the following hardware and OS configuration was used

 CPU: Intel i7-6700 CPU @4.00 GHz

 Memory: 16 GB of DDR4

 Host OS; Ubuntu 18.04 in the host

 VM OS: Fedora 30

 Hypervisor: KVM

To expose the virtual TPM in the VM, the packets libtpms and swtpm (both the non-QR and the QR
version) have been installed in the host. Initial provisioning of the virtual TPM has been manually
done with swtpm_setup.sh (for TPM 2.0) and with TSS utilities (for QR-TPM).

Router software for remote attestation has been installed in the virtual machine, while the Remote
Attestation Server and the server endpoint of the TLS connection have been installed in the host.

The tests results have been obtained by running 100 times the binaries that implement the four
main functionality of the demonstrator (AK creation, TLS key creation, TLS connection, and TPM
quote), by collecting the results and by calculating both the non-weighted and the weighted
(LWMA) average, using 2 different packet sizes, namely 5kB and 25MB.

3.2.1.2 User Stories Realisation

During this experimentation round, as the focus was on re-evaluating the LDAA method with the
new functionalities, the following user stories were executed.

Those are provided in the following tables.

Description

User Story Title: S5.IU.1 - As an Individual User I want to provide authenticated data to the
S5Tracker Analytics Engine, so that I can be served with user-specific services such as
notifications send by the analysts.

Workflow Developed: For this use case, the S5PersonalTracker had to acquire the TPM
credentials by using the Join() command, load them and then select the payload to Sign().

The signed packets (as coming out of the S5PersonalTracker database) were sent to the
S5Tracker Analytics Engine, which performed the Verify() command to check the signature and

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 40 of 82

Description

either store the payload in the bucket of the designated user, or drop it.

Figure 21: S5.IU.1 sequence diagram

Issues Encountered: None

Status: Completed

Degree of Realisation: Full

Comments (if any): User story successfully completed using the new LDAA method. In contrast to
initial experimentation with the LDAA algorithm (hereafter called LDAA v1), where timeouts were
encountered resulting in messages not able to be signed, this version has not shown signs of this
problem, while the revised data management framework used allowed also the LDAA v1 method to
be executed successfully as well. As such, the whole payload was able to be loaded and signed
(the reference was a payload of 25MB in size, which is more than the actual payload that is
transferred daily from a single S5PersonalTracker application to the cloud-based infrastructure).

Description

User Story Title: S5.IU.2 - As an Individual User I want to provide anonymous and privacy-
preserving data to the S5 Analytics Engine, so that data analysts can have a rich repository of
activity data for exploration.

Workflow Developed: For this use case, the S5PersonalTracker had to acquire the TPM
credentials by using the Join() command, and then select the payload to Sign() by using a base
name that has been common amongst all other clients. The signed packets were sent to the
S5Tracker Analytics Engine, which performed the Verify() command to check the signature and
either store the payload in the bucket of the “persona” user (thus anonymous), or drop it. The
sequence diagram is same as in the S5.IU.1 user story.

Issues Encountered: The Verify() and the Sign() command were not integrated to the S5 Activity

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 41 of 82

Description

Tracker infrastructure, while they were implemented and tested in a standalone environment.

Status: Completed (Party in the Integrated Demonstrator (till the Join() phase), Fully in the
standalone environment

Degree of Realisation: Full

Comments (if any): In contrast to LDAA v1, where timeouts were encountered resulting in
messages not able to be signed, this version has not shown signs of this problem. As such, the
whole payload was able to be loaded and verified (the reference was a payload of 25MB in size,
which is more than the actual payload that is transferred daily from a single S5PersonalTracker
application to the cloud-based infrastructure).

3.2.1.3 KPIs Measured

During the second phase of the operation of the demonstrator, a direct comparison with the KPIs of
the first period was south after, which has to do with the establishment of the LDAA scheme
between the S5PersonalTracker interface and the Analytics Engine. For the needs of this
demonstrator a simulated environment with synthetic data (identical of the first demonstration
period) has been deployed and these data were sent from the one end to the other to check the
performance of the protocol.

For these experiments, performance has been measured, while in the case of the first version of
the FutureTPM LDAA implementation, the experiment has been conducted by employing its “weak”
state, as this has allowed to retrieve the fastest possible responses from the TPM and in a timely
manner, as higher degrees of security are heavy-load operations which take quite longer execution
times in a mainstream computing environment, thus making the overall service unresponsive in
terms of business operations.

The revised LDAA version was only implemented for the highest security parameters suggested in
[18]. At first, the initial prototype was intended to validate the reductions in memory sizes, thus the
choice for the highest bound.

As during the first phase larger than expected performance drop has been noticed when compared
with the TPM2.0 DAA protocol, it was decided to repeat the same measurement but this time
taking into consideration two different payload sizes (5kB and 25MB) and for each payload the
method was executed 100 times in order to measure the average timings of the different
commands. The rationale behind this approach comes from the fact that in the Activity Tracking
demonstrator, there is no need to transfer data in real time (for many reasons and one of those
being also battery life in the S5PersonalTracker devices), and we would like to test whether, from a
time delay perspective, it would make more sense to bundle more payload together and send it
over, rather than sending smaller payload chunks more frequently.

3.2.1.3.1 Quantitative Metrics

In terms of the quantitative evaluation of the project, the acceptance criteria set initially in D6.1 for
the scenarios of the second phase of the demonstrator (M36) have been met in their majority.

The next tables summarise the timings of the SW implementation of TPM commands for this
demonstrator at the current version released in M35 of the project.

The first table starts with presenting the timings of the sequence of commands (grouped by the
major commands) for applying the DAA method with the use of the Software implementation of
TPM2.0, measured at the application level of the Activity Tracker demonstrator, for signing and
verifying a packet of 25MB of data. Having as a reference point these timings with a current
TPM2.0 implementation, the same amount of payload has been used to perform the equivalent

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 42 of 82

LDAA operations (signing and verifying) with the QR software implementation of FutureTPM. In
essence, LDAA has been used, utilising the same computational resources, and the timings at
application and TSS level are the ones presented in the next table.

Table 8: Comparison of DAA/LDAA Timings at Application level

 TPM2.0 DAA Timings FutureTPM LDAA-v1 FutureTPM LDAA-v2

Join () and Commit () 1,190 sec 1,936 sec 10,754 sec

Sign () 1,116 sec 58,986 sec 1,585 sec 1

Verify () 0,382 sec 2,784 sec n/a 2

Unlike the applications that can replace RSA and ECC functionality with similar QR counterparts,
the presented LDAA results and commands should not be interpreted in a similar way. Due to its
memory requirements the current LDAA implementation is not deeply integrated in the TPM. The
commands provided were implemented as a possible interface for a quantum-resistant accelerator.
As such, there is not a one-to-one mapping to the non-quantum resistant TPM. The integration of
LDAA into the standard TPM commands was foregone because of backwards-compatibility
concerns. Its addition would be disruptive to the standard commands, given the magnitude of the
data that LDAA has to operate over, and break previous TSS compatible programs. In order to
reduce the impact of the current LDAA implementation, we have decided to separate the
commands such that we can test the current interface without interfering with other applications.

Seeing the table above and the figures that follow, it is noted that LDAA-v1 runs faster in the Join()
phase, but significantly lags when it comes to the Sign() phase. The reason for this is that the
LDAA-v1 results were obtained by using the -LDAA1 flag, aka “weak” parameter of the software
QR-TPM implementation which selects the weakest security parameters (q = 3329 (12 bits);
cyclotomic polynomial of 256; k = 3; etc). This was done like this in order to forego security in
favour of performance due to the inefficiency of the implemented LDAA-v1 algorithm which
resulted in the system halting when trying to use stronger parameters, or in the best-case scenario
having the performance being significantly reduced.

In contrast, the measured performance of LDAA-v2 in the Join() phase was lasting longer, yet
within acceptable limits, considering also the significant performance gains expected (see 1) during
the Sign() phase.

In more detail, as the figures showcase, using the LDAA-v1 with the -weak parameter activated,
there was a noticeable delay in specific TPM operations at the level of the Application, with the
most severe being in the Sign() protocol than the current TPM2.0 implementation. The other
noticeable delays concerned the Verify() protocol, however as the time required for this operation
is lower than 3 seconds, they are acceptable from the business point of view for the current
demonstrator.

1 Actual figures were not measured in the integrated demonstrator testbed as the Sing() command was not ready to

be integrated. The numbers provided here are an extrapolation of the findings of Section 4.2.2 of the standalone
environment where 150x performance gains during the Sign() operation are noticed. These numbers are placed here
to conduct a “qualitative” comparison” and are calculated by multiplying the LDAA-v1 figures with 150, always
referring to a scenario with -weak parameters. Using the LDAA-v2 with the strongest security parameters results in
performance gains of 33% at TSS level (38seconds compared to 58 seconds)

2 The Verify() command were not part of the integration in the demonstrator’s testbed.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 43 of 82

Figure 22: Comparison Graphs for different timings at application level

These delays indicated the need to work on a revised version of the LDAA protocol which was
meant to achieve better performance, and that was achieved with the provision of the LDAA-v2
protocol. The core reasons for this decision was that the delay imposed during the Sign() process
could lead to timeouts in the S5PersonalTracker devices, and thus deem the overall usage of TPM
not feasible. After revising the TPM and delivering LDAA v2, the expected timings were
significantly improved. However, as there was an error in the verification method, and it was not
possible to extract any accurate result for the performance during the Sign() and Verify() steps,
these stages have not been tested as part of the integration, as it would not make sense to verify a
signature that would eventually fail. Nevertheless, the performance improvements of these steps
have been tested in a standalone environment and are presented below, as part of subsection
3.2.2, while extrapolated figures for the Sign() method are provided as part of the demonstrator’s
measurements, by applying the in the lab measured gain of 150x times on the LDAA-v1 timings.

Again looking at the numbers in the following tables and figures which compare LDAA-v1 to LDAA-
v2, it is obvious that the LDAA-v2 reached its goal of delivering a much faster implementation, as
apart from taking a considerable amount of time during the Join() phase due to the higher security
guarantees selected, results in the Sign() phase are quite close to those of the TPM.20
implementation

Apart from the measurements at the application level, measurements at the TSS were also
performed, as those allowed to have a better and more objective representation of the protocol’s
performance.

Below we provide the average timing figures of these operations at TSS level for packets of
5kiloytes and of 25Megabytes, which were executed 100 times each.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 44 of 82

Table 9: Demonstrator #2 –Timings at TSS Level using the FutureTPM QR Implementation (SW) of LDAA-v1

QR FutureTPM Timings LDAA – 5kB file size vs 25MB file

 LDAA v1 – 5kB LDAA v1 – 25MB

Initialise and Join () 741,246 ms 736,321 ms

init_issuer_ldaa 5,425 ms 5,442 ms

init_host 0,005 ms 0,003 ms

startup 134,624 ms 133,338 ms

create_primary
134,130 ms

133,312 ms

create
151,538 ms

152,154 ms

load 179,377 ms 176,436 ms

ldaa_join 136,144 ms 135,633 ms

Sign () 58.262,955 ms 57.786,741 ms

ldaa_sign 133,751 ms 132,366 ms

join 148,566 ms 151,570 ms

ldaa_commit_token_link 142,748 ms 142,615 ms

LDAA Sign Commit (multiples) 27706,912 ms 27231,861 ms

host_sign 772,777 ms 739,210 ms

host_generate_challenge 262,261 ms 767,719 ms

ldaa_sign_proof 623,742 ms 672,170 ms

sign_merge 765,283 ms 717,864 ms

Verify () 1.322,778 ms 1.584,747 ms

Total 60.326,979 ms 60.107,809 ms

As depicted in the above placed table and in the following figure, there seems to not be a
considerable difference between the total time it takes to process smaller or larger files, in contrast
with the first experimentation period where it was impossible to sign larger files. As it is logical, the
25MB files takes a bit longer, in the Sign() and in the Verify() phase, however these differences are
not noticeable at the user level.

Furthermore, as identified in the previous deliverable, the main justification for these delays has to
do with the fact that LDAA signature (Sign()) is a multi-step process and there are certain steps
which take longer than others. The first one is the required shared matrix between the host and the
TPM. Since this matrix is quite large, it would take longer to transfer it to the TPM than to
regenerate it, so for the experiments to become a reality it was decided to regenerate the matrix
using a pre-determined seed, which slows down the processing immensely as every time a call to
a sign command is made, this matrix needs to be regenerated. The reason behind not using a

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 45 of 82

cache is because the TPM doesn't possess any cache and in the current software implementation
there was a need to simulate the conditions as close as to those of a physical device.

Another important point is the fact that the commitment scheme doesn't suit the TPM, i.e., the
commitment scheme requires a vector matrix multiplication where the matrix is very large.

Figure 23: Comparison Graphs for different timings for 5kB and 25MB files

Figure 24: Comparison Graph 2 for different timings for 5kb and 25Mb files

The following table presents the timings of the experimentation with the LDAA v2 protocol at the
TSS level, considering only the Initialise() and Join() commands.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 46 of 82

Table 10: Demonstrator #2 – Timings at TSS Level using the FutureTPM QR Implementation (SW) of LDAA-v2

QR FutureTPM Timings LDAA v2 – 5kB file size vs 25MB file

 LDAA v2 – 5kB LDAA v2 – 25MB

Initialise and Join () 9.135,296 ms 9.554,546 ms

init_issuer_ldaa 8425,015 ms 8831,208 ms

init_host 0,001 ms 0,002 ms

startup 145,337 151,624 ms

create_primary 142,781 ms 147,222 ms

create 140,297 ms 142,205 ms

load 142,208 ms 140,948 ms

ldaa_join 139,654 ms 141,334 ms

Figure 25: Comparison Graphs for different timings for 5kB and 25MB files

As the above-mentioned figure displays, the new LDAA implementation (LDAA-v2) aimed at
improving the overall timings and therefore to increase the overall performance of the LDAA
methods. Based on the timings recorded the new LDAA protocol (LDAA v2) it seems to be x11
times slower during the Join phase, and as the standalone results have shown (see section 3.2.2),

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 47 of 82

this phase runs slower than this of the LDAA-v1. However, the main interest was in the Sign phase
where the major delays have been recorded using LDAA-v1, and even worse with weak security
parameters, therefore it was essential to have a better performance at that stage.

The next table provides a comparison of the timings of LDAA-v1 and the LDAA-v2 protocols in the
Join and Sign phases, by using the actual measurements of the testbed during the Join phase of
both LDAAv-1 and LDAAv2 as well as of the Sign phase of LDAA-v1, and extrapolated numbers
for the LDAA-v2 regarding the Sign phase, by applying a multiplicator of 1/150 to LDAA-v1 timings,
as it was found that during that phase there is a x150 faster execution.

Table 11: Demonstrator #2 – Timings at TSS Level using the FutureTPM QR Implementation (SW) of LDAA-v1 versus
LDAA-v2

QR FutureTPM Timings – TSS Level Comparison LDAA-v1 vs LDAA-v2 (Average Numbers 5kB file)

 LDAA-v1 (A) LDAA-v2 (B)
% Difference

between B and A
Time Difference

(B-A)

Initialise and Join () 741,246 ms 9.135,296 ms 1132,42% 8.394,050 ms

init_issuer_ldaa 5,426 ms 8.425,015 ms 155.184,65% 8.419,590 ms

init_host 0,005 ms 0,002 ms -64,00% -0,003 ms

startup 134,624 ms 145,337 ms 7,96% 10,713 ms

create_primary
134,131 ms

142,782 ms 6,45% 8,651 ms

create
151,539 ms

140,297 ms -7,42% -11,241 ms

load 179,377 ms 142,208 ms -20,72% -37,169 ms

ldaa_join 136,144 ms 139,655 ms 2,58% 3,511 ms

Sign ()3 58.262,955 ms 388,420 ms -99,99% -57.874,535 ms

ldaa_sign 133,752 ms - - -

join 148,566 ms - - -

LDAA Sign Commit (multiples) 27.706,913 ms - - -

host_sign 772,777 ms - - -

host_generate_challenge 262,261 ms - - -

ldaa_sign_proof 623,743 ms - - -

sign_merge 765,283 ms - - -

Total Time 59.004,201 ms 9.525,598 ms -83,86% -49.478,603 ms

3 Results for the LDAA-v2 Sign() command are extrapolated based on the findings of section 3.2.2

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 48 of 82

Figure 26: Comparison Graph for different timings for 5kb LDAA-v1 vs LDAA-v2

In the figure below we present the comparison of both versions of the protocols during these two
phases in a 100% stacked bar diagram

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 49 of 82

Figure 27: Comparison Graphs for different timings for 5kb and 25kb files for the Initialise and Join phase

As the above-mentioned figure shows, the new LDAA implementation during the second period
aimed at improving these timings and increasing the overall performance of the LDAA methods.

Based on the timings recorded, and as seen in the next figure, the significant reduction in the Sign
phase allowed in the business context of the Activity Tracker demonstrator to lower the
overall execution time from 59 seconds to 9,18 seconds, resulting a the LDAA-v2 protocol
being 83,36% faster (so 6x times faster) at the side of the client, when packets need to be signed
using the same security parameters.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 50 of 82

Figure 28: Total Execution Time for the Join and Sign phase at the TSS level

The next table depicts the KPIs corresponding to the implemented use cases, as identified in D6.1
and measured in this deliverable.

Table 12: Demonstrator #2 – Quantitative Metrics by M36

Id Metric Target Value
Acceptance

criteria

(M)andatory /
(G)ood to

Have /
(O)ptional

Measured by M24 Comments

1

Allowing only
for trusted S5

PersonalTracker
interfaces to

interact with the
S5Tracker

Analytics Engine

100% 100% M

With TPM2.0: 100%

With FutureTPM
(LDDA v1): 100%

With FutureTPM
(LDDA v2): 100%4

Target Achieved.

Packets that have
not be signed,
are automatically
dropped

2

Performance
evaluation of

process of
sending for
analyses an

average set of
5kB of daily

collected

-35% -45% M

With TPM2.0: 1,5
seconds

With FutureTPM
(LDDA v1): 61,40

seconds

With FutureTPM

Target not
achieved,
however using
the LDAA-v2 the
timings can be
accepted from a
business point of
view, when

4 Based on the evaluation condiucted in the lab environment.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 51 of 82

Id Metric Target Value
Acceptance

criteria

(M)andatory /
(G)ood to

Have /
(O)ptional

Measured by M24 Comments

personal data at
application leve

(LDDA v2): 10,07
seconds

transport Is
performed on a
schedule manner

3

Performance
evaluation of

the
infrastructure

during the Join()
phase at

application level

800 ms 2.000 ms G

With TPM2.0:
1,190250 seconds

With FutureTPM
(LDAA v1): 1,94

seconds

With FutureTPM
(LDAA v2): 10,33

seconds

Target not
achieved but
within the
acceptable space

4

Improved
perception of

Individual Users’
trust to

S5PersonalTrack
er as a data

hub5

100% 60% G

With TPM2.0: 100%

With FutureTPM
LDAA v1: 90%

With FutureTPM
LDAA v2: 95%

Target not
achieved but
highly acceptable

1 out of the 20
users gave
anegative
evaluation due
to the delay
experienced,
which impacted
negatively his
perception of
trust.

3.2.1.3.2 Qualitative Metrics

Support for DAA has been achieved with the current version of the software-based implementation
of FutureTPM, which has been released by the project in order to kick start the demonstrators, and
it covered the main scenarios that have been defined for the first version of the demonstrators.

Table 13: Demonstrator #2 – Qualitative Metrics by M36

Id Metric
Target
Value

(M)andatory /
(G)ood to Have /

(O)ptional
Measured by M24 Comments

1
Support DAA for

enhanced privacy
S5PersonalTracker

Supported M

With TPM2.0: Yes

With FutureTPM LDAA v1: Yes

With FutureTPM LDAA v2: Yes

DAA support has
been successfully
implemented

5 To be measured with the use of structured Saaty scale questionnaires, addressed to a set of 25 selected users of

the S5 Activity tracker users that will be introduced to the advantages brought by the TPM technology

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 52 of 82

3.2.2 LDAA-v2 Experimentation as a Standalone Application

The LDAA-V2 protocol was quantitively evaluated as a standalone application considering the
highest security settings suggested in [18] (i.e., q = 1180591620683051565059 (70 bits);
cyclotomic polynomial of 4096; k = 60).

All the measured times result from taking the median over one hundred runs on an Intel Xeon Gold
6140 running at fixed 2.3 GHz. The LDAA-v1 considers medium security parameters (i.e., q =
8380417 (23 bits) and cyclotomic polynomial of 512).

3.2.2.1 KPIs Measured

As can be seen from the following figure the LDAA-v2 improves the execution time for the Sign
command significantly.

However, key creation through the Join() command is not as fast as before, which can be
attributed to the inefficient ring of the LDAA-v2. Since the modulus q has to be congruent to 3 mod
8, in the new scheme, the Number Theoretic Transform (NTT) is not easily applied. In
consequence, we chose the Karatsuba Algorithm for polynomial multiplication, which is
significantly slower than applying the NTT.

It should also be noted that the degree of the polynomial ring is greater in the LDAA-v2, which
plays a significant role as well. In summary, despite the challenges in the implementation, the
LDAA-v2 is around 150 times faster for the Sign(), while being approximately 10 times slower in
the join phase.

Table 14: Execution timings for LDAA-v2 in comparison with comparison with LDAA-v1.

QR FutureTPM Timings LDAA

TPM Timings – LDAA v1 TPM Timings – LDAA v2

Create() Timings (miliseconds) Create() Timings (miliseconds)

 374 335

Join() Timings (miliseconds) Join() Timings (miliseconds)

 179 1.756

Sign() Timings (miliseconds) Sign() Timings (miliseconds)

 7,2 × 106 38.336

In terms of keys and signature sizes the results presented in Figure 15 show the LDAA-v2 with
bigger public key and private keys, while signature sizes are reduced by 480 times. It should be
noted that this considers an upper bound for the public and private keys, which could be
compressed further in future works.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 53 of 82

Table 15: Public Key, Private Key and Sigature Sizes for LDAA-v2 in comparison with comparison with LDAA-v1

QR FutureTPM Public Key, Private Key and Sigature Sizes LDAA

TPM Memory – LDAA v1 TPM Memory – LDAA v2

Public Key Sizes (kB) Join() Sizes (kB)

 25 32,8

Private Key Sizes (kB) Sign Sizes (kB)

 24 65,7

Signature Sizes (kB) Sign Sizes (kB)

 624.000 1.300

The required memory on the TPM for executing the LDAA-v1 and LDAA-v2 is reported in Figure
16. In terms of persistent memory, a reduction around 22 times is observed. For versatile memory
the reduction is greater, with almost 400 times less memory begin needed by the TPM.

The reduction in TCP IO buffers follows the reduction in signature sizes. Thus, in the LDAA-v2 the
buffers can be 80 times smaller than before.

Table 16: Maximum memory requirements for LDAA-v2 in comparison with comparison with LDAA-v1

QR FutureTPM Memory Consumption LDAA

TPM Memory – LDAA v1 TPM Memory – LDAA v2

Persistent Memory Memory in kB (max) Join() Memory in kB (max)

 35.000 1.600

Versatile Memory Memory in kB (max) Sign Memory in kB (max)

 512.000 1.300

TCP I/O buffers Memory in kB (max) Sign Memory in kB (max)

 128.000 1.600

In summary, the early results obtained for the LDAA-v2 as a standalone software already shows a
step towards more efficient and practical TPM with support for LDAA schemes.

It should be noted, however, that development still in an early stage where several improvements
are possible. Future works should focus mainly on fixing the problems related to the Verify()
command, as well as improving polynomial multiplication and reducing keys sizes.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 54 of 82

3.3 Use Case Evaluation

During the FutureTPM project and the phase of the demonstrator, the LDAA protocol based on a
software QR-TPM infrastructure has been successfully implemented in the S5 Activity Tracking
demonstrator. As anticipated, due to the increased complexity and resource heavy operations (in
terms of QR-computations), performance issues (in terms of delays) have been noticed, which
were expected and are inherited by the nature and the overall architecture of the TPM and of
course by the resources needed to work with QR algorithms and the associated security schemes.

In any case, and when looking at the records presented above, from a business perspective the
integration of the QR-TPM methods in the infrastructure is in a position to provide acceptable
results in an operational environment, even if the measured performance is not meeting the ideal
targets set. The main reason for this, is the pivotal move in the design of the overall infrastructure
which since the last year is not focused on the delivery of real-time data, but on the provisioning of
data in bulk and scheduled loads.

As identified when experimenting with the LDAA-v1, the application of the LDAA protocol in its first
version, was creating a local burden and delays in the different peers, thus affecting the overall
system of the S5 Activity Tracker, and eventually having a negative impact on its performance
which had to be mitigated by having all data transfers happening based on an overnight scheduled
programme. However, it needs to be noted that the way to work with LDAA-v1 dictated the use of
weaker security guarantees to have the packets signed within acceptable, yet quite long-time
limits. As such, the omitted need of having real-time data flows allowed to accept longer delays,
however, the benefits of integrating such a solution in the overall infrastructure was not obvious
and was greatly impacting the business value of the application due to the delays brought forward
by the LDAA-v1 algorithms.

Based on the above facts, it was deemed necessary to experiment with a new revised and
improved LDAA version (that is LDAA-v2) which promised to provide faster deliveries. The other
big advantage of this would be also the highly elevated security guarantees over the ones offered
by LDAA-v1. As the experiments have shown, LDAA-v2 comes quite close to the targets set for the
Activity Tracker demonstrator if the same security parameters are used as those in LDAA-v1, and
is in fact 150x faster that those of LDAA-v1. Still delays are there, however the time to wait is
drastically lower of that of LDAA-v1, and despite the fact that the infrastructure still worked with
transferring packets based on a schedule, it is possible to invoke the LDAA-v2 also on demand, as
the delay is at the timeframe of 10-15seconds. It is also added, that as the experimentation in the
stand-alone version has shown, the use of the strongest security parameters, at TSS level delivers
results also faster that those of the -weak parameter of LDAA-v1, with an estimated reduction of
around 33%.

Nevertheless, in both cases (and especially for the LDAA-v1) it needs to be pointed out that in
case there exist requirements for real-time streaming data, these algorithms prove quite hard to
use as they impose a delay which in many business cases is not tolerable. However, when it
comes to requirements that are “close-to-real-time”, then different mechanisms can be employed,
such as caching and creating continuously running application daemons, etc. to lower as much as
possible the delay that comes in place mostly by the Sign() command.

In any case, it is stressed out that the demonstrator has been grounded around emulating the TPM
and thus every time a command is issued the operating system needs to spawn the process, setup
the TCP connection, run the required code by the TPM, transfer the data, wait until the SW-TPM
responds, and finally kill the process and destroy all objects, which is a process that adds extra
delay in the overall process. This means that when the same algorithms are ready to be used in a
hardware TPM, delays will be quite smaller and possibly not important.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 55 of 82

Chapter 4 Demonstrator #3 – Device Management

4.1 Demonstrator Overview

The network device management demonstrator intends to show how system integrity challenges
can be solved, at scale, in the scenario of a distributed telecommunications infrastructure
composed of many centrally managed network devices.

In the context of this demonstrator, network routers equipped with a QR-TPM are required to prove
their hardware identity and software integrity to a Network Management System (NMS). The
process is integrated with the usual management operations that the NMS is performing across the
entire lifecycle of the router, from deployment stage through regular operation until their
decommissioning, by leveraging the concept of Remote Attestation. Based on the outcome of this
process, the NMS can decide whether any given router can be trusted for routing user traffic or, if it
cannot be trusted, whether it should be avoided, e.g., by adjusting the routing policy on its
neighbouring routers.

4.1.1 Demonstrator Needs and Challenges

System integrity is a fundamental security aspect. It cannot be simply assumed that a certain
security policy is enforced on a given system without having evidence that the part of the system
responsible to enforce the policy, called the Trusted Computing Base (TCB), is trustworthy. The
trusted computing paradigm promoted by the TCG addresses the need of verifiable evidence about
a system and the integrity of its TCB and, to this end, the TPM and related TCG specifications
provide both the foundational concepts, such as Measured Boot and Remote Attestation, as well
as the necessary building blocks, such as the TPM and the TSS, to provide trusted computing
capabilities to a wide range of ICT systems.

Still, there remain several challenges for the wide scale adoption of trusted computing and the
telecommunication industry is a particular case. Often the adoption is not reaching its true potential
due to several aspects such as incomplete support infrastructures, lack of standard protocols,
flexibility in the platform specifications, scalability, performance and availability concerns, and
adoption in virtual infrastructures, to name a few. There is also a perceived aspect of
incompleteness of integrity measurements or guarantees, due to the traditional focus of trusted
computing on the system boot time or, at most, the load-time of applications, without covering
system integrity beyond these stages, during system execution, which is especially important for
high-availability systems that have months or years between reboots.

A different type of challenge is related to the long-expected lifecycle of telecom routers, ranging
from 10 to 15 or even 20 years. This means that the underlying cryptographic primitives of roots of
trust such as the TPM need to remain trustworthy also beyond the horizon for practical quantum
computer cryptanalysis. Using a QR-TPM will provide insights into transitioning from classical
cryptography to QR cryptography, with respect to performance and integration impact.

4.1.2 Demonstrator Architecture

During the 2nd period, the architecture of the demonstrator has remained unchanged and is
illustrated in Figure 29.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 56 of 82

Figure 29: Demonstrator #3 – overall architecture and main entities

The Demonstrator is implemented as a virtualized network environment that consists of several
key entities:

 Routers - route the traffic between Web Server and Client.

 Network Management System (NMS) - a server that manages routers over TLS channels.

 Remote Attestation (RA) Server - a server that is responsible for attesting the routers.

 Web Server and Client - machines that communicate to each other via the network of
routers.

The NMS augments the decision on the routing policy that is to be sent to the routers in the
network, by factoring in the trust state of each router, in addition to the usual network-related
parameters. The trust state is the result of Remote Attestation (RA), in which the measurements of
the software loaded on a router is verified by an RA Server against reference values that
characterize known (and thus trusted) software versions and configurations.

If all routers are in respective trusted states, meaning that all the software running on the router is
known to be good, the routing policies calculated by the NMS for the network will only depend on
the network parameters. If a given router does not attest successfully, meaning that not all the
software running on it is known, the NMS will push to the neighboring routers policies that divert
traffic away from the untrusted router. This is done to the extent allowed by the network service
level agreement, as some routers might be a single point of failure for a certain part of the network
and avoiding them completely might break the network availability.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 57 of 82

Each of the entities above interfaces with each other through standard REST APIs, as depicted in
the user story diagrams in section 4.3.1. Each router is modeled as a virtual machine (VM) which
uses a dedicated QR software TPM instance running on the hypervisor and exposed by qemu.

Compared to the architecture described in D6.1, the demonstrator introduces a new capability
called Secure Zero Touch Provisioning (S-ZTP), which allows the automatic and secure
establishment of trust, called enrolment, between a new router connected to the network and the
NMS, without human intervention (other than plugging-in the router). S-ZTP eliminates the need of
trust on first use or out-of-band trust establishment schemes, which, in practice, can be very
unreliable from the perspectives of trust model, organization and cost. The result of successful
enrolment of a router is materialized by the issuance of a TLS certificate that can be used to
securely communicate with the NMS or with other routers.

4.2 Emulated System Description

In the 2nd testing period, the demonstrator has been implemented and evaluated in an upgraded
virtualized environment compared to the first cycle where the traditional SW-based TPM was
leveraged. The intuition is to proceed to a detailed experimentation of the implemented QR v-TPM
in such a resource-constrained decentralized environment. Recall that v-TPMs perform
cryptographic co-processor capabilities in software. In the context of FutureTPM, additional
cryptographic primitives have been implemented as part of the QR SW-based TPM – and its
trusted software stack – that were instantiated to be able to run in virtualized execution
environments. These are BIKE, SPHINCS+ and RAINBOW.

When added to a virtual machine, a v-TPM enables the guest operating system to create and store
keys that are private. These keys are not exposed to the guest operating system itself. Therefore,
the virtual machine attack surface is reduced. Usually, compromising the guest operating system
compromises its secrets, but enabling a v-TPM greatly reduces this risk. These keys can be used
only by the guest operating system for encryption or signing. In the context of the “Device
Management” use case, the goal is to enable the NMS to remotely attest and validate the identity
and correct configuration state of a router’s firmware and operating system. The hardware platform
contains an Intel i7-9700T CPU (2.00 GHz – 4.30 GHz) and 32 GB of RAM. The operating systems
used are Ubuntu 20.04 in the host and openEuler 20.09 in the virtual machines. The hypervisor
used is KVM, together with the QEMU emulator.

The v-TPM depends on the correct integration of the underlying software-based trusted platform
module in a virtual machine. In this context, the QR SW-based TPM from INESC-ID, already used
in the demonstrator of the 1st period, has been upgraded for better integration in virtualized
environments according to the architecture defined by Stefan Berger. In particular, the automatic
provisioning of a software TPM for a virtual machine, an existing feature of libvirt, has been
enabled together with a custom script to perform QR-TPM-specific configuration tasks. The
necessary changes across the software stack both in the host and in the virtual machines to
support the QR-TPM have been already described in D6.3, section 4.3. Lastly, compared to the 1st
period, the RA Server and the NMS have been moved to dedicate virtual machines.

Furthermore, to better evaluate the impact of v-TPMs on the performance of cloud-based
applications (going beyond the target device management ecosystem), we have also considered
the benchmarking of some core v-TPM services (i.e., key generation, signing, verification, etc.) as
standalone processes. More specifically, in Section 4.3.2, we are documenting the performance
and execution timings of the core set of TPM commands that have also been considered in the
other reference scenarios. This evaluation was conducted by integrating SPHINCS+, Rainbow and
BIKE on top of Dilithium, NTTRU and Kyber. The motivation is to be able to compare not only
the security offered by a v-TPM (against an actual hardware TPM chip with stronger security
considerations) but also identify the performance overhead posed with relation to the level
of security provided.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 58 of 82

4.3 Implementation Path Report for the 2nd Experimentation Period

While in the 1st testing period, the focus has been on the underlying trusted computing
technologies combined under Comprehensive Integrity Verification (CIV), of which the main parts
are a kernel-based functionality and associated user-space software, in the 2nd period HWDU has
focused on the actual demonstrator platform and its components, which have been enhanced.

The following master images were pre-configured and used in the deployment:

- NMS - An image based on the openEuler 20.09 distribution, which has the core NMS code
based on Django framework.

- RA Server - An image based on the openEuler 20.09 distribution, which has the core RA
Server code based on Flask framework.

- Router - An image based on the openEuler 20.09 distribution. This image includes the
FRRouting routing suite to make the machine act as a router in the network.

- PC - An image based on the Ubuntu Server 20.04 distribution, which was used to create
Client and Web Server machines. This image does not include any additional programs and
code, as only basic ping functionality is required.

In the NMS, the RA Server and the Routers an attest-tools library is used. It is a C library for
abstracting the TPM hardware functionality to functions specific for simple remote attestation
protocols. Each of the entities above interface with each other through standard Representational
State Transfer (REST) Application Programming Interfaces (APIs).

The software stack of the complete environment is illustrated in Figure 30.

Figure 30: Demonstrator #3 – Software stack diagram

During the 2nd testing period, also some changes at a lower level of the software stack were made.
The IMA Digest Lists extension has been reworked to become ready for production and to be

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 59 of 82

accepted in the Linux kernel. In particular, work has been done to remove the unnecessary
functionality (the removed ones will be reintroduced later, after the core part is accepted by kernel
developers). Also work has been done to make the code easier to review, which is a prerequisite
for contributing to the kernel.

In addition, more extensions to user space software were developed to support for digest lists
during the entire software lifecycle. For the rpm package manager, two extensions were
developed. The first is responsible to call an external program (from digest-list-tools) during the
package building process to generate a digest list of files included in that package. The second is
responsible to take the digest list from the package, when the package is installed in a running
system, and to upload it to the kernel so that the kernel allows the programs inside the package to
be executed. These extensions are used by OS build services (the Huawei’s and SUSE’s ones
were tested) with very small configuration changes.

This work has been integrated in the Huawei OSes, EulerOS the commercial version and
openEuler 20.09 LTS, the open-source version widely used in China. Since all packages include a
digest list, users can easily use the Simple RA solution described above, and enable secure boot
for applications, which protects both content and file metadata. The complete list of changes for
openEuler can be found at the URL:

https://gitee.com/openeuler/security-facility/blob/master/ima/src/README.md

The full CIV solution that was previously developed during the 1st period has been updated to
leverage the reworked IMA Digest Lists extension. Apart from small adaption work due to the fact
that the code changed, no significant modifications were made on the remaining parts of full CIV,
such as Infoflow LSM.

Lastly, the reworked code was proposed to kernel developers by sending the patches to the kernel
mailing lists and it was partially accepted for kernel versions v5.5-v5.10.

4.3.1 User Stories Realisation

Compared to the 1st period, we have finalized user stories HWDU.NA.2, HWDU.NA.3, HWDU.NA.4
and we have completely implemented user story HWDU.EU.1, as described in D6.1.

Description

User Story Title: HWDU.NA.2 – As a Network Administrator I want to define a trusted routing
policy on the NMS so that the traffic is processed according to the trust states of routers.

User Story Confirmations:

 A routing policy depending, among others, on the trust state of routers is defined in the

NMS.

Workflow:

 In the NMS a metric is assigned to 4 router states: ATTEST_GOOD, ATTEST_UNKNOWN,
ATTEST_BAD, OFFLINE

 The defined metric gets assigned to the routers when they change states, and sent to other
routers

Issues encountered: -

Status: Completed

https://gitee.com/openeuler/security-facility/blob/master/ima/src/README.md

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 60 of 82

Description

User Story Title: HWDU.NA.3 – As a Network Administrator I want to enforce the trusted routing
policy in the network to reduce the risk of traffic leaking by untrusted routers.

User Story Confirmations:

 Routing tables on adjacent routers are modified when the trust state of a given

neighbouring router changes

Workflow:

 During the network lifetime the attestation state of some router changes
 NMS sends a metric update of the affected router to all the other managed routers
 The routers check if they are neighbours with the modified router, and adjust their internal

routing metrics according to the new state of the modified router

Issues encountered: -

Status: Completed

Description

User Story Title: HWDU.NA.4 – As a Network Administrator I want to monitor the overall trust
state of the network infrastructure.

User Story Confirmations:

 The NMS displays the trust state and routing table for each router in the network

TPM Functionalities:

 Key storage, signing, decryption, platform configuration

User Story Implementation:

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 61 of 82

Description

Figure 31: Router runtime verification

Components involved:

 RA Server: Remote Attestation Server that exposes a REST API to routers for device

enrolment and explicit RA.

 RA Lib (verifier): Library running on RA Server to verify CSRs (for implicit RA) and

quotes (for explicit RA).

 RA Client Core: Core logic running on each router

 RA Lib (enrolment):): Library running on RA Client to generate TPM keys, quotes and

CSRs

 NMS: Network Management System.

Workflow:

1. Establish TLS connection

 The NMS initiates a TLS handshake with the router.

 The router replies to the NMS and sends the certificate associated to the generated

TLS key.

2. Verify router TLS key cert

 The NMS verifies the router TLS key certificate against its CA.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 62 of 82

Description

3. TLS key unusable, trigger explicit RA

 If implicit RA fails (TPM key unusable in the router due to configuration change),

explicit RA is initialized by the RA Client Core

4. Collect measurements and generate TPM quote.

 RA lib (enrollment) collects measurements from the system and asks the TPM to

perform the quote operation.

5. Send measurements and TPM quote

 RA Client sends measurements and TPM quote to RA Server.

6. Check if AK cert is in DB

 RA Lib (verifier) checks whether the TPM quote has been signed by a TPM AK for

which a certificate was released by RA Server.

7. Verify measurements and TPM quote

 RA Lib (verifier) verifies the measurements and TPM quote sent by RA Client in the

router.

8. Send verification result

 RA Server sends the result of router integrity verification to the NMS so that it can

be seen by the Network Administrator.

9. Store verification result

 The result of the router integrity verification is stored in the NMS DB.

 NMS modifies the routing policy of the network according to the change of router’s

attestation state.

Issues encountered: it was not known in the concept phase where the CA used to sign router

certificates should be placed. During the software architecture phase, we chose to have different

CAs depending on the purpose: the likely existing NMS CA for TLS certificates (since the NMS

contacts the routers), and a new Privacy CA (included in the RA Server) for Trusted Computing

specific functionality.

Status: Complete

Degree of realisation: Full

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 63 of 82

Description

User Story Title: HWDU.NO.1 – The Network Operator connects the router to the network and is
able to verify the device integrity based on a whitelist.

User Story Confirmations:

 A TPM key is generated on the router for use to establish trusted channels.

 The TPM key is validated by the NMS (i.e. it can be used only with software and

integrity policy approved by the Network Administrator).

 A trusted management channel is established between the NMS and the router (on the

router the TPM enforces the validated TPM key policy).

 An LED light on the router case indicates that the router has connected to the NMS.

TPM Functionalities:

 Key storage and certification, identity verification, signing, decryption.

User Story Implementation:

Workflow (AK Certificate)

Figure 32: Router AK certificate generation

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 64 of 82

Description

1. Obtain RA Server cert

 ZTP Agent requests RA Server certificate from the NMS.

2. Extract RA Server FQDN from cert and begin the enrolment

 ZTP Agent extracts RA Server FQDN from the certificate for contacting it.

3. Generate AK

 RA Client generates an AK that will be used to certify the TLS key and sign TPM

quotes.

4. Request AK cert

 ZTP agent asks RA Server to issue a certificate for the AK it generated.

5. Check if router EK cred is in NMS DB

 RA Server asks the NMS if the EK credential of the router requesting an AK

certificate is enrolled (present in the database); this prevents unwanted routers from

getting an AK certificate.

6. Generate a FQDN for the router

 If the router has not been activated before, RA Server generates a new FQDN for

the router based on the template defined by the network administrator (i.e.

router.huawei.X), and sends it back to the router, so it applies a new FQDN

7. Generate credential blob and verify challenge response by router

 RA Lib (enrolment) generates a credential blob and asks RA Agent in the router to

prove that the router possesses the EK.

8. Generate AK cert and send it to Privacy CA

 RA Lib (enrolment) generates a certificate for the router AK and asks Privacy CA in

RA Server to sign the certificate

9. Sign AK cert

 Privacy CA signs the AK certificate; RA Server sends it to the router.

10. Return and store AK cert

 RA Server stores the signed AK certificate in its DB and returns the certificate to the

router

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 65 of 82

Description

Workflow (TLS key certificate):

Figure 33: Router TLS cert generation

1. Generate TLS key and CSR with SKAE

 RA Client generates a TPM key for TLS (the key policy is specified as a parameter

of TPM2_Create(); the policy should specify the correct software configuration for

which the TPM will allow the key to be used).

 A malicious router can specify a bad policy (e.g. for an incorrect/insecure

software configuration) but cannot convince the RA Lib (verifier) that the

policy was good (the generated key and the specified key policy are signed

internally by the TPM, so the router has no control over this process).

 The TPM signature is made with an Attestation Key (AK), which can be reliably

associated by the RA Lib (verifier) to a router with the EK credential of that router.

 RA Client also creates a CSR for the generated key and includes the TPM signature

in a certificate extension called Subject Key Attestation Evidence (SKAE) defined by

TCG.

2. Request TLS key

 ZTP agent asks RA Server to issue a certificate for the router TLS key

3. Check if AK cert is in DB

 RA Lib (verifier) first checks if there is a certificate for the AK the router used for

signing the TLS key

4. Verify SKAE from CSR

 RA Lib (verifier) verifies that the CSR is signed with a TPM key, that the TPM key is

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 66 of 82

Description

signed with an AK belonging to the given router and that the signed policy is correct

(i.e. the router has a good software configuration).

5. Request TLS key cert from NMS

 RA Server sends the CSR with the verified SKAE to the NMS, so that the NMS CA

can sign it.

6. Sign TLS key cert

 The NMS CA signs the TLS key certificate

7. Store TLS key cert in DB

 The NMS stores the TLS key certificate of the router in the NMS DB; the TLS key

certificate is delivered to RA Client.

8. Enrolment complete, received AK and TLS key cert

 RA Client informs ZTP Agent that it successfully received the AK and TLS key

certificates.

After the enrolment is complete, NMS tries to establish a TLS connection with the router based on
the new certificate to verify the enrolment was successful.

Issues encountered: implementing the enrolment logic was particularly complex due to lack of

existing TCG guidance on using the TSS for this purpose. We used the IBM Attestation Client

Server from Ken Goldman as reference for implementing this feature in attest-tools.

Status: Complete

Degree of realisation: Full

Description

User Story Title: HWDU.EU.1 – As an End User, I want to access a web application hosted in a

server that is remotely connected via the network of routers managed by the NMS

User Story Confirmations:

 The End User’s browser successfully connects to the server and displays the

application

Alternative User Story Confirmation (server unreachable, potentially due to routing policy

disallowing untrusted routers):

 The End User’s browser cannot connect to the web server

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 67 of 82

Description

Workflow:

1. A request is sent from web client to web server through the network of managed routers

when all the routers are in good state.

 The route of the request is recorded

2. One of the routers In the network changes its state (potentially due to untrusted configura-

tion)

3. A request from client to server is sent again

 The route of the new request can be seen to avoid the affected router as long as it has

alternative paths

Issues encountered: -

Status: Complete

Degree of realisation: Full

4.3.1.1 KPIs Measured

4.3.1.1.1 Quantitative Metrics

The table below shows the differences in performance when the demonstrator uses TPM 2.0 and
the FutureTPM QR-TPM. Entries in bold report the total time needed to execute a demonstrator
functionality. The time was taken from the host virtual machine. Entries with regular style report the
list of TPM commands executed for the demonstrator functionality in the previous row (not
exhaustive, for brevity reasons). Only for the router boot phase detailed measurements are not
shown, as the TPM commands are sent by the kernel and not by the TSS.

The first and the third column of the table report the TPM commands executed by the
demonstrator. The third column contains information only if the algorithm used is different. The
second and fourth column report the time necessary to execute a TPM command and it has been
extracted by monitoring TSS Execute() function of the underlying trusted software stack.

From the detailed performance measurement, we can conclude that the QR-TPM is slower than
the unmodified SW-TPM (TPM 2.0). Higher execution times can be explained by the increased
size of the data being transmitted between the TSS and the TPM (500 bytes for TPM 2.0 and
about 4000 bytes for QR-TPM). Another reason that applies is that the number of allocated PCR
banks in the QR-TPM (7) is higher than the number of PCR banks in TPM 2.0 (4). Furthermore,
NVRAM operations are slower due to the different amount of data to load (the public key in the EK
credential is bigger). Key creation commands cannot be compared because RSA key
generation is not deterministic, while Kyber and Dilithium key generation is deterministic.
TPM operations that require asymmetric crypto (e.g. TPM2_Load(), TPM2_ActivateCredential(),
TPM2_Certify(), TPM2_Sign()) are seven to ten times slower in the QR-TPM.

From the application perspective, the performance degradation is not as high. The AK creation for
example is only about three times slower in the QR-TPM. The difference is more significant for the
other functionalities of the demonstrator.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 68 of 82

Table 17: Demonstrator #3 – Comparison of Timings between TPM2.0 (SW) and FutureTPM (SW)

TPM 2.0 Command

TPM 2.0

Timings

(TSS)

FutureTPM Command

FutureTPM

Timings

(TSS)

Router Boot 6.159 6.466

TPM2_ReadClock
N/A

(kernel)

N/A

(kernel)

TPM2_SelfTest N/A N/A

TPM2_GetCapability N/A N/A

TPM2_PCR_Extend
(SHA1,SHA256,SHA384,SHA512)

N/A
TPM2_PCR_Extend (SHA1,SHA256,SHA384,SHA512,SHA3-

256,SHA3-384,SHA3-512)
N/A

TPM2_StirRandom N/A N/A

TPM2_GetRandom N/A N/A

TPM2_HierarchyChangeAuth N/A N/A

TPM2_PCR_Read (SHA1) N/A TPM2_PCR_Read (SHA1) N/A

TPM2_Load (sealed blob under rsa
2048)

N/A TPM2_Load (sealed blob under kyber security=3) N/A

TPM2_StartAuthSession N/A N/A

TPM2_PolicyPCR (SHA1) N/A TPM2_PolicyPCR (SHA256) N/A

TPM2_Unseal N/A N/A

TPM2_FlushContext N/A N/A

AK Creation 0.300 0.834

TPM2_NV_ReadPublic (EK credential
length)

0.000921 0.01377

TPM2_GetCapability 0.000590 0.013580

TPM2_NV_Read (EK credential) 0.004778 0.01802

TPM2_Create (AK, rsa 2048) 0.004779 TPM2_Create (AK, dilithium mode=2) 0.031657

TPM2_CreatePrimary (EK, rsa 2048) 0.011244 TPM2_CreatePrimary (EK, kyber security=3) 0.020212

TPM2_Load (AK, rsa 2048) 0.002805 TPM2_Load (AK, dilithium mode=2) 0.030117

TPM2_StartAuthSession 0.000799 0.013721

TPM2_PolicySecret 0.000592 0.013733

TPM2_ActivateCredential 0.002394 0.018827

TPM2_FlushContext 0.000471 0.013273

TLS Key Creation 0.194 0.655

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 69 of 82

TPM 2.0 Command

TPM 2.0

Timings

(TSS)

FutureTPM Command

FutureTPM

Timings

(TSS)

TPM2_PCR_Read (SHA1) 0.000789 TPM2_PCR_Read (SHA256) 0.013633

TPM2_Create (TLS, rsa 2048) 0.004865 TPM2_Create (TLS, dilithium mode=2) 0.032031

TPM2_Load (TLS, rsa 2048) 0.002942 TPM2_Load (TLS, dilithium mode=2) 0.030333

TPM2_Load (AK, rsa 2048) 0.002779 TPM2_Load (AK, dilithium mode=2) 0.030129

TPM2_Certify 0.002279 0.023121

TPM2_FlushContext 0.000492 0.013544

TPM2_ReadPublic (SRK, rsa 2048) 0.002016 TPM2_ReadPublic (SRK, kyber security=3) 0.018828

TPM2_StartAuthSession (SRK used as
salt key)

0.001963
 0.018708

TPM2_PolicyPCR (SHA1) 0.000601 TPM2_PolicyPCR (SHA256) 0.013880

TPM2_RSA_Decrypt 0.003242 TPM2_Sign 0.022728

TLS Connection 0.073 0.331

TPM2_ReadPublic (SRK, rsa 2048) 0.002401 TPM2_ReadPublic (SRK, kyber security=3) 0.018779

TPM2_StartAuthSession(SRK used as
salt key)

0.002068 0.018585

TPM2_Load (TLS, rsa 2048) 0.003677 TPM2_Load (TLS, dilithium mode=2) 0.030866

TPM2_PolicyPCR (SHA1) 0.000623 TPM2_PolicyPCR (SHA256) 0.013606

TPM2_RSA_Decrypt 0.003241 TPM2_Sign 0.022806

TPM2_FlushContext 0.000492 0.013335

Quote 0.066 0.381

TPM2_Load (AK, rsa 2048) 0.003126 TPM2_Load (AK, dilithium mode=2) 0.029669

TPM2_Quote 0.002785 0.022542

TPM2_FlushContext 0.000531 0.013034

Regarding KPIs 1 and 2, to the best of our knowledge, the Simple RA introduced in the
demonstrator is applicable to all types of routers and/or compute devices running Linux. In the
case of highly customized Linux versions, it might be possible to require minor adaptations, while
keeping the concept unchanged.

For KPIs 3 and 5 there was no known industry solution at the time of starting the project to achieve
the target values. Therefore, we developed the new CIV architecture that allowed us to fill the gap.

During the 2nd period, we completed the missing functionality in the demonstrator to be able to
measure KPI 4. During measurement we realized that the chosen criteria was not appropriate, as
the amount of traffic diverted depends on the duration of the experiment. With a longer experiment

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 70 of 82

we were able to obtain a higher percentage of diverted traffic than with a shorter one. Therefore,
we decided to first measure the time between the detection of a compromised router by the NMS
and the transmission of the first packet through the alternative path after the routing tables of the
non-compromised routers have been updated. Then, we defined a real world scenario, a Zoom
call, and we derived what the amount of traffic diverted would be depending on the network
statistics specific of that scenario.

We performed the experiment in the network depicted in the following Figure:

Figure 34: Network graph with all routers healthy

Initially, all routers are healthy and the metric for each route is 10. For the experiment, we executed
the ping command from the client (10.10.100.1) to the server (10.10.200.2), with a rate of 100
packets per second. With this configuration, the traffic goes through Routers 4, 2 and Router 1:

Figure 35: traceroute output with all routers healthy

We started a network capture with tcpdump on Router 1 to get the MAC address of the packets
going from the client to the server. After synchronizing the time on all systems, we performed an
attack on Router 2 that made the TLS key unusable and we took the time when Router 2 was
found compromised from the NMS log (Router 2 wasn’t able to complete the TLS handshake). At
this point, the NMS updates the routing tables of non-compromised routers, as depicted in Figure
36.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 71 of 82

Figure 36: Network graph with one router compromised

We then passed the network capture from Router 1 to Wireshark and selected the packets of
interest, as depicted in Figure 37:

Figure 37: Network capture from the time the NMS detected the attack on Router 2

After saving the selected packets in a different network capture, we obtained the time of the first
diverted packet:

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 72 of 82

Figure 38: Network capture from the time packets are diverted to Router 3

The first packet was diverted after 0.65 seconds since Router 2 was found compromised by the
NMS.

Figure 39: Wireshark statistics

From the statistics, we can see that the percentage of packets diverted is 90.8% for this particular
experiment.

Figure 40: ping output from the client

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 73 of 82

We also observed that a small percentage of packets was lost (0.46%), due to the reconfiguration
of the routers. With traceroute, we got the confirmation that traffic was diverted to Router 3:

Figure 41: traceroute output after the attack is detected on Router 2

This figure shows the network utilization of the VMs and the purpose of the communication.

Figure 42: Virtual Machine Manager output before and after the attack

Lastly, for a Zoom call, we obtained the following statistics. According to
https://skillscouter.com/video-conferencing-statistics/, the average duration of a call is between 31
and 60 minutes. Considering a call of 31 minutes, 0.65 seconds for reconfiguration and 0.82
seconds of traffic interruption, the amount of diverted traffic would be 99.92% ((1860 - 1.47) / 1860
* 100).

https://skillscouter.com/video-conferencing-statistics/

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 74 of 82

Table 18: Demonstrator #3 – Quantitative Metrics by M36

Id Metric
Target
Value

Acceptance
criteria

(M)andator
y / (G)ood
to Have /
(O)ptional

Measured by
M24

Comments

1

Amount of
routers whose

integrity is
monitored by

NMS

100% 100% M

With TPM2.0:
100%

With
FutureTPM:

100%

2

Amount of
routers hiding
their integrity

status

0% 0% M

With TPM2.0:
0%

With
FutureTPM:

0%

No enrolled router can hide
its status. However, due to
limitations of dynamic
routing protocols, a router
whose identity is not known
to the NMS might still
operate in the network.

3

Amount of
detected

integrity attacks
on routers

80% (with
integrity
models)

60%
(standard

IMA)
M

With TPM2.0:
80%

With
FutureTPM:

80%

Besides attacks detected by
standard IMA, we
additionally cover attacks
on:

- mutable files;
- non-regular files (e.g. IPC,

socket etc.).

Not covered:

- control flow attacks;
- file path protection.

4

Amount of traffic
diverted to

alternative paths
when a router is

compromised

75% 55% G

With
TPM2.0:
90.8%

With
FutureTPM:

90.8%

With TPM 2.0, the
percentage could be
higher due to faster
reconfiguration with
shorter TLS keys.

5
Amount of files
whose integrity
can be verified

100%
(with

integrity
models)

99%
(standard

IMA)

G

M

With TPM2.0:
100%

With
FutureTPM:

100%

All files can be verified.

4.3.1.1.2 Qualitative Metrics

TPM-based secure channels can be implemented by following existing specifications and several
examples exist in the industry. However, it has not practical so far to bind the TPM keys to the
complete software configuration, due to the traditional Measured Boot concept which is not suitable
for complex operating system scenarios, where several processes are executed in parallel.
Introducing CIV enables to overcome this limitation and achieve the below qualitative KPIs.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 75 of 82

Table 19: Demonstrator #3 – Qualitative Metrics by M36

Id Metric Target Value
(M)andatory / (G)ood to

Have / (O)ptional
Measured by M24 Comments

1
Traffic routing

based on router
trust state

Supported M

With TPM2.0:
Supported

With FutureTPM:
Supported

2

Trusted channels
between NMS and
each router in the

network

Supported M

With TPM2.0:
Supported

With FutureTPM:
Supported

3

Device
authentication key

for trusted
channel protected

by TPM

Supported M

With TPM2.0:
Supported

With FutureTPM:
Supported

4

Integrity
protection of

router
configuration data

using a TPM key

Supported M

With TPM2.0:
Supported

With FutureTPM:
Supported

4.3.2 QR Virtual Trusted Platform Module Experimentation

As aforementioned, to better evaluate the impact of v-TPMs on the performance of cloud-based
applications, we have also considered the benchmarking of core v-TPM services as standalone
processes. The goal is to be able to document the performance overhead posed with relation to
the level of security provided; by experimenting with different security settings (as was the case for
the L-DAA algorithm in the Activity Tracking use case).

There are four aspects of the v-TPMs in virtualized environments that define their level of security
regarding to a physical TPM: protection of the vTPM secrets, link between the vTPMs and the
virtual guests, extension of the chain-of-trust from the host machine to the virtual guests
and key hierarchies and management. In what follows, we analyze the implementation of the
FutureTPM QR v-TPM environment against the commands that are linked to these four service
aspects. The evaluation was conducted by integrating SPHINCS+, Rainbow and BIKE in addition
to Dilithium, NTTRU and Kyber.

We have to note, however, that this extra evaluation was also considered due to some challenges
that were faced during the integration of a full virtual TPM approach in the context of the device
management reference scenario. Towards this direction, special focus needs to be given to the
direct mapping of all the physical TPM registers, NVRAM and keys to the v-TPM. Due to lack of
existing drivers in the literature that can support such an extensive virtual TPM passthrough – a v-
TPM service should be designed as a backend driver for the physical TPM to communicate with an
emulated TPM TIS frontend -, FutureTPM opted to provide a v-TPM environment designed as
a software TPM backend implementation linked with an external library libtpms (Section 4.2).
As described in the previous chapters, this library provides TPM emulation. On the guest side there
is an emulated TPM TIS frontend (see Figure 43) and a modified open source BIOS.

Within the QR v-TPM we have tested and measured the performance of the following crypto
primitives: Dilithium, Kyber, Rainbow, SPHINCS+, and BIKE. In the following tables, we compare

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 76 of 82

the virtual and software QR TPM variants in order to measure how running the TPM in a
virtualized environment would affect its usability and what are the challenges that need to be
taken into consideration when running a TPM on top of a hypervisor.

Figure 43: V-TPM Architecture

Firstly, we have measured the timings for the TPM commands mapped to the core key
management services; a functionality, which as was described in the previous sections, served as
the trust anchor for many of the demonstrator components. The results are shown in Table 20.

Table 20: Results of V-TPM Tests for Dilithium and Kyber

TPM2 Command Command used Timing (ms)

TPM2_create
./create -hp 80000000 -si -dilithium mode=2 -kt f -kt p
-opr dil_priv.bin -opu dil_pub.bin -pwdp sto

278

TPM2_create
./create -hp 80000000 -kyber k=4 -den -kt f -kt p -opr
kyber_priv.bin -opu kyber_pub.bin -pwdp sto -pwdk
kyber

270

TPM2_LoadExternal ./loadexternal -hi p -ipu kyber_pub.bin 273

TPM2_FlushContext ./flushcontext -ha 80000001 296

TPM2_Load
./load -hp 80000000 -ipr dil_priv.bin -ipu dil_pub.bin -
pwdp sto

636

TPM2_Sign
./sign -hk 80000001 -dilithium -if enc.bin -os sig.bin -
pwdk dilithium

282

TPM2_LoadExternal ./loadexternal -hi p -ipu dil_pub.bin 284

(Separate functionality) ./kyberencrypt -hk 80000001 -id test.txt -oe enc.bin 276

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 77 of 82

Figure 44: Timing Comparison of SW-TPM and V-TPM for Dilithium and Kyber

Secondly, we have also measured the timings for the SPHINCS+, Rainbow and BIKE commands
tested for the v-TPM6. The results are shown in the following tables.

Figure 45 below, reports the performance timing of all the tested V-TPM QR commands for
comparison. With each of the commands executed, RAINBOW’s key generation proved to be
significantly slower, and this is mainly due to the keys used: in fact, the size of the key generated
was 148.5 KB whereas the key size of SPHINCS+ was 41 KB. The timings for signing and
verification of the keys within the V-TPM are more or less consistent among the tested algorithms.

Figure 45: Timing Comparison of all V-TPM Commands for Rainbow, SPHINCS+ and Dilithium

6 See the document "Technical Guide to V-TPM" for more details on the integration of these algorithms.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 78 of 82

The following tables show the timings gathered for the execution of the signing and verification

processes on the v-TPM: the commands timings are listed on the right-hand side and the algorithm

on the left-hand side. Overall, given the security consideration, it can be stated that the

performance overhead currently posed by the QR v-TPM is equivalent to the one of the software

trusted platform module when neglecting any underlying network related issues (i.e., latency.

Bandwidth, etc.). Therefore, such a complete virtualized v-TPM of QUEMU sets the basis for a

new future usage of this technology.

4.4 Use Case Evaluation

At the end of the 2nd period, HWDU has achieved the objectives that have been defined for the
device management demonstrator. All user stories have been successfully implemented and unit
tested. The performance measurements obtained throughout the entire testing and evaluation life
cycle of the project verify that the integration of advanced QR TPMs do not dramatically impact the
routing capabilities of a device management system and enabled us to achieve the target KPIs.

Over the 1st period, the effort focused on implementing the underlying CIV technology, as well as
the enrolment and remote attestation parts. There have been a number of design and
implementation issues that have been overcome, new features have been added (S-ZTP) and new
technologies have been introduced (CIV architecture) to solve existing industry challenges. During
the 2nd period, the demonstrator has been completed, adding support for the regular device
management logic according to the remaining user stories.

The software TPM implementation has been integrated as a virtual TPM in this demonstrator, with
all related infrastructure such as libvirt, qemu, kernel drivers. Such an implementation provided the
following characteristics:

 Transparent v-TPM offered to guest host: The service of vTPM is based on full TPM
emulation. Since the TPM TIS interface is emulated, no modifications have to be performed
to the guest operating system.

 No physical TPM required: Since the vTPMs are fully emulated and not bound to a pTPM,
this solution does not require the presence of a pTPM in the system.

The demonstrator is modular and abstracts the underlying TC technology from the actual
demonstrator functionality, for simple product integration and administration. A graphical user
interface (GUI) has been implemented to help visualize the results and map the technology on a
real product scenario.

In conclusion, the device management demonstrator has proven the viability of a Quantum-
Resistant TPM, of the operating system-based integrity technologies, as well as of the new use
cases introduced in this project, for introducing trusted-computing-based management to telecom
network infrastructure scenarios.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 79 of 82

Chapter 5 Conclusions

The current deliverable, as identified in the introduction aims to cover main activities of the second
evaluation cycle which dealt with the evaluation, validation and refinement of the algorithms and
the platform offered by the FutureTPM project, as seen through the viewpoints of the three
envisioned use cases: namely the “Secure Mobile Wallet and Payments”, “Personal Activity and
Health Kit Data Tracking” and “Device Management” reference scenarios. As such, D6.5 reflects
on the “pilot’ implementation and integration of the FutureTPM framework in those settings, testing
the assumptions of the project, the feasibility, the applicability and the overall acceptance of
post-quantum TPM in specific business cases, not only in terms of security, but also in terms
of performance, availability and of other business critical indicators.

Towards this direction, the work performed for each one of the aforementioned demonstrators till
M35 of the project was presented here.

 In the context of the Secure Mobile Wallet and Payment use case, during this period the
HW QR-TPM was integrated, which has been implemented on an FPGA board and
provides the NewHope and BLISS QR schemes. The experimentation results proved
that the performance of the HW TPM implementation - of FutureTPM - meets the vast
majority of the performance KPIs and that the time discrepancies among the
measurements are justified by the technical limitations of the FPGA-based
implementation of the TPM and the intrinsic characteristics of the QR algorithms,
while the overall, the performance of HW QR FutureTPM meets the goals of the
demonstrator.

 In the context of the Personal Activity and Health Kit Data Tracking use case, an entirely
new version of the LDAA protocol (LDAA-v2) based on a software QR-TPM
infrastructure has been successfully implemented in the S5 Activity Tracking
demonstrator to overcome the obstacles faced by the integration of LDAA-v1 in the first
evaluation cycle. Based on the experimentation outputs, the LDAA-v2 protocol achieved to
come pretty close to the targets set for the Activity Tracker demonstrator and from a
business perspective, it succeeded in delivering acceptable results in an operational
environment, even if the measured performance was not fully meeting the ideal targets set.
As such, this demonstrator showed that QR-TPMs could offer a substantial
improvement to the degree of offered privacy and security in data handling
applications when it comes to systems whose requirements are “close-to-real-time”,

 In the context of the Device Management use case, during this period support for the
regular device management logic has been added and the software TPM implementation
has been integrated as a virtual TPM in this demonstrator, with all related infrastructure
while a graphical user interface (GUI) has been implemented to help visualize the results
and map the technology on a real product scenario. Based on the overall findings, the
device management demonstrator has proven the viability of QR-TPM for introducing
trusted-computing-based management to telecom network infrastructure scenarios.

This summary of all key performance indicators from the QR algorithms developed and tested, as
well as the new remote attestation enablers, set the scene for the critical appraisal of all the
project’s artefacts towards securing both extremes of a network, namely the edge and the cloud.
For this detailed analysis of the potential impact generated by the introduction of FutureTPM and
discussions about the different outcomes, the reader is referred to deliverable D6.6 of the project,
titled “Validation Results, Performance Evaluation and Adoption Guidelines”.

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 80 of 82

Chapter 6 List of Abbreviations

Abbreviation Translation

AK Attestation Key

CFA Control Flow Attestation

CFG Control Flow Graph

CFP Control Flow Path

CISQ Consortium for IT Software Quality

DAA Direct Anonymous Attestation

DH Diffie-Hellman

eBPF enhanced Berkeley Packet Filter

ECC Elliptic Curve Cryptography

FIDO Fast ID Online

FPGA Field Programmable Gate Arrays

GDB GNU Debugger

KPI Key Performance Indicators

KVM Kernel-based Virtual Machine

LDAA Lattice based Direct Anonymous Attestation

LWMA Linearly Weighted Moving Average

MFA Multifactor Authentication

NFC Near Field Communication

NMS Network Management System

PC Personal Computer

PCR Platform Configuration Register

PDP Policy Decision Point

PE Policy Enforcement

PEP Policy Enforcement Point

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 81 of 82

Abbreviation Translation

QEMU Quick Emulator

QR Quantum Resistant

RA Risk Assessment

SAK Service Attestation Key

SKAE Subject Key Attestation Evidence

TCB Trusted Computing Base

TPM Trusted Platform Module

TSS TPM Software Stack

U2F Universal 2nd Factor

URL Uniform Resource Locator

WP Work Package

D6.5 – Final Demonstrators Implementation Report

FutureTPM D6.5 Public Page 82 of 82

Chapter 7 Bibliography

1 T. F. Consortium, “D6.1 – Technical Integration Points and Testing Plan,” 2019.

2 T. F. Consortium, “D2.1 – Second Report on New QR Cryptographic Primitives,” 2019.

3 T. F. Consortium, “D4.2 – FutureTPM Risk Assessment Framework – First Release,” 2019.

4 Trusted Computing Group (TCG), TCG Glossary (Version 1.1, Revision 1.00), 2017.

5 Trusted Computing Group (TCG), Trusted Platform Module Library - Part 1: Architecture
(Family 2.0, Revision 01.38), 2016.

6 Trusted Computing Group (TCG), TCG TSS 2.0 TPM Command Transmission Interface
(TCTI) API Specification, 2018.

7 C. Yue, B. Boehm and L. Sheppard, “Value driven security threat modeling based on attack
path analysis.,” in 40th Annual Hawaii International Conference on System Sciences
(HICSS 2007), 2007.

8 V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling using attack trees,” Journal of
Computing in Small Colleges, vol. 23, no. 4, pp. 124-131, 2018.

9 ETSI TS 102 165-1, “Methods and protocols; Part 1: Method and proforma for Threat, Risk,
Vulnerability Analysis,” in Telecommunications and Internet converged Services and
Protocols for Advanced Networking (TISPAN), 2014.

10 Trusted Computing Group (TCG), “TCG TSS 2.0 TAB and Resource Manager
Specification,” 2018.

11 TPM2-abrmd authors, “TPM2 Access Broker & Resource Manager,” [Online]. Available:
https://github.com/tpm2-software/tpm2-abrmd.

12 T. F. Consortium, “D4.1 – Threat Modelling & Risk Assessment Methodology,” 2019.

13 T. F. Consortium, “D1.1 - FutureTPM Use Cases and System Requirements,” 2018.

14 T. F. Consortium, “D5.1 – First Version of Implementation,” 2019.

15 Rainbow. Available at: https://csrc.nist.gov/CSRC/media/Presentations/Rainbow/images-
media/Rainbow-April2018.pdf. 2018

16 SPHINCS: practical stateless hash-based signatures. Website: https://sphincs.cr.yp.to/.
2017

17 R. del Pino, V. Lyubashevsky and G. Seiler, “Lattice-Based Group Signatures and Zero-
Knowledge Proofs of Automorphism Stability”, ACM SIGSAC Conference, 2018.

18 L. Chen, N. El Kassem, A. Lehmann and V. Lyubashevsky, “A Framework for Efficient
Lattice-Based DAA”, Proceedings of the 1st ACM Workshop on Workshop on Cyber-
Security Arms Race – CYSARM'19, 2019.

19 ProVerif: Cryptographic protocol verifier in the formal model - [online]
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/

20 Tamarin Prover - a security protocol verification tool that supports both falsification and
unbounded verification in the symbolic model. [online] http://tamarin-prover.github.io

21 GALATICS Repository. Website: https://github.com/espitau/GALACTICS

22 T. F. Consortium, “D6.3 – Demonstrators Implementation Report – First Release,” 2020.

23 T.F. Consortium, “D5.3 – Final Version of QR TPM Implementation”, 2020.

24 T.F. Consortium, “D4.5 – Runtime Risk Assessment, Resilience and Mitigation Planning”,
2021.

25 T. F. Consortium, “D4.4 – FutureTPM Risk Assessment Framework”, 2021.

https://github.com/tpm2-software/tpm2-abrmd
https://csrc.nist.gov/CSRC/media/Presentations/Rainbow/images-media/Rainbow-April2018.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Rainbow/images-media/Rainbow-April2018.pdf
https://sphincs.cr.yp.to/
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://tamarin-prover.github.io/
https://github.com/espitau/GALACTICS

	Chapter 1 Introduction
	1.1 Evaluation, Testing and Validation Methodology
	1.2 Harmonized Test Guidelines
	1.3 Document Structure

	Chapter 2 Demonstrator #1 – Secure Mobile Wallet and Payment
	2.1 Demonstrator Overview and Final Architecture
	2.1.1 Overview of the FIDO U2F Registration and Authentication Phases
	2.1.2 Overview of Remote Attestation Schemes: Attestation by-proof and Attestation-by-Quote
	2.1.3 Strong Authentication by integrating the use of TPMs and DAA in the FIDO U2F Protocol
	2.1.3.1 System Model
	2.1.3.2 Requirements
	2.1.3.3 Trust Models
	2.1.3.4 Adapted design of the registration and authentication protocols
	2.1.3.4.1 Registration protocol
	2.1.3.4.2 Authentication protocol

	2.1.4 Demonstrator Needs and Challenges

	2.2 Implementation Path Report for the 2nd Experimentation Period
	2.2.1 User Stories Realisation
	2.2.2 Unit Test Results
	2.2.3 KPIs Measured
	2.2.3.1 Quantitative Metrics
	2.2.3.2 Qualitative Metrics

	Chapter 3 Demonstrator #2 – Activity Tracking
	3.1 Demonstrator Overview and Final Architecture
	3.1.1 Demonstrator Needs and Challenges

	3.2 Implementation Path Report for the 2nd Experimentation Period
	3.2.1 Activity Tracker Demonstrator – Experimentation with LDAA-v1 and LDAA-v2
	3.2.1.1 Emulated System Description
	3.2.1.2 User Stories Realisation
	3.2.1.3 KPIs Measured
	3.2.1.3.1 Quantitative Metrics
	3.2.1.3.2 Qualitative Metrics

	3.2.2 LDAA-v2 Experimentation as a Standalone Application
	3.2.2.1 KPIs Measured

	3.3 Use Case Evaluation

	Chapter 4 Demonstrator #3 – Device Management
	4.1 Demonstrator Overview
	4.1.1 Demonstrator Needs and Challenges
	4.1.2 Demonstrator Architecture

	4.2 Emulated System Description
	4.3 Implementation Path Report for the 2nd Experimentation Period
	4.3.1 User Stories Realisation
	4.3.1.1 KPIs Measured
	4.3.1.1.1 Quantitative Metrics
	4.3.1.1.2 Qualitative Metrics

	4.3.2 QR Virtual Trusted Platform Module Experimentation

	4.4 Use Case Evaluation

	Chapter 5 Conclusions
	Chapter 6 List of Abbreviations
	Chapter 7 Bibliography

